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1. Introduction

The nuclear force is the basic building block of nuclear physics. Since the discovery of the
strong interactions a great deal was learned about it experimentally and phenomenological models
and low energy effective theories were devised to describe it. Still, the advent of QCD almost 40
years ago has had little impact on our understanding of nuclear forces. This is a fate shared by many
other low energy features of the strong interactions which also remain essentially uncalculable from
first principles.

Lattice QCD is a mature technique, almost as old as QCD itself, designed to address this gen-
eral class of problems. The constant influx of new ideas in the field and the continuing development
of computer hardware has finally allowed lattice QCD in the last few years to have a real impact
on important phenomenological questions. Up to recently, however, lattice QCD had been mostly
used in the calculation of simple observables like hadron masses and decay constants. The time
now seems ripe for the use of lattice QCD on more challenging problems, the origins of the nuclear
force being naturally at the top of the list. In this review we discuss some of the main ideas involved
in this programme and the first results to come out of it.

Besides the purely theoretical reasons to be interested in a first principles calculation of the
nuclear force (and other related processes), there are also several more “practical" motivations.
Among them we cite:

• A nuclear force calculation is a necessary stepping stone towards the calculation of other two-
hadron observables that impact, at a phenomenological relevant level, electroweak processes
used, for instance, in neutrino physics.

• The interaction between nucleons and hyperon is poorly known experimentally and very
relevant in determining the fate of strangeness in neutron stars.

• Even though nucleon-nucleon phase shifts are known experimentally with good precision,
their dependence on the fundamental constants (quark masses, ...), valuable in studies of
variation of fundamental constants over cosmological times, is unknown.

• The nuclear three-body force is poorly know phenomenologically and very important to
nuclear structure calculations.

• The study of meson interaction on the lattice provides another window into the value of the
low energy constants that define the chiral dynamics regime.

2. Lüscher method

Lattice field theory can only be done in imaginary time, that is, in euclidean as opposed to
Minkowski space 1. A natural question that is posed is how to relate matrix elements computes in
euclidean space to real, Minkowski space physical observables. For some observables, like particle
masses, there is a well know recipe of how to do that. Let us take the case of the positive pion

1The periodic attempts at using stochastic quantization in order to work on Minkowski space, promising as may be
in other areas, are unlike to have an impact on the calculation of scattering amplitudes
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mass. One can compute the imaginaty time correlator C(t) = 〈π−(r′, t)π+(r,0)〉, with π+ being
any operator made up of quarks and gluons with the quantum numbers of the pion like, for instance,
q̄γ5τ+q. Using standard quantum mechanics arguments we can arrive at

C(t) = ∑
n
〈0|eHtπ−(r′,0)e−Ht |n〉〈n|π+(r,0)|0〉

= ∑
n

e−Ent〈0|π−(r′,0)|n〉〈n|π+(r,0)|0〉

→ e−mπ t |〈pion at rest|π+(r,0)|0〉|2, (2.1)

where |n〉 is the n-th eigenstate of the hamiltonian H with energy En. At large times t the sum is
dominated by the energy with the smallest energy among those with the quantum numbers of one
positive pion (namely, the positive pion at rest). Thus, by measuring the long time behavior of C(t)
we can extract the pion mass. It is not so easy to extract scattering information on the lattice. The
naive attempt using the two pion correlator leads to

C2(t) = 〈π−(r′, t)π−(r′, t)π+(r,0)π+(r,0)〉 → e−2mπ t|〈2 pions at rest|π+(r,0)π+(r,0)|0〉|2,
(2.2)

which does not bring any information about the pion interactions. At infinite volume we find then
that the euclidean correlators bring no information about the scattering properties [1]. At finite
volume however, the two particles cannot be well separated and the energy of the ground state of
two particles will include the interaction energy [2]

C2(t) = 〈π−(r′, t)π−(r′, t)π+(r,0)π+(r,0)〉 → e−(2mπ+∆E)t |〈2 pions at rest|π+(r,0)π+(r,0)|0〉|2.
(2.3)

The shift in the two-particle energy levels is due to the interactions so teir measurement should
teach us something about it. In fact, in the case of small interaction we can use first order pertur-
bation theory around the free two-particle, zero momentum wavefunction Ψ(r,r′) = 1/L3 (L is the
size of the box), the shift in energy due to the interaction between the particles is

∆E =
∫

d3rd3r′ Ψ∗(r,r′)V (r− r′)Ψ(r,r′) =
1
L3

∫

d3r V (r) =
4πa
ML3 , (2.4)

where a is the scattering length between the particles given, in the Born approximation, by a =

M/4π
∫

d3rV (r).
The relation between phase shifts and finite volume two-particle energy shifts is given, in full

generality by the Luscher formula [3]

√
M∆EL cotδ (∆E) = S (

M∆EL2

4π2 ), (2.5)

with

S

(

M∆EL2

4π2

)

= lim
Λ→∞ ∑

|n|<Λ

1

n2 − M∆EL2

4π2

−4πΛ. (2.6)

. If one measures the energy levels of two particles in a box with enough precision this formula
can be used to learn about the phase shift at that particular value of the energy. By changing the
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value of the box size L the phase shift at other energy values can be probed 2. In the case where the
scattering length a is much smaller than the lattice size L, the perturbative result is recovered

∆E =
4πa
ML3

(

1+ c1
a
L

+ c2
a2

L2 + · · ·
)

, (2.7)

where c1,c2 are known numerical coefficients. The leading term of the formula above can be ob-
tained by a simple use of perturbation theory. It is important to stress however, that the finite energy
phase shifts can be obtained even if a � L. In other words, we can learn about the deuteron using
boxes much smaller than the deuteron itself. This is particularly important in nuclear physics as
the scattering length in the spin singlet case is very large (of the order of 20 fm) [5]. The condition
on the size of the box for the Luscher formula to be valid is that the range of the interaction (in the
nuclear case of order 1/mπ ) should be much smaller than L. That is a much weaker condition than
a � L since, in the nuclear case a � 1/mπ .

3. Current results

Besides some pioneer work in the past in the quenched approximation [6] and on the potential
between heavy mesons [?], only recently the study of hadron interaction in the lattice picked up
steam. The Nuclear Physics with Lattice QCD (NPLQCD) collaboration has pursued a vigorous
program in this direction by calculating several hadronic scattering observables using the method
outlined above. Before discussing the results let me discuss a few details of these simulations. All
the calculations discussed here were done using gauge field configurations generated by the MILC
collaboration [7] (for different purposes). The are fully dynamical (meaning, the fermion determi-
nant is included in the probability distribution). It uses the asqtad action [8] which is improved so
the largest discretization errors are of order αsa2 (a is the lattice spacing and αs the strong cou-
pling constant). The quark masses for the up and down quarks are chosen so the pion has masses
mπ = 294,348 and 484 MeV. NPLQCD computed quark propagators for the valence sector mov-
ing in these gauge field configurations using a different discretization (domain-wall quarks) of the
quark action. Domain-wall quarks were used because, despite being numerically more expensive,
they have an almost exact chiral symmetry. In particular, the leading source of discretization errors
(of order a), which breaks chiral symmetry, is automatically absent of this formulation. The lattice
spacing of these lattices is about 0.125 (extracted from the Sommer scale) fm and the total size of
the lattice is about 2.5 fm.

3.1 I = 2 ππ scattering length

From the point of view of the lattice, the simplest hadronic interaction to be studied is the
isospin I = 2 channel of the ππ system. The value of the scattering length extracted at three
different pion masses can be extrapolated to the realistic pion masses using the chiral perturbation
theory one-loop result

2Another, and cheaper, way of measuring the phase shifts at other values of the energy is to change the boundary
conditions [4].
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Figure 1: Scattering length (in units of m−1
π ) as a function of pion mass (in units of fπ ). Black dots represent

the NPLQCD calculations with statistical (dark bars) and systematic (light bars) uncertainties. Also shown
are the experimental value from [10] (diamond) and the lowest quark mass result of the NF = 2 dynamical
calculation of CP-PACS [11] (square). The blue band corresponds to a weighted fit to the lightest three
data points using the one-loop mixed-action χPT result and the red line to the tree level χPT result. The
experimental data is not used in the fits. Figure from [13]

mπa = − m2
π

8π f 2
π

[

1+
3m2

π
16π f 2

π

(

log
(

m2
π

µ2 + lππ(µ)

))]

, (3.1)

where lππ(µ) = 8(l1 + l2)+ 2(l3 − l4) is a combination of Gasser-Leutwyler coefficients parame-
terizing some short-distance effects and µ is the renormalization scale. Since fπ is also calculated
using the same pion masses the formula above can be used to perform a one parameter (lππ ) fit to the
numerical results. The initial NPLQCD result [12] was superseded by the one in [13]. The results
are summarized on Figure (1). The result is consistent to sevral other theoretical and experimental
determinations (see [16] for an overview).

Several of the systematic errors in this calculation were estimated using χPT techniques. The
discretization errors are of order a2ΛQCD ≈ 1% [14]. The finite volume effects (exponentially
suppressed and not included in the Luscher formula) can be estimated by chiral perturbation theory
and are also of the order of a few percent [15]. It is worthwhile emphasizing the ingredients that
allow for such a precise calculation of a scattering observable at the physical value of the pion mass.
They are: i) relatively large signal to noise ratio, ii) the existence of an exact result (mπa = 0 for
mπ = 0) anchoring the extrapolation down to physical quark masses and iii) a reliable extrapolation
formula standing on solid grounds coming from chiral perturbation theory. Some of these desirable
features are unfortunatelly not present in other scattering observables.

Scattering lengths for π+K+[17] and K+K+[18] were also calculated with similar level of
precision. Also, multi-meson systems were studied with similar techniques [19].
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Figure 2: Log of the correlator ratio for the spin sin-
glet nucleon-nucleon channel at three different quark
masses.

Figure 3: Log of the correlator ratio for the spin
triplet nucleon-nucleon channel at three different
quark masses.

3.2 Nucleon-nucleon scattering length

At low energies nucleons are non-relativistic and it is useful to describe their interaction
through a non-relativistic potential. It should be kept in mind, however, that the non-relativistic
potential is a construct belonging to the low-energy effective theory of QCD describing low energy
nuclear phenomena and cannot be uniquely defined in QCD. On physical grounds, we don’t ex-
pect that short distance (high momentum) interaction between two nucleons to be describable by a
potential so the nuclear potential at short distances (say, smaller than 0.5 fm) is not well defined.
For this reason the study of the nuclear forces from QCD does not pass through the derivation of
the nuclear potential (including its short distance piece) but proceeds directly to the calculation
of phase shifts. Of course, many potentials, with different short-distance behaviors can be con-
cocted to reproduce the low energy data (experimental or from numerical QCD), as it has been
done phenomenologically with great accuracy. But since the short-distance behavior is somewhat
arbitrary (in the language of effective field theory, it is “regulator dependent”) it cannot be deduced
from QCD. This is in contrast to the interaction between two infinitely heavy particles where an
adiabatic potential is well defined at all distances. Any attempt at a lattice QCD calculation of the
nuclear potential will be plagued, at short distances, by the arbitrarity in the choice of interpolating
fields for the nucleons. The phase shifts, as we argued above, are related to energy levels and are
independent of this choice.

On figures 2 and 3 [20] we show the results for the correlator ratio

〈N(t)N(t)N†(0)N†(0)〉
〈N(t)N†(0)〉2

t→∞→ e−∆Et , (3.2)

whose long time behavior directly measures the energy shift ∆E, for the two spin channels (singlet
and triplet) in the nucleon-nucleon system. Compared to the ππ case one outstanding feature is
the decreasing signal-to-noise ratio for large t. This can be understood from simple arguments that
indicate that

signal to noise ratio ∼ e−(2M−3mπ )t , (3.3)

6
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Figure 4: Interpolation/extrapolation between the lat-
tice QCD and the experimental results in the spin sin-
glet channel.

Figure 5: Interpolation/extrapolation between the lat-
tice QCD and the experimental results in the spin
triplet channel.

where M is the nucleon mass. Consequently, the uncertainty in the extraction of the scattering
length is much larger. Nucleon-nucleon scattering lengths however, are very large, at least for
physical pion masses. Thus even upper bounds on the value of the scattering lengths contain non-
trivial information. The values found are shown in table 1.

Table 1: Scattering lengths for the two nucleon-nucleon spin channels. The numbers in parentheses indicate
the time range used in the fit.

mπ(MeV ) a(1S0)( f m) a(3S1)( f m)

353.7±2.1 0.63±0.50(5−10) 0.63±0.74(5−9)

492.5±1.1 0.65±0.18(6−9) 0.41±0.28(6−9)

593.0±1.6 0.0±0.5(7−12) −0.2±1.3(7−12)

The effective theory describing nucleon-nucleon scattering contains, at next-to-leading order,
two undetermined constants [21]. One (C0) is the leading short-distance quark mass independent
interaction. The other (D2) describes the leading short-distance quark mass dependence. Unfor-
tunately, the regime of applicability of the nuclear effective theory is smaller than the chiral per-
turbation theory in the meson sector and only the lowest value of the pion mass falls (at the edge)
of this range. With only one data point both C0 and D2 cannot be determined and a prediction
for the scattering length at the physical point is not possible. However, we can use the measured
value of the scattering length at the physical point and predict what the scattering length would be
at different values of the quark mass. The result of these calculations are shown in figures 2 and
3. The shaded area correspond to results obtained with values of C0 and D2 fitting both the lowest
pion mass point and the experimental datum and also conforming with the expectations of naive
dimensional analysis. Two power counting schemes were used, the one advocated by Weinberg
[22] and the one discussed in reference [23]. Their predictions are not significantly different and
their difference suggests what the errors in this extrapolation is.

7
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Figure 6: Estimated energy spliting controlling the signal-to-noise ratio (2M −3Eπ ) in two-baryon corre-
lators. The red dashed line is for periodic boundary conditions while the blue solid line is for one verion of
the orbifold boundary condition, in which we have fixed mπ L = 4. From reference [27].

The systematic errors in this calculation were not fully explored. The error arising from the
formally exponentially suppressed corrections to the Luscher formula, were estimated in [25] and,
for the pion masses used, are smaller than the statistical errors. In this reference it is pointed out
that the most naive finite volume correction – the fact that the two nucleons can interact in a direct
way and also through pions exchanged “around the lattice” – in fact vanish at leading order in
perturbation theory.

4. Future prospects

It is evident that, while the study of meson interaction on the lattice is now competitive with
the experiments, the study of baryon-baryon interactions is still in its infancy. Clearly, the main
obstacle is the exponential growth of the statistical noise in multi-baryon correlators. Three main
ideas are being pursued to address this issue. The first is the construction of better sources for the
two-baryon states, on the molds of [26]. The second is the use of anisotropic lattices, with he lattice
spacing in the time direction several times smaller than on the space direction. The hope is that the
availability of extra time slices will allow for a determination of the energy levels before the signal
is degraded by statistical noise. Finally, a recent idea to virtually eliminate the problem has been
put forward recently but that remains still untested [27]. Suppose that, somehow, the zero mode of
the pion states is eliminated from the lattice. Equation (4.1) is changed to

signal to noise ratio ∼ e−(2M−3Eπ )t , (4.1)

where Eπ is the minimum energy of the pion. If the lowest pion energy is high enough, the expo-
nential increase o the statistical noise can be alleviated or entirely suppressed. The zero-mode of
the pion can be easily eliminated by imposing different boundary conditions on the pion filed like,
or instance, π(0) = 0. The problem is that only the boundary conditions satisfied by quarks and
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gluons can be controlled in a simulation. The solution advocated in [27] is to double the lattice size
in one direction but keep the quark and gluon fields in the extra half constrained to be the parity
reversal of the fields in the other half. In other words, one performs the calculation on a parity
orbifolded spacetime, in a manner similar to that used in extra-dimension theories of grand unified
theories [28]. As a consequence, the pion filds will satisfy π(−z) = −π(z) and the zero mode is
eliminated. The change in the lattice action implementing this construction is only the addition of
a boundary term along the z = 0 plane. Its precise form (dependent on the particular fermion action
used) is entirely determined by the orbifold condition. The potential improvement on the rate of
decrease in the signal-to-noise ratio is illustrated on Figure (6).
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