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1. Historical remarks

Since this talk is about a very old issue, it seems appropriate to start with a few historical
remarks to put the problem and its proposed solution by Tomboulis into context.

The confinement problem in lattice Yang-Mills theory was a hot issue in the late 1970’s and
early 1980’s. Center vortices were identified by several authors as crucial objects ([1, 2, 3]).
’t Hooft proposed a confinement criterion inspired by these vortices; unlike the earlier criterion
proposed by Wilson [4] and its modification by Polyakov [5] itdid not involve infinitely heavy
quark sources but (sourceless) central electric flux in a torus.

A little later it was proven that ’t Hooft’s confinement criterion implies confinement in the
sense of Wilson and Polyakov [6, 7].

About the same time Tomboulis [8] came up with a charming ideahow to prove that lattice
Yang-Mills theory based on a nonabelian (compact, semisimple) gauge group has a nonzero string
tension in ’t Hooft’s sense at all values of the bare couplingconstant: he proposed to link by
rigorous inequalities lattice Yang-Mills theory to the solution of an approximate Renormalization
invented earlier by Migdal and Kadanoff (MK RG) [9, 10].

It was proven a little later that in 4 dimensions the MK RG drives latticeSU(N) Yang-Mills
theory, but also compact lattice QED to the strong coupling fixed point [11]. This signals confine-
ment for these models, and is therefore misleading for the abelian model, which is known to have
a deconfining transition [12, 13].

This fact raised problems for Tomboulis’s approach, because it was not clear how his inequal-
ities would distinguish between the groupsSU(N) andU(1), especially since in his short letter
there were no details given concerning the proof of the crucial inequalities. In fact there even re-
mained room for doubt as to the existence of confinement in this sense in theSU(N) lattice models
or the analogous question of mass generation in 2D O(N) spin models (see for instance [15] and
references given there). In spite of these efforts as well asthe efforts by others, such as K. R. Ito
[16], who tried to prove mathematically the correctness of the common expectations, neither con-
finement for arbitrarily weak bare coupling nor its absence could be established (nor could the
analogous 2D problem be definitely settled). The problem remains an important open question to
this day.

In 2007 Tomboulis [17] revived his old idea (with some modifications) and published a paper
providing details about the purported proof. The followingremarks, while critical of his work,
should nevertheless not diminish his credit for having revived interest in this old, important but
neglected and unsolved problem. A more detailed discussioncan be found in our paper [18].

2. Sketch of Tomboulis’s strategy

The goal of Tomboulis’s strategy, for simplicity for the gauge groupSU(2), is to establish the
spreding of central magnetic flux on a torusΛ of dimensionsL1×L2×L3×L4:

Z(−1)
Λ
ZΛ

≥ exp
[

−cL2L3e−αL1L4
]

for L1L4 ≫ log(L2L3) , (2.1)
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whereZ(−1)
Λ has twisted boundary conditions in the (12) direction. (2.1)is supposed to follow from

Z(−)
Λ
ZΛ

≥
Z(−)

MKT
(n)

ZMKT(n)
. (2.2)

HereZMKT(n), Z(−)
MKT

(n) are the partition functions under then-fold iteration of the ‘MKT’ deci-
mation which is Tomboulis’s modification of the MK RG.

If we assume for a moment that inequality (2.2) holdsand the MKT iteration leads eventu-
ally into the strong coupling regime, inequality (2.1) follows, and this implies electric flux string
formation and confinement in the sense that ’t Hooft’s stringtensionσtH satisfies

σtH > 0 ∀g2 , (2.3)

whereg denotes the bare coupling constant.
One question that arises immediately is whether Ito’s result, establishing flow to the strong

coupling fixed point, also holds for Tomboulis’s modification, which depends on an additional
parameterr = 1− ε , ε > 0. We found thatr < 1 has the same effect as increasing the dimension
and therefore for weak coupling the flow actually goes towards theweak coupling fixed point.

3. The fundamental issue

As remarked before, the MK RG in 4D showsno structural differencebetween abelian (such as
U(1)) and nonabelian (such asSU(N)) models: the flow is always attracted by the strong coupling
fixed point. This was already pointed out in the seminal paper[10], where this insight was actually
traced to Wilson’s 1976 Cargèse lectures; as remarked, a proof of this fact was given by Ito [11].

This means that the original comparison argument given by Tomboulishas to fail for U(1),
because the 4D U(1) model has vanishing string tension for sufficiently weak coupling. In fact,
any similar argument that does not explicitly make use of thenonabelian nature of the gauge group
has to fail.

4. Technical points

(a) The parameter r.
The MKT decimation proceeds as follows: one starts with the character expansion of the

plaquette coupling function (Gibbs factor)

f (U) ≡ expAp(U) = F0

[

1+ ∑
j 6=0

(2 j +1)c j(β )χ j(U)

]

. (4.1)

In essence the decimation amounts to alternating raising the coupling function to the power 2D−2

and raising the Fourier coefficientsc j to the power 4r. Explicitly

f (n)(U) 7→
f (n)(U)4

∫

f (n)(U)4dU
≡ g(n)(U) , (4.2)
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g(n)(U) = 1+ ∑
j>0

(2 j +1)c j(n)χ j(U) (4.3)

f (n+1)(U) = 1+ ∑
j>0

(2 j +1)c j(n)4r χ j(U) . (4.4)

Equality of the two exponents 2D−2 and 4r would mean that one is working in the critical dimension
Dc and one finds easily

Dc = 4+
ln r
ln2

< 4, (4.5)

so that withr < 1 in 4D one isabovethe critical dimension and has to expect a phase transition.
This is indeed the case; we have run the iteration forr = 0.9 and two close values ofβ ≡ 2/g2

and found a bifurcation of the flow: forβ = 4.79 the flow is attracted to the weak coupling fixed
point, whereas forβ = 4.80 is flows to the strong coupling fixed point. The fact that forweak
coupling the flow converges to the weak coupling fixed point can also be seen in a simple Gaussian
approximation.

Figure 1: Evolution ofc j/c0 under Tomboulis’ modified MK RG withr = 0.9. β = 4.80 (left plot),β = 4.79
(right plot); lines drawn to guide the eye.

(b) Existence of a common interpolation parameterα∗ for Z and Z(−).
This is an essential point in Tomboulis’s strategy. He has tofind for all n an α(n)∗ ≤ 1− δ

such that
Z(−)

Λ
ZΛ

=
Z(−)

Λ ({α∗(n)c j(n)}

ZΛ({α∗(n)c j(n)})
(4.6)

His argument (in Appendix C of [17]), based on theimplicit function theorem, is flawed. He
introduces a certain functionΨ(λ , t) in terms of interpolated partition functions and is lookingfor
a t(λ ) such that

Ψ(λ , t) = 0. (4.7)

There is a solutiont0 atλ = 0, but the sought afterα∗ would emerge fromt(1). Tomboulis is able to
show that∂

∂ t Ψ(λ , t) 6= 0, so by the implicit function theorem there is a solution near λ = 0. But the
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information is not sufficient to allow the extension toλ = 1, as shown by a simple counterexample
due to T. Kanazawa [14]:

Ψ(λ , t) ≡ e−t −1+2λ (4.8)

which has the solutiont(λ ) = − log(1−2λ ).

5. Can the problems be fixed?

The choice of the parameterr is very subtle, because one has to make sure of two things: (1)
the decimation has to run into the strong coupling fixed pointand (2)r has to be kept away from
1, as is stressed in [17]. This second issue is not discussed in [17] in a quantitative way, while the
issue (1) is not addressed at all. Tomboulis hinted orally atthe option of makingr dependent onn,
the number of the iterations, but exactly how this would haveto be done remains unclear.

In this respect the case ofU(1) is instructive: forr = 1 the common interpolation parameter
α∗ cannot exist, because it would imply the existence of a nonvanishing string tension at all values
of the bare coupling, in contradiction with proven facts ([12, 13]).

Quite generally, we think that any strategy based on a Migdal-Kadanoff type decimation is
very unlikely to succeed, because these hierarchical approximations do not show any structural
difference between abelian (likeU(1)) and nonabelian (likeSU(2)) models.
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