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Correlations between center vortices and low-lying eigedes of the Dirac operator are studied
in both the overlap and asqtad formulations. In particulaswggest a solution to a puzzle raised
some years ago by Gattnar et al. [Nucl. Phys. B 716 (2005), /i noted the absence of low-
lying Dirac eigenmodes required for chiral symmetry bregkn center-projected configurations.
We show that the low-lying modes are present in the stagdesgfiad) formulation, but not for
overlap, and we argue that this is due to the absence of aifiéégpendent chiral symmetry on
the very rough center-projected configurations for ovealag “chirally improved” fermions. We
also confirm and extend the results of Kovalenko et al. [Phytt. B 648 (2007) 383]: there
are strong correlations between center vortex locatiodgtas scalar density of low-lying Dirac
eigenmodes, supporting the picture of topological chargefcenter vortices.
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1. Introduction

The center vortex model explains quark confinement and tbeéargument [1] implies that
a force strong enough to confine quarks is also generallyctegeo break chiral symmetry. The
Banks-Casher relation [2] relates chiral symmetry breakySB) with a finite density of near-zero
eigenmodes of the chiral-invariant Dirac operator. Sdwears ago, however, Gattnar et al. [3]
reported a puzzling result with a chirally-improved versaf the Dirac operator due to Gattringer
[4]. They found a large gap around zero in the spectrum forecgarojected configurations, which
contain only thin vortex excitations and whiake confining, implying zero chiral condensate and
therefore ngySB We suggest that this large gap found by Gattnar et al. iseckled the way in
which chiral symmetry is realized on the lattice. The Castrgument [1] is based on the usual
SU(N¢ )L x SU(Nf)r symmetry of the continuum theory with massless fermionst&eprojected
configurations are, however, maximally discontinous; pé&ite variables make a sudden transition
from the trivial center element outside the thin vortex, tooa-trivial center element inside. The
chirally-improved Dirac operator is not necessarily clhiraymmetric, even approximately, in such
backgrounds and there is no reason to expect spontaneousesgnibreaking.

We will reinforce these arguments in section 2, looking atspectra of the overlap [5] and
asqtad [6] Dirac operators, when evaluated on normal, xamdy (i.e. center-projected), and
vortex-removed lattices. Our results support the view teatter vortices alone can induce both
confinemeniand chiral symmetry breaking. In section 3 we report on otheratations between
center-vortex locations and the density distribution @f-lging Dirac eigenmodes, following the
earlier work by Kovalenko et al. [7]. These correlations gup the picture advocated by Engel-
hardt and Reinhardt [8], in which topological charge is @nitated at points where vortices either
intersect, or twist about themselves (“writhe”) in a certaiay.

Throughout this article we work with lattices generated affite Monte Carlo simulation
of the tadpole improved Lischer-Weisz pure-gauge actiainignat couplingBw = 3.3 (lattice
spacinga = 0.15 fm) for the SU(2) gauge group [9]. Center projection is performed in direct
maximal center gauge (adjoint Landau gauge).

2. Low-lying eigenmodes and thin vortices

We present the first twenty overlap eigenvalues for‘adsice atfBw = 3.3 in Fig. 1. There is
a big gap around zero for center-projected data, indicatérg chiral condensate. Looking closer
at the center-projected eigenvalues one spots only fiveedftkenty eigenvalues. This indicates a
degenerency of four, caused by the real trivial link vaeaki:1,), where the two colors decouple
and the eigenvalue equati@, = Any, is invariant under charge conjugation. We speculated
that the reason for the large gap in the vortex-only case wasearted with the lack of smooth-
ness of center-projected lattices. The chiral symmetmystamations are gauge-field dependent
[10], and only approximate th8U(N; ). x SU(N¢)r transformations of the continuum theory for
configurations which vary slowly at the scale of the lattipagng. Center-projected configura-
tions are not even close to smooth, and the Casher argunedatting confinement tySB need
not apply. However, the overlap operator should produce eemeasonable answer when ap-
plied to a smoother version of the center-projected lattideerefore we perform an interpolation
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Figure 1: The first twenty overlap Dirac eigenvalue pairs on the Gingilson circle for a 18 lattice
at Biw = 3.3 for antiperiodic boundary conditions. The center-prtgdaconfigurations show a four-fold

degeneracy.

between full (gauged) and projected configurations, redutie angle between the vector rep-
resenting group elemeht, (x) in maximal center gauge, and the vector representingSthe)
center elemeng, (x)l, by some fixed percentage. In Fig. 2 we show the low-lying eigleres for
partial projections together with the unprojected and eeptojected lattices. We see that there
is no really obvious gap in the partially-projected laticeven at 85% projection. This agrees
with our conjecture that applying the overlap operator tor@ather version of the vortex-only
vacuum would give a result consistent witB and the Banks-Casher relation. Staggered and
asqgtad fermions, on the other hand, do not require a smoafigacation to preserve a subgroup
of the usual continuurBU(N¢). x SU(N¢)r symmetry, and by the Casher argument [1] one would
expect this remaining symmetry to be spontaneously brolemmip confining gauge configuration.
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Figure 2: The first twenty overlap Dirac eigenvalue pairs from a singpafiguration on a 16lattice,
antiperiodic boundary conditions Btw = 3.3, for interpolated fields.
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Fig. 3 shows the first twenty asqtad eigenvalues, whichibiiger very differently now. The low
eigenmode density (chiral condensate) increases for reprigected compared to full (original)
data. Thus, for the asqtad operator, we have found exactly was expected prior to the results of
Gattnar et al.: the vortex excitations of the vortex-onlji¢e carry not only the information about
confinement, but are also responsible ¥@B via the Banks-Casher relation.
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Figure 3: The first twenty asqtad Dirac eigenvalue pairs from 4 Ihtice atfw = 3.3 for antiperiodic
boundary conditions. The center-projected configuratstyesv no gap around zero.

3. Dirac eigenmode densities and vortex correlations

The correlatoiC, between the density of the eigenmadleand the vortex surface is inves-
tigated in order to clarify the role of the vortices in the etgmical structure of the vacuum. It
depends on the eigenvalue and on the local geometry of thiexvorhe vortex point§ live on
the dual lattice and they are correlated to the averagedrsegenmode densify, (x) over the 16
verticesx of the 4d hypercubel, dual toR. [7]

Cr(Ny) = Yo 2xer(VPa (x)—1) (3.1)

dpoxenl
In Fig. 4 we display the data fd, (Ny) vs. Ny, computed for eigenmodes of the asqtad Dirac
operator in the full and center-projected configurations. fiMd that the values &, (N,) obtained
from asqgtad eigenmodes in the full configurations are onlyuila factor of four smaller than
the corresponding values in the center-projected configms The most important feature, in
our opinion, is the fact that the correlator increases #ieadth increasing number of the vortex
plaquettes\,, attached to a poir® where the Dirac eigenmode density seems to be significantly
enhanced. This fact is at least compatible with the geneciline advanced by Engelhardt and
Reinhardt [8], that topological charge is concentratedoattp where vortices either intersect, or
twist about themselves (“writhe”) in a certain way.
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Figure 4: Vortex correlatiorC, (N,) for asqtad staggered eigenmodefigi = 3.3 on full (left) and center-
projected (right) configurations.

4. Conclusions

Thin vortices found in center projection give rise to a loinrty spectrum of Dirac eigenmodes,
providing that the chiral symmetry of the Dirac operator€loet depend on the smoothness of the
lattice configuration. Thus, the vortex excitations of tleetex-only lattice carry not only the
information about confinement, but are also responsiblex®B via the Banks-Casher relation.
There are significant correlations between center voracessthe low-lying modes, supporting the
picture of topological charge from center vortices. Ouukssindicate that center vortices have a
strong effect on the existence and properties of low-lyilggrmodes of the Dirac operator. For
more details see [11].
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