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Correlations between center vortices and low-lying eigenmodes of the Dirac operator are studied

in both the overlap and asqtad formulations. In particular we suggest a solution to a puzzle raised

some years ago by Gattnar et al. [Nucl. Phys. B 716 (2005) 105], who noted the absence of low-

lying Dirac eigenmodes required for chiral symmetry breaking in center-projected configurations.

We show that the low-lying modes are present in the staggered(asqtad) formulation, but not for

overlap, and we argue that this is due to the absence of a field-independent chiral symmetry on

the very rough center-projected configurations for overlapand “chirally improved” fermions. We

also confirm and extend the results of Kovalenko et al. [Phys.Lett. B 648 (2007) 383]: there

are strong correlations between center vortex locations and the scalar density of low-lying Dirac

eigenmodes, supporting the picture of topological charge from center vortices.
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1. Introduction

The center vortex model explains quark confinement and the Casher argument [1] implies that
a force strong enough to confine quarks is also generally expected to break chiral symmetry. The
Banks-Casher relation [2] relates chiral symmetry breaking (χSB) with a finite density of near-zero
eigenmodes of the chiral-invariant Dirac operator. Several years ago, however, Gattnar et al. [3]
reported a puzzling result with a chirally-improved version of the Dirac operator due to Gattringer
[4]. They found a large gap around zero in the spectrum for center-projected configurations, which
contain only thin vortex excitations and whichare confining, implying zero chiral condensate and
therefore noχSB. We suggest that this large gap found by Gattnar et al. is related to the way in
which chiral symmetry is realized on the lattice. The Casherargument [1] is based on the usual
SU(Nf )L ×SU(Nf )R symmetry of the continuum theory with massless fermions. Center-projected
configurations are, however, maximally discontinous; plaquette variables make a sudden transition
from the trivial center element outside the thin vortex, to anon-trivial center element inside. The
chirally-improved Dirac operator is not necessarily chirally symmetric, even approximately, in such
backgrounds and there is no reason to expect spontaneous symmetry breaking.

We will reinforce these arguments in section 2, looking at the spectra of the overlap [5] and
asqtad [6] Dirac operators, when evaluated on normal, vortex-only (i.e. center-projected), and
vortex-removed lattices. Our results support the view thatcenter vortices alone can induce both
confinementand chiral symmetry breaking. In section 3 we report on other correlations between
center-vortex locations and the density distribution of low-lying Dirac eigenmodes, following the
earlier work by Kovalenko et al. [7]. These correlations support the picture advocated by Engel-
hardt and Reinhardt [8], in which topological charge is concentrated at points where vortices either
intersect, or twist about themselves (“writhe”) in a certain way.

Throughout this article we work with lattices generated by lattice Monte Carlo simulation
of the tadpole improved Lüscher-Weisz pure-gauge action, mainly at couplingβLW = 3.3 (lattice
spacinga = 0.15 fm) for theSU(2) gauge group [9]. Center projection is performed in direct
maximal center gauge (adjoint Landau gauge).

2. Low-lying eigenmodes and thin vortices

We present the first twenty overlap eigenvalues for a 164 lattice atβLW = 3.3 in Fig. 1. There is
a big gap around zero for center-projected data, indicatingzero chiral condensate. Looking closer
at the center-projected eigenvalues one spots only five of the twenty eigenvalues. This indicates a
degenerency of four, caused by the real trivial link variables (±12), where the two colors decouple
and the eigenvalue equationDψn = λnψn is invariant under charge conjugation. We speculated
that the reason for the large gap in the vortex-only case was connected with the lack of smooth-
ness of center-projected lattices. The chiral symmetry transformations are gauge-field dependent
[10], and only approximate theSU(Nf )L ×SU(Nf )R transformations of the continuum theory for
configurations which vary slowly at the scale of the lattice spacing. Center-projected configura-
tions are not even close to smooth, and the Casher argument, relating confinement toχSBneed
not apply. However, the overlap operator should produce a more reasonable answer when ap-
plied to a smoother version of the center-projected lattice. Therefore we perform an interpolation
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Figure 1: The first twenty overlap Dirac eigenvalue pairs on the Ginsparg-Wilson circle for a 164 lattice
at βLW = 3.3 for antiperiodic boundary conditions. The center-projected configurations show a four-fold
degeneracy.

between full (gauged) and projected configurations, reducing the angle between the vector rep-
resenting group elementUµ(x) in maximal center gauge, and the vector representing theSU(2)

center elementZµ(x)I2 by some fixed percentage. In Fig. 2 we show the low-lying eigenvalues for
partial projections together with the unprojected and center-projected lattices. We see that there
is no really obvious gap in the partially-projected lattices, even at 85% projection. This agrees
with our conjecture that applying the overlap operator to a smoother version of the vortex-only
vacuum would give a result consistent withχSBand the Banks-Casher relation. Staggered and
asqtad fermions, on the other hand, do not require a smooth configuration to preserve a subgroup
of the usual continuumSU(Nf )L ×SU(Nf )R symmetry, and by the Casher argument [1] one would
expect this remaining symmetry to be spontaneously broken by any confining gauge configuration.

-0.1

 0

 0.1

 0

original (full)

-0.1

 0

 0.1

 0

original (full)

 0

50% projected

 0

50% projected

 0

75% projected

 0

75% projected

 0

85% projected

 0

85% projected

 0

90% projected

 0

90% projected

 0

95% projected

 0

95% projected

 0

center-projected

 0

center-projected

ReλReλReλReλReλReλReλReλReλReλReλReλReλReλ

Im
λ

Im
λ

Figure 2: The first twenty overlap Dirac eigenvalue pairs from a singleconfiguration on a 164 lattice,
antiperiodic boundary conditions atβLW = 3.3, for interpolated fields.
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Fig. 3 shows the first twenty asqtad eigenvalues, which distribute very differently now. The low
eigenmode density (chiral condensate) increases for center-projected compared to full (original)
data. Thus, for the asqtad operator, we have found exactly what was expected prior to the results of
Gattnar et al.: the vortex excitations of the vortex-only lattice carry not only the information about
confinement, but are also responsible forχSB via the Banks-Casher relation.
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Figure 3: The first twenty asqtad Dirac eigenvalue pairs from a 164 lattice atβLW = 3.3 for antiperiodic
boundary conditions. The center-projected configurationsshow no gap around zero.

3. Dirac eigenmode densities and vortex correlations

The correlatorCλ between the density of the eigenmodeλ and the vortex surface is inves-
tigated in order to clarify the role of the vortices in the topological structure of the vacuum. It
depends on the eigenvalue and on the local geometry of the vortex. The vortex pointsPi live on
the dual lattice and they are correlated to the averaged scalar eigenmode densityρλ (x) over the 16
verticesx of the 4d hypercube,H, dual toPi. [7]

Cλ (Nv) =
∑pi ∑x∈H(Vρλ (x)−1)

∑pi ∑x∈H 1
(3.1)

In Fig. 4 we display the data forCλ (Nv) vs. Nv computed for eigenmodes of the asqtad Dirac
operator in the full and center-projected configurations. We find that the values ofCλ (Nv) obtained
from asqtad eigenmodes in the full configurations are only about a factor of four smaller than
the corresponding values in the center-projected configurations. The most important feature, in
our opinion, is the fact that the correlator increases steadily with increasing number of the vortex
plaquettesNv, attached to a pointPi where the Dirac eigenmode density seems to be significantly
enhanced. This fact is at least compatible with the general picture advanced by Engelhardt and
Reinhardt [8], that topological charge is concentrated at points where vortices either intersect, or
twist about themselves (“writhe”) in a certain way.
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Figure 4: Vortex correlationCλ (Nv) for asqtad staggered eigenmodes atβLW = 3.3 on full (left) and center-
projected (right) configurations.

4. Conclusions

Thin vortices found in center projection give rise to a low-lying spectrum of Dirac eigenmodes,
providing that the chiral symmetry of the Dirac operator does not depend on the smoothness of the
lattice configuration. Thus, the vortex excitations of the vortex-only lattice carry not only the
information about confinement, but are also responsible forχSBvia the Banks-Casher relation.
There are significant correlations between center vorticesand the low-lying modes, supporting the
picture of topological charge from center vortices. Our results indicate that center vortices have a
strong effect on the existence and properties of low-lying eigenmodes of the Dirac operator. For
more details see [11].
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