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We discuss the properties of ghost and gluon propagatoramidu gauge Yang-Mills theory
and their relation to the confinement problem. In generaltiyes of infrared behavior of these
functions are allowed from their functional equations: lisgpand decoupling. Both solutions
show positivity violations in the gluon propagator and lé@d confining Polyakov loop potential.
However, only the scaling solution agrees with the Kugai@jiconfinement scenario and the
related formulation of a physical Hilbert space of YangiMtheory. Our numerical results for
the gluon dressing function agree almost pointwise witHdttee results at all physical momenta.
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1. Global symmetries, confinement and the infrared behavioof Yang-Mills theory

In this talk we are concerned with the infrared behavior efdhessing functions of the ghost
and gluon propagators of QCD. There has been much debate ipatt years about the zero
momentum limit of these functions mainly due to an appardstratch between solutions obtained
from lattice gauge theory [1, 2] and functional equationghiem continuum, i.e. Dyson-Schwinger
equations [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and functional reradization group equations [13, 14].
In these continuum studies the dressing function of thetghrapagator is divergent, whereas the
gluon propagator is infrared finite or even vanishing. Imteiof the dressing functiorG(p?) and
Z(p?) of the ghost and gluon propagators in Landau gauge

2 2
Da(p) = _G(sz) ) ) Duv(p) = <5uv - %) D(pz) = <5uv - p;?) Z(pg ) . (1)

and in terms of a power-law expansion in the infrared thesiingsfunctions are related by
Z(p?) ~ (PP 872 G(p?) ~ (p?) " (1.2)

with dimensiond and positive and potentially irrational exponentThese power laws are part of
an all-order analytical analysis of both the whole tower &H3 and FRGs in the infrared [9, 10].
They agree with a set of conditions formulated within a frammek for confinement of covariantly
gauge fixed Yang-Mills theory set up by Kugo and Ojima [15].

The Kugo-Ojima scenario rests on well-defined chargesaekatunbroken global gauge sym-
metries. In particular it assumes global BRST symmetry. rEteted well defined charge operator
has been used to identify the positive definite spaGgys of physical states within the total state
space?” of QCD. An unbroken global gauge symmetry is then crucialntonsthat the states in
Fpnyscontributing to the physical S-matrix of QCD are indeed delss. They also argued that this
setup guarantees the disappearance of the 'behind-tha-mpablem, i.e. a colorless bound state
with colored constituents cannot be delocalized into @adumps [15]. This then implements the
confining phase of Yang-Mills theory. In Landau gauge a dioemsequence of the well defined
global color charge is the infrared enhancement of the girestsing functiorG(p?) [15]. Such a
behavior is obtained in egs.(1.2) if and onlif> 0.

In functional methods this enhancement can be implemergexhanfrared renormalization
condition for the ghost dressing function. This conditieads to a unique [10] (scaling) solution
of the whole tower of functional equations for the one-mégtirreducible Green’s functions of
Yang-Mills theory. In turn, given the Kugo-Ojima scenario iafrared divergent ghost implicitly
defines the unique gauge fixing with well-defined global BR&a&rges [12].

In lattice calculations, however, the behavior (1.2) witly O is notoriously difficult to obtain.
In the two dimensional theory (1.2) is nicely satisfied [18)]three dimensions first hints of (1.2)
have been found in a formulation with an improved (evolwigy) gauge fixing algorithm [17],
whereas in four dimensions one obtains (1.2) in the stromglet limit 8 — O for not too small
momenta [2]. In general, however, lattice calculationsnrethe different behavior

Z(p%) ~ (p*)Y3 G(p?) ~ (p?)° (1.3)



Aspects of confinement from QCD correlation functions Christian S. Fischer

101;”“ —rrrro
oo mmommmoooooooos 10°F E
__________ 7 — scaling
10°L —, - - decoupling
- F _
= r 1 et
2 r — scaling 1 o0 Fo T
N 10-1E --- decoupling E
(I
10_2? | 10 F
Bl vl vl e il il NG Dl vl vl vl vl il
10* 10°  10° 100 1 10" 10° 10 10° 10° 10" 10° 10" 10°
P’ [GeV] p[GeV]]

Figure 1: Numerical solutions for the gluon propaga®p?) = Z(p?)/p? and the ghost dressing function
G(p?) with different boundary condition(0).

even for very large lattices [1]. This limit fqe> — 0, however, corresponds to a finite ghost dress-
ing function and is therefore not in agreement with the K@wmna scenario. Within functional
methods also this 'decoupling’ type of solution can be impated by suitable boundary condi-
tions in the infrared [6, 12, 18, 19, 20]. Up to logarithmss£#.2) and (1.3) completely exhaust
the possible infrared solutions of the functional equatiohYang-Mills theory.

Given confinement, an infrared solution with finite ghost etozmomentum (termed 'de-
coupling’ below) implies broken global gauge and BRST syrmimg [2, 12]. Indeed, all known
BRST-quantizations that are compatible with an infrareddighost even break off-shell BRST,
see e.g. [20] and references therein. The only possibititytHe decoupling solution to coexist
with a globally well-defined BRST charge is in a Higgs phaskere the breaking of global color
symmetry implies the existence of super-selection sectGextainly, this is not what is seen in
lattice simulations of QCD and therefore one may concludé BRST-symmetry is indeed broken
on the lattice [21]. Regarding global symmetries, the statuthe decoupling solutions is there-
fore clearly different from the scaling solution: whereaslgg agrees with well-defined BRST
and global color charges decoupling does not. Note, howévat both scaling and decoupling
agree with the confinement criterion developed in [22]: He#d to a confining, nonperturbative
Polyakov loop potential. Furthemore, in both cases thergjuopagator exhibits positivity viola-
tion [12].

2. The ghost and gluon dressing functions

As already mentioned above the functional continuum egnatiDSEs and FRGs, can display
both types of solutions, scaling (1.2) and decoupling (ITBese are distinguished by a boundary
condition for the ghost dressing function at zero moment@i®). In [12] we demonstrated this
behavior using a truncation scheme for the DSEs developeguidcantee the transversality and
multiplicative renormalizability of the gluon DSE. As aniexhative we also employed a truncation
for the corresponding equations in the FRG-framework, tviinas been developed to minimize
truncation artefacts in the mid-momentum region.
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Figure 2: Both type of solutions compared to lattice results in mifindau gauge from [23].

Our numerical solutions for the ghost and gluon dressingtfans are shown in Fig. 1. The
boundary conditionG(0) = « results in the scaling solution, eq. (1.2), with a diverggtgost
dressing function in the infrared and an infrared vanistghgn propagator. The corresponding
critical exponent in eq. (1.2) is given by = kc = (93— v/1201)/98 ~ 0.595353 [6]. A finite
value G(0) = const, however, produces a continuous set of decoupling sokitigth an infrared
finite ghost dressing function. The corresponding gluorpagator is massive in the sense that
D(0) =lim 2 4 Z(p?)/p? = const for decoupling. In the ultraviolet momentum region, bothey
of solutions are almost identical, as expected.

Finally we wish to emphasize that the question of scalinglesoupling only concerns global
properties of the theory as the (non-)conservation of awardhe behavior (1.2) or (1.3) sets in
at scaleg? < /\éco- In contradistinction all dynamics of the theory takes partscales around
or larger tham\qcp. Certainly, from a phenomenological point of view the bebawf the ghost
and gluon dressing function at scalgs> /\2QCD is much more relevant than the behavior in the
deep infrared. In Fig. 2 we compare the solutions from fuumal equations with the lattice results
of ref. [23] for the gluon dressing function. It is very sédistory that our numerical solution of
the functional renormalization group equations almosthiadse matches the corresponding lattice
results in the phenomenologically important mid-momentegion.
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