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We analyze the reduction to four dimensions of the R4 terms which are part of the ten-
dimensional string effective actions, both at tree level and one loop. We show that there are
two independent combinations of R4 present, at one loop, in the type IIA four dimensional effec-
tive action, which means they both have their origin in M-theory. The d = 4 heterotic effective
action also has such terms. This contradicts the common belief that there is only one R4 term
in four-dimensional supergravity theories, given by the square of the Bel-Robinson tensor. In
pure N = 1 supergravity this new R4 combination cannot be directly supersymmetrized, but we
show that, when coupled to a scalar chiral multiplet (violating the U(1) R-symmetry), it emerges
in the action after elimination of the auxiliary fields. We then move to the extended (N = 8)
supersymmetrization of this term, where no other coupling can be taken. We show that such su-
persymmetrization cannot be achieved at the linearized level. This is in conflict with the theory
one gets after toroidal compactification of type II superstrings being N = 8 supersymmetric. We
interpret this result in face of the recent claim that perturbative supergravity cannot be decoupled
from string theory in d ≥ 4, and N = 8, d = 4 supergravity is in the swampland.
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R4 terms in d = 4 from string theory Filipe Moura

1. R4 terms in d = 10

Type II superstring α ′3 effective actions contain two independent bosonic terms IX , IZ con-
taining four powers of the Riemann tensor, from which two separate superinvariants are built [1, 2].
These terms are given, at linear order in the NS-NS gauge field Bmn, by:

IX = t8t8R4 +
1
2

ε10t8BR4, IZ =−ε10ε10R
4 +4ε10t8BR4. (1.1)

For the heterotic string another two independent R4 terms Y1 and Y2 appear at order α ′3 [1, 2, 3].
Their parts which involve only the Weyl tensor are given respectively by

Y1 := t8
(
trW 2)2

, Y2 := t8trW 4. (1.2)

Each t8 tensor has eight free spacetime indices. It acts in four two-index antisymmetric tensors, as
defined in [4, 5]. In our case,

t8t8R4 = tmnpqrstutm′n′p′q′r′s′t ′u′Rmnm′n′Rpqp′q′Rrsr′s′Rtut ′u′ ,

ε10t8BR4 = tmnpqrstu
ε

vwm′n′p′q′r′s′t ′u′BvwRmnm′n′Rpqp′q′Rrsr′s′Rtut ′u′ ,

ε10ε10R
4 = ε

mnpqrstu
vw ε

vwm′n′p′q′r′s′t ′u′Rmnm′n′Rpqp′q′Rrsr′s′Rtut ′u′ . (1.3)

The effective action of type IIB theory must be written, because of its well known SL(2,Z)
invariance, as a product of a single linear combination of order α ′3 invariants and an overall func-
tion of the complexified coupling constant Ω = C0 + ie−φ , C0 being the axion. The order α ′3 part
of this effective action which involves only the Weyl tensor is given in the string frame by

1√
−g

LIIB

∣∣∣∣
α ′3

=−e−2φ
α
′3 ζ (3)

3×210

(
IX −

1
8

IZ

)
−α

′3 1
3×216π5

(
IX −

1
8

IZ

)
. (1.4)

The corresponding part of the action of type IIA superstrings has a relative "-" sign flip in the one
loop term [6]. This sign difference is because of the different chirality properties of type IIA and
type IIB theories, which reflects on the relative GSO projection between the left and right movers:

1√
−g

LIIA

∣∣∣∣
α ′3

=−e−2φ
α
′3 ζ (3)

3×210

(
IX −

1
8

IZ

)
−α

′3 1
3×216π5

(
IX +

1
8

IZ

)
. (1.5)

Heterotic string theories in d = 10 have N = 1 supersymmetry, which allows corrections already
at order α ′, including R2 corrections. These corrections come both from three and four graviton
scattering amplitudes and anomaly cancellation terms (the Green-Schwarz mechanism). Up to
order α ′3, the terms from this effective action which involve only the Weyl tensor are given by

1√
−g

Lheterotic

∣∣∣∣
α ′+α ′3

= e−2φ

[
1

16
α
′trR2 +

1
29 α

′3Y1−
ζ (3)

3×210 α
′3
(

IX −
1
8

IZ

)]
− α

′3 1
3×214π5 (Y1 +4Y2) . (1.6)

In order to consider these terms in the context of supergravity, one should write them in the
Einstein frame. To pass from the string to the Einstein frame, we redefine the metric in d (noncom-
pact) dimensions through a conformal transformation involving the dilaton, given by

gµν → exp
(

4
d−2

φ

)
gµν , Rµν

ρσ → exp
(
− 4

d−2
φ

)
R̃ ρσ

µν , (1.7)
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R4 terms in d = 4 from string theory Filipe Moura

with R̃ ρσ

µν = Rµν
ρσ −δ[µ

[ρ
∇ ν ]∇

σ ]φ .

Let Ii(R,M ) be an arbitrary term in the string frame lagrangian. Ii(R,M ) is a function, with
conformal weight wi, of any given order in α ′, of the Riemann tensor R and any other fields - gauge
fields, scalars, and also fermions - which we generically designate by M . The transformation above
takes Ii(R,M ) to e

4
d−2 wiφ Ii(R̃,M ). After considering all the dilaton couplings and the effect of

the conformal transformation on the metric determinant factor
√
−g, the string frame lagrangian

1
2
√
−g e−2φ

(
−R +4(∂ µ

φ)∂µφ +∑
i

Ii(R,M )
)

(1.8)

is converted into the Einstein frame lagrangian

1
2
√
−g

(
−R− 4

d−2
(∂ µ

φ)∂µφ +∑
i

e
4

d−2 (1+wi)φ Ii(R̃,M )

)
. (1.9)

Next we will take the terms we wrote above, but reduced to four dimensions, in the Einstein frame.

2. R4 terms in d = 4

In four dimensions, the Weyl tensor can be decomposed in self-dual and antiself-dual parts 1:

Wµνρσ = W +
µνρσ +W −

µνρσ ,W ∓
µνρσ :=

1
2

(
Wµνρσ ±

i
2

ε
λτ

µν Wλτρσ

)
. (2.1)

The totally symmetric Bel-Robinson tensor is given in four dimensions by W +
µρνσW −ρ σ

τ λ
. In the

van der Warden notation, using spinorial indices [7], to W +
µρνσ ,W −

µρνσ correspond the totally sym-
metric WABCD,WȦḂĊḊ being given by (in the notation of [8])

WABCD :=−1
8
W +

µνρσ σ
µν

AB σ
ρσ

CD , WȦḂĊḊ :=−1
8
W −

µνρσ σ
µν

ȦḂ
σ

ρσ

ĊḊ
.

The Bel-Robinson tensor is simply given by WABCDWȦḂĊḊ; the decomposition (2.1) is written as

WAȦBḂCĊDḊ =−2εȦḂεĊḊWABCD−2εABεCDWȦḂĊḊ. (2.2)

In four dimensions, there are only two independent real scalar polynomials made from four
powers of the Weyl tensor [9], given by

W 2
+W 2

− = W ABCDWABCDW ȦḂĊḊWȦḂĊḊ, (2.3)

W 4
+ +W 4

− =
(
W ABCDWABCD

)2
+
(
W ȦḂĊḊWȦḂĊḊ

)2
. (2.4)

In particular, the Weyl-dependent parts of IX , IZ,Y1,Y2, when computed directly in d = 4 (i.e. re-
placing the ten dimensional indices m,n, . . . by the four dimensional indices µ,ν , . . .), should be

1We used latin letters - m,n, . . . - to represent ten dimensional spacetime indices. From now on we will be only
working with four dimensional spacetime indices which, to avoid any confusion, we represent by greek letters µ,ν , . . .

3
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R4 terms in d = 4 from string theory Filipe Moura

expressed in terms of them. The resulting W 4 terms are (see [10] for details):

IX −
1
8

IZ = 96W 2
+W 2

− , (2.5)

IX +
1
8

IZ = 48
(
W 4

+ +W 4
−
)
+672W 2

+W 2
− , (2.6)

Y1 = 8W 2
+W 2

− , (2.7)

Y1 +4Y2 = 80W 2
+W 2

− +4
(
W 4

+ +W 4
−
)
. (2.8)

IX − 1
8 IZ is the only combination of IX and IZ which in d = 4 contains only the square of the Bel-

Robinson tensor (2.3), but not (2.4). Interestingly, from (1.1) exactly this very same combination
is the only one which does not depend on the ten dimensional Bmn field and, therefore, due to its
gauge invariance, is the only one that can appear in string theory at arbitrary loop order.

We should consider another possibility: could there be any four-dimensional W 4 terms co-
ming from the original ten-dimensional IX + 1

8 IZ term in (1.1), but this time including the (four
dimensional) Bµν field, as a scalar, after toroidal compactification and dualization [11]? Let’s take

∂
[µ B νρ] = ε

µνρσ
∂σ D. (2.9)

Bµν is a pseudo 2-form under parity; after dualization in d = 4, D is a true scalar. This way, from
the ε10t8BR4 term in d = 10 one gets in d = 4, among other terms, derivatives of scalars and at
most an R2 factor. (One also gets simply derivatives of scalars, without any Riemann tensor.)
An R4 factor would only come, after dualization, from a higher-order term, always multiplied by
derivatives of scalars. Therefore we cannot get any R4 terms this way.

We then write the effective actions (1.4), (1.5), (1.6) in four dimensions, in the Einstein frame
(considering only terms which are simply powers of the Weyl tensor, without any other fields except
their couplings to the dilaton, and introducing the d = 4 gravitational coupling constant κ):

κ2
√
−g

LIIBR4 = − ζ (3)
32

e−6φ
α
′3W 2

+W 2
− −

1
211π5 e−4φ

α
′3W 2

+W 2
− , (2.10)

κ2
√
−g

LIIAR4 = − ζ (3)
32

e−6φ
α
′3W 2

+W 2
− −

1
212π5 e−4φ

α
′3 [(W 4

+ +W 4
−
)
+224W 2

+W 2
−
]
,(2.11)

κ2
√
−g

LhetR2+R4 = − 1
16

e−2φ
α
′ (W 2

+ +W 2
−
)
+

1
64

(1−2ζ (3))e−6φ
α
′3W 2

+W 2
−

− 1
3×212π5 e−4φ

α
′3 [(W 4

+ +W 4
−
)
+20W 2

+W 2
−
]
. (2.12)

These are only the moduli-independent R4 terms. Strictly speaking not even these terms are
moduli-independent, since they are all multiplied by the volume of the compactification manifold,
a factor we omitted for simplicity. But they are always present, no matter which manifold is taken.
The complete action, for every different compactification, includes many other moduli-dependent
terms which we do not consider here: we are mostly interested in a T6 compactification.

3. R4 terms and d = 4 supersymmetry: some known results

Up to now, we have only been considering bosonic terms for the effective actions, but we are
interested in their full supersymmetric completion in d = 4. In general each superinvariant consists

4
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R4 terms in d = 4 from string theory Filipe Moura

of a leading bosonic term and its supersymmetric completion, given by a series of terms with
fermions. We are particularly focusing on R4 terms.

It has been known for a long time that the square of the Bel-Robinson tensor W 2
+W 2

− can be
made supersymmetric, in simple [12, 13] and extended [14, 15, 16] four dimensional supergravity.
For the term W 4

+ +W 4
− there is a "no-go theorem", based on N = 1 chirality arguments [17]: for a

polynomial I(W ) of the Weyl tensor to be supersymmetrizable, each one of its terms must contain
equal powers of W +

µνρσ and W −
µνρσ . The whole polynomial must then vanish when either W +

µνρσ

or W −
µνρσ do. The only exception is W 2 = W 2

+ +W 2
− , which in d = 4 is part of the Gauss-Bonnet

topological term and is automatically supersymmetric.
But the new term (2.4) is part of the heterotic and type IIA effective actions at one loop which

must be supersymmetric, even after compactification to d = 4. One must then find out how this
term can be made supersymmetric, circumventing the N = 1 chirality argument from [17].

One must keep in mind the assumptions in which this argument was derived, namely the
preservation by the supersymmetry transformations of R-symmetry which, for N = 1, corresponds
to U(1) and is equivalent to chirality. That is true for pure N = 1 supergravity, but to this theory
and to all extended supergravity theories except N = 8 one may add matter couplings and extra
terms which violate U(1) R-symmetry and yet can be made supersymmetric, inducing corrections
to the supersymmetry transformation laws which do not preserve U(1) R-symmetry. Since [17]
only deals with the term (2.4) by itself, one can consider extra couplings to it and only then try to
supersymmetrize. These couplings could eventually (but not necessarily) break U(1) R-symmetry.
This procedure is very natural, considering the scalar couplings that multiply (2.4) in (2.11), (2.12).

Considering couplings to other multiplets and breaking U(1) may be possible in N = 4 super-
gravity, for T6 compactifications of heterotic strings, but N = 1 supergravity has the advantage of
being much less restrictive than its extended counterparts. To our purposes, the simplest and most
obvious choice of coupling is to N = 1 chiral multiplets. That is what we do in the following.

4. W 4
+ +W 4

− in N = 1 matter-coupled supergravity

The N = 1 supergravity multiplet is very simple. What also makes this theory easier is
the existence of several different full off-shell formulations. We work in standard "old minimal"
supergravity, having as auxiliary fields a vector AAȦ, a scalar M and a pseudoscalar N, given as
θ = 0 components of superfields GAȦ,R,R :2 GAȦ| = 1

3 AAȦ, R
∣∣ = 4(M + iN) , R| = 4(M− iN) .

Besides there is a chiral superfield WABC and its hermitian conjugate WȦḂĊ, which together at θ = 0
constitute the field strength of the gravitino. The Weyl tensor shows up as the first θ term: in the
notation of (2.2), at the linearized level, ∇DWABC

∣∣= WABCD + . . .

W 4
+ +W 4

− is proportional to the θ = 0 term of
(
∇2W 2

)2 + h.c., which cannot result from a
superspace integration. This whole term itself is U(1) R-symmetric, like ∇DWABC; indeed, the
components of the Weyl tensor are U(1) R-neutral, according to the weights [8] ∇A 7→ +1,R 7→
+2,Gm 7→ 0,WABC 7→ −1.

This way, as expected, one needs some extra coupling to (2.4) in order to break U(1) R-
symmetry. We can use the fact that there are many more matter fields with its origin in string theory

2The N = 1 superspace conventions are exactly the same as in [8, 13].
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R4 terms in d = 4 from string theory Filipe Moura

and many different matter multiplets to which one can couple the N = 1 supergravity multiplet
in order to build superinvariants. This way we hope to find some coupling which breaks U(1) R-
symmetry and simultaneously supersymmetrizes (2.4), which could result from the elimination of
the matter auxiliary fields.

Having this in mind, we consider a chiral multiplet, represented by a chiral superfield Φ

(we could take several chiral multiplets Φi, but we restrict ourselves to one for simplicity), and
containing a scalar field ϕ = Φ|, a spin−1

2 field ∇AΦ|, and an auxiliary field F = −1
2 ∇2Φ

∣∣.
This superfield and its hermitian conjugate couple to N = 1 supergravity in its simplest ver-
sion through a superpotential P(Φ) = d +aΦ+ 1

2 mΦ2 + 1
3 gΦ3 and a Kähler potential K

(
Φ,Φ

)
=

− 3
κ2 ln

(
−Ω(Φ,Φ)

3

)
, with Ω

(
Φ,Φ

)
=−3+ΦΦ+ cΦ+ cΦ.

In order to include the term (2.4), we take the following effective action:

L = − 1
6κ2

∫
E
[
Ω
(
Φ,Φ

)
+α

′3
(

bΦ
(
∇

2W 2)2
+h.c.

)]
d4

θ − 2
κ2

(∫
εP(Φ)d2

θ +h.c.
)

=
∫

ε

4κ2

[(
∇

2
+

R
3

)(
Ω
(
Φ,Φ

)
+α

′3
(

bΦ
(
∇

2W 2)2
+h.c.

))
−8P(Φ)

]
d2

θ +h.c.. (4.1)

E is the superdeterminant of the supervielbein; ε is the chiral density. The Ω
(
Φ,Φ

)
and P(Φ)

terms represent the most general renormalizable coupling of a chiral multiplet to pure supergravity
[18]; the extra terms represent higher-order corrections. Of course (4.1) is meant as an effective
action and therefore does not need to be renormalizable. The component expansion of this action
may be found using the explicit θ expansions for ε and ∇2W 2 given in [8].

It is well known that an action of this type in pure supergravity (without the higher-order
corrections) will give rise, in x-space, to a leading term given by 1

6κ2 e Ω|R instead of the usual
− 1

2κ2 eR.3 In order to remove the extra ϕR terms in 1
6κ2 e Ω|R, one takes a ϕ,ϕ-dependent con-

formal transformation [18]; if one also wants to remove the higher order ϕR terms, this conformal
transformation must be α ′-dependent. Here we are only interested in obtaining the supersym-
metrization of W 4

+ +W 4
− ; therefore we will not be concerned with the Ricci terms of any order.

If one expands (4.1) in components, one does not directly get (2.4), but one should look at
the auxiliary field sector. Because of the presence of the higher-derivative terms, the auxiliary
field from the original conformal supermultiplet Am also gets higher derivatives in its equation of
motion, and therefore it cannot be simply eliminated [13, 15]. Here we only consider the much
simpler terms which include the chiral multiplet auxiliary field F . Take the superfields

C̃ = c+α
′3b
(
∇

2W 2)2
,Ω̃
(

Φ,Φ, C̃, C̃
)

=−3+ΦΦ+ C̃Φ+ C̃Φ, (4.2)

so that the action (4.1) becomes

L =
1

4κ2

∫
ε

[(
∇

2
+

1
3

R
)

Ω̃

(
Φ,Φ, C̃, C̃

)
−8P(Φ)

]
d2

θ +h.c. (4.3)

and all the α ′3 corrections considered in it become implicitly included in Ω̃

(
Φ,Φ, C̃, C̃

)
through

C̃, C̃. We also define C̃ = C̃
∣∣ and the functional derivative PΦ = ∂P/∂Φ. From now on, we will

3As usual in supergravity theories we work with the vielbein and not with the metric. Therefore, here we write e,
the determinant of the vielbein, instead of

√
−g.

6
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work in x-space and assume there is no confusion between the superfield functionals Ω̃

(
Φ,Φ, C̃, C̃

)
,

P(Φ), PΦ and their corresponding x-space functionals Ω̃

(
ϕ,ϕ,C̃,C̃

)
, P(ϕ), Pϕ . The terms we are

looking for are given by [18]

κ
2LF,F =

e
9

Ω̃

(
ϕ,ϕ,C̃,C̃

)∣∣∣∣∣∣M− iN−
3
(

ϕ +C̃
)

F

Ω̃

(
ϕ,ϕ,C̃,C̃

)
∣∣∣∣∣∣
2

−
e
(

3+C̃C̃
)

FF

Ω̃2
(

ϕ,ϕ,C̃,C̃
)+eP̃ϕF +eP̃ϕF . (4.4)

This equation would be exact, with P̃ϕ = Pϕ and P̃ϕ = Pϕ , if we were only considering the

θ = 0 components of C̃, C̃. But, of course (as it is clear from (4.1)), coupled to F we will have

∇Ȧ
(
∇2W 2

)2 and ∇
2 (

∇2W 2
)2 terms (and ∇A

(
∇

2
W 2
)2

and ∇2
(

∇
2
W 2
)2

terms coupled to F̄).
These terms will not play any role for our purpose (which is to show that there exists a supersym-
metric lagrangian which contains (2.4), and not necessarily to compute it in full), and therefore we
do not compute them explicitly. We write them in (4.4) because we include them in P̃ϕ , through

the definition (analogous for P̃ϕ ) P̃ϕ = Pϕ +
(

∇ȦC̃+∇
2C̃ terms

)
.

The first term in (4.4) contains the well known term −1
3 e
(
M2 +N2

)
from "old minimal" su-

pergravity. Because the auxiliary fields M,N belong to the chiral compensating multiplet, their field
equation should be algebraic, despite the higher derivative corrections [13, 15]. That calculation
should still require some effort; plus, those M,N auxiliary fields should not generate by themselves
terms which violate U(1) R-symmetry: these terms should only occur through the elimination of
F, F̄ . This is why we will only be concerned with these auxiliary fields, which therefore can be
easily eliminated through their field equation(ϕ +C̃

)(
ϕ +C̃

)
Ω̃

(
ϕ,ϕ,C̃,C̃

) − 3+C̃C̃

Ω̃2
(

ϕ,ϕ,C̃,C̃
)
F =−P̃ϕ −

1
3
(
ϕ +C̃

)
(M− iN) .

Replacing F, F̄ in LF,F , one gets

κ
2LF,F =−e

P̃ϕ P̃ϕΩ̃2
(

ϕ,ϕ,C̃,C̃
)

(
ϕ +C̃

)(
ϕ +C̃

)
Ω̃

(
ϕ,ϕ,C̃,C̃

)
−
(

C̃C̃ +3
) +M,N terms. (4.5)

This is a nonlocal, nonpolynomial action. Since we take it as an effective action, we can expand it in
powers of the fields ϕ,ϕ , but also in powers of C̃,C̃. These last fields contain both the couplings of
Φ to supergravity c and the string parameter α ′; expanding in these fields is equivalent to expanding
in a certain combination of these parameters. Here one should notice that we are only considering
up to α ′3 terms. If we wanted to consider higher (than α ′3) order corrections, together with these
we should also have included a priori in (4.1) the leading higher order corrections, which should be
independently supersymmetrized. Considering solely the higher than α ′3 order corrections coming
directly from the elimination of (any of) the auxiliary fields from the α ′3 effective action (4.1)
would be misleading. The correct expansion of (4.1) to take, in the first place, is in α ′3. That is
what we do in the following, after replacing C̃,C̃ by their explicit superfield expressions given by
(4.2) and taking θ = 0. We also exclude the M,N contributions and the higher θ terms from C̃, C̃

7
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in P̃ϕ , P̃ϕ , for the reasons mentioned before: they are not significant for the term we are looking
for. The resulting lagrangian we get (which we still call LF,F to keep its origin clear, although it is
not anymore the complete lagrangian resulting from the elimination of F, F̄) is

κ
2LF,F = −e

PϕPϕΩ2 (ϕ,ϕ)
(ϕ + c)(ϕ + c)Ω(ϕ,ϕ)− (cc+3)

(4.6)

+ α
′3 ePϕPϕΩ(ϕ,ϕ)

((ϕ + c)(ϕ + c)Ω(ϕ,ϕ)− (cc+3))2

[
−2
(

bϕ
(
∇

2W 2)2
∣∣∣

+ bϕ

(
∇

2
W 2
)2
∣∣∣∣)((ϕ + c)(ϕ + c)Ω(ϕ,ϕ)− (cc+3))

+ Ω(ϕ,ϕ)
(
−bcϕ

(
∇

2W 2)2
∣∣∣−bcϕ

(
∇

2
W 2
)2
∣∣∣∣

+ (ϕ + c)(ϕ + c)
(

bϕ
(
∇

2W 2)2
∣∣∣+ bϕ

(
∇

2
W 2
)2
∣∣∣∣)

+ Ω(ϕ,ϕ)
(

b(c+ϕ)
(
∇

2W 2)2
∣∣∣+b(c+ϕ)

(
∇

2
W 2
)2
∣∣∣∣))]+ . . .

If we look at the last line of the previous equation, we can already identify the term we are looking
for. This is still a nonlocal, nonpolynomial action, which we expand now in powers of the fields
ϕ,ϕ coming from the denominators and the PϕPϕ factors. We obtain

κ
2LF,F = −15e

(3+ cc)
(3+4cc)2 (maϕ +maϕ)(cϕ + cϕ)

+ e
2c3c3 +60c2c2 +117cc−135

(3+4cc)3 aaϕϕ−36α
′3e
(

bc
(
∇

2W 2)2
∣∣∣

+ bc
(

∇
2
W 2
)2
∣∣∣∣) aa+maϕ +maϕ +gaϕ2 +gaϕ

2 +mmϕϕ

(3+4cc)2

− 3α
′3aa

74c2c2 +192cc−657

(3+4cc)4 ϕϕ

(
bc
(
∇

2W 2)2
∣∣∣+bc

(
∇

2
W 2
)2
∣∣∣∣)

+ 15α
′3e

aa+maϕ +maϕ

(3+4cc)3

[(
c2 (21+4cc)ϕ +(−9+6cc)ϕ

)
b
(
∇

2W 2)2
∣∣∣

+
(
c2 (21+4cc)ϕ +(−9+6cc)ϕ

)
b
(

∇
2
W
)2
∣∣∣∣]+ . . . (4.7)

This way we are able to supersymmetrize W 4
+ + W 4

− , although we had to introduce a coupling
to a chiral multiplet. These multiplets show up after d = 4 compactifications of superstring and
heterotic theories and truncation to N = 1 supergravity [19]. Since from ∇DWABC

∣∣= WABCD + . . .

we have ∇2W 2
∣∣ = −2W 2

+ + . . . , the factor in front of W 4
+ (resp. W 4

− ) in (4.7) is given by 72bcaa
(3+4cc)2

(resp. 72bcaa
(3+4cc)2 ). Therefore, for this supersymmetrization to be effective the factors a from P(ϕ)

and c from Ω(ϕ,ϕ) (and of course b from (4.1)) must be nonzero.
The action (4.7) includes the N = 1 supersymmetrization of W 4

+ +W 4
− , but without any cou-

pling to a scalar field or only with couplings to powers of the scalar field from the chiral multiplet,
which may be seen as compactification moduli. But, as one can see from (2.11), (2.12), this term

8
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R4 terms in d = 4 from string theory Filipe Moura

should be coupled to powers of the dilaton. It is well known [19] that in N = 1 supergravity the
dilaton is part of a linear multiplet, together with an antisymmetric tensor field and a Majorana
fermion. One must then work out the coupling to supergravity of the linear and chiral multiplets.
As usual one starts from conformal supergravity and obtain Poincaré supergravity by coupling to
compensator multiplets which break superconformal invariance through a gauge fixing condition.
When there are only chiral multiplets coupled to supergravity [18], this gauge fixing condition can
be generically solved, so that a lagrangian has been found for an arbitrary coupling of the chiral
multiplets. In the presence of a linear multiplet, there is no such a generic solution of the gauge
fixing condition, which must be solved case by case. Therefore, there is no generic lagrangian for
the coupling of supergravity to linear multiplets. We shall not consider this problem here, like we
did not in [8, 10, 13]. In both cases we were only interested in studying the N = 1 supersym-
metrization of the two different d = 4 R4 terms. The coupling of a linear multiplet to these terms
can be determined following the procedure in [20].

5. R4 terms and extended d = 4 supersymmetry

We have just achieved the N = 1 supersymmetrization of (2.4) by coupling this term to a
chiral multiplet. A similar procedure may be taken in N = 2 supergravity, since there exist N = 2
chiral superfields which must be Lorentz and SU(2) scalars but can have an arbitrary U(1) weight,
allowing for supersymmetric U(1) breaking couplings.

Such a result should be more difficult to achieve for N ≥ 3, because there are no generic
chiral multiplets. But for 3 ≤N ≤ 6 there are still matter multiplets which one can couple to the
Weyl multiplet. Those couplings could eventually (but not necessarily) break U(1) R-symmetry
and lead to the supersymmetrization of (2.4).

An even more complicated problem is the N = 8 supersymmetrization of (2.4). The reason
is the much more restrictive character of N = 8 supergravity, compared to lower N . Besides, its
multiplet is unique, which means there are no extra matter couplings one can take in this theory.
Plus, in this case the R-symmetry group is SU(8) and not U(8): the extra U(1) factor, which in
N = 2 could be identified with the remnant N = 1 R-symmetry and, if broken, eventually turn the
supersymmetrization of (2.4) possible, does not exist. Apparently there is no way to circumvent in
N = 8 the result from [17]. In order to supersymmetrize (2.4) in this case one should then explore
the different possibilities which were not considered in [17]. Since that article only deals with the
term (2.4) by itself, one can consider extra couplings to it and only then try to supersymmetrize.
This procedure is very natural, taking into account the scalar couplings that multiply (2.4) in the
actions (2.11), (2.12).

We now proceed with trying to supersymmetrize (2.4) but, first, we review the superspace
formulation of N ≥ 4 supergravities and also some known higher order superinvariants in these
theories.

5.1 Linearized N ≥ 4,d = 4 supergravity in superspace

In this section we review the superspace formulation of pure N ≥ 4 linearized supergravity
theories and some of the known higher-order superinvariants, including a little discussion on the
symmetries they should preserve. We will only be working at the linearized level, for simplicity.

9
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One typically decomposes the U(N ) R−symmetry into SU(N )⊗U(1) and considers only
SU(N ) for the superspace geometry. U(1) is still present, but not in the superspace coordinate
indices. The only exception is for N = 8; the more restrictive supersymmetry algebra requires
in this case the R−symmetry group to be SU(8) , and there is no U(1) to begin with. We always
work therefore in this section in conventional extended superspace with structure group SL(2;C)⊗
SU(N ) .

The field content of N ≥ 4 supergravity is essentially described by a superfield W abcd [21],
totally antisymmetric in its SU(N ) indices, its complex conjugate W abcd and their derivatives.

Still at the linearized level, one has the differential relations

∇AaW bcde = −8δ
[b
a W cde]

A , ∇AaW bcd
B = 6δ

[b
a W cd]

AB , ∇AaW bc
BC =−4δ

[b
a W c]

ABC,

∇AaW b
BCD = −δ

b
a WABCD, ∇AaWBCDE = 0, (5.1)

and

∇
a
ȦWBCDE = 2i∇BȦW a

CDE , ∇
a
ȦW b

BCD = i∇BȦW ab
CD, ∇

a
ȦW bc

BC =−i∇BȦW abc
C , ∇

a
ȦW bcd

B = iNabcd
BȦ . (5.2)

This last relation defines the superfield Nabcd
AȦ which, therefore, also satisfies

Nabcd
AȦ = ∇AȦW abcd , ∇AaNbcde

BḂ =−8δ
[b
a ∇AḂW cde]

B . (5.3)

Here we should notice that these relations are valid for Nabcd
AȦ , but not for its complex conjugate

NAȦabcd . In other words, ∇AaNBḂbcde is another independent relation, like its hermitian conjugate
∇ȦaNbcde

BḂ , as we will see below [21].
The spinorial indices in the differential relations (5.1) are completely symmetrized. Indeed,

at the linearized level the corresponding terms with contracted indices vanish, through the Bianchi
identities

∇
A
ȦW a

ABC = 0, ∇
Ḃ
A Nbcde

BḂ = 0, ∇
A
ȦWABCD = 0. (5.4)

For N ≤ 6, W abcd is a complex superfield which together with W abcd describes at θ = 0 the

2

(
N

4

)
real scalars of the theory. In N = 8 supergravity, the superfield W abcd represents at θ = 0

the

(
8
4

)
= 70 scalars of the full nonlinear theory. On-shell, it satisfies the reality condition [21]

W abcd =
1
4!

ε
abcde f ghW e f gh. (5.5)

Since Nabcd
AȦ = ∇AȦW abcd , from the previous relation one also has on-shell, in linearized N = 8

supergravity,

Nabcd
AȦ =

1
4!

ε
abcde f ghNAȦe f gh. (5.6)

Among the derivatives of W abcd there is the superfield WABCD, which from the differential
relations (5.1) is related to W abcd at the linearized level by WABCD ∝ ∇Aa∇Bb∇Cc∇DdW abcd + . . .

The Weyl tensor appears as the θ = 0 component of WABCD:

WABCD|= WABCD. (5.7)
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Also W b
BCD

∣∣ is the Weyl tensor of the N gravitinos, W bc
BC

∣∣ is the field strength of

(
N

2

)
vector

fields and W bcd
B

∣∣ are the

(
N

3

)
Weyl spinors.

In N = 6,7 supergravity there exist extra

(
N

6

)
vector fields, described by W BCbcde f g

∣∣ . In

N = 5,6,7 supergravity there also exist additional

(
N

5

)
Weyl spinors, described by W Bbcde f

∣∣ .4
In N = 8 supergravity these superfields do not represent new physical degrees of freedom, because
then we have the following relations:

W Bbcde f =
1
2

εbcde f ghaW gha
B , W BCbcde f g =

1
6

εbcde f ghaW ha
BC. (5.8)

The differential relations satisfied by these superfields can be derived, in N = 8, from (5.8) and
the previous relations (5.1) and (5.2). For N ≤ 6 supergravities, which are truncations of N = 8,

these relations are obtained from the N = 8 corresponding ones, but considering that (5.5), (5.6)
and (5.8) are not valid anymore (i.e. by considering W abcd and W abcd as independent superfields).
This is the way one can derive the differential relations which are missing in (5.1) and (5.2), like
∇AaW bcde =−2

3W Aabcde, and so on.
Again for 4 ≤N ≤ 8, on-shell (which in linearized supergravity is equivalent to setting the

SU(N ) curvatures to zero), one has among others the field equations

∇
A
ȦW ab

AB = 0, (5.9)

∇
AȦNabcd

AȦ = 0. (5.10)

At the component level, at θ = 0 (5.10) represents the field equation for the scalars in linearized
supergravity. Equations (5.5), (5.6) and (5.10) are only valid on-shell, and are logically subjected
to α ′ corrections. Plus, most of the equations in this section include nonlinear terms that we did
not include here, but which can be seen in [21].

5.2 Higher order superinvariants in superspace and their symmetries

Next we will be analyzing linearized higher order superinvariants in superspace.
There are known cases in the literature of apparent linearized R4 superinvariants in ten-

dimensional type IIB supergravity which did not become true superinvariants. One may therefore
wonder if that could not happen in our case. But in d = 4 the structure of the transformation
laws and the invariances of the supermultiplets are relatively easier and better understood than in
d = 10, which guarantees us that the existence of the full superinvariants from the linearized ones
is not in jeopardy, although they may not fully preserve their symmetries. We summarize here the
explanation which can be found in [22].

4In N = 7 supergravity there also exists an additional

((
N

7

)
= 1

)
gravitino. Indeed, the N = 7 and N = 8

multiplets are identical.
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For N ≤ 3, one can get a full nonlinear superspace invariant from a linearized one simply by
inserting a factor of E, the determinant of the supervielbein. This is also true for N ≥ 4, but here
some remarks are necessary, as fields which transform nonlinearly may be present. In these cases,
the classical equations of motion of the theory are invariant under some global symmetry group
G. The theory also has a local H invariance, H being the maximal compact subgroup of G. The
supergravity multiplet includes a set of abelian vector fields with a local U(1) invariance. Because
of this invariance, the U(1) potentials corresponding to the vector fields cannot then transform
under H and must be representations of G.

In all these cases in the full nonlinear theory the scalar fields, represented in superspace by
W abcd , are elements of the coset space G/H. They do not transform linearly under G, but they
still transform linearly under H. One can use the local H invariance to remove the non-physical
degrees of freedom by a suitable gauge choice. In order for this gauge to be preserved, nonlinear G
transformations must be compensated by a suitable local H transformation depending on the scalar
fields. Because of this, linearized superinvariants can then indeed be generalized to the nonlinear
case by inserting a factor of E, the determinant of the supervielbein, but they will not have the full
G symmetry of the original equations of motion. If we want the nonlinear superinvariants to keep
this symmetry, we must restrict ourselves to superfields which also transform linearly, like those
which occur directly in the superspace torsions.

In full nonlinear N = 8 supergravity [23] G = E7(7), a real non-compact form of E7 whose
maximal subgroup is SL(2;R)⊗O(6,6) but whose maximal compact subgroup is H = SU(8).
The 70 scalars are elements of the coset space E7(7)/SU(8). Nonperturbative quantum corrections
break E7(7) to a discrete subgroup E7(Z), which implies breaking the maximal subgroup SL(2;R)⊗
O(6,6) to SL(2;Z)⊗O(6,6;Z). O(6,6;Z) is the T−duality group of a superstring compactified
on a six-dimensional torus; SL(2;Z) extends to the full superstring theory as an S−duality group.
In [24], evidence is given that E7(Z) extends to the full superstring theory as an U−duality group.
It is this U−duality which requires (from a string theory point of view) that all the 70 scalars of the
T6 compactification of superstring theory are on the same footing, even if originally, in the d = 10
theory, the dilaton is special.

Analogously, for N = 4 supergravity coupled to m vector multiplets, we have G = SL(2;R)⊗
O(6,m), H = U(1)⊗O(6)⊗O(m). The conjectured full duality group for the corresponding
toroidally compactified heterotic string, with m = 16, is SL(2;Z)⊗O(6,22;Z).

The four-dimensional supergravity theories we have been considering can be seen as low
energy effective field theories of toroidal compactifications of type II or heterotic superstring the-
ories. The true moduli space of these string theories is the moduli space of the torus factored out
by the discrete T-duality group ΓT . For the case where the left-moving modes of the string are
compactified on a p torus Tp and the right-moving modes on a q torus Tq [25], the moduli space is

SO(p,q)
SO(p)⊗SO(q)

/
ΓT , with ΓT = SO(p,q;Z). In particular, for type II theories compactified on T6, the

moduli space is SO(6,6)
SO(6)⊗SO(6)

/
ΓT , with ΓT = SO(6,6;Z).

For heterotic theories, left-moving modes are compactified on T6 and right-moving modes
on T22, resulting for the moduli space SU(1,1)

U(1) ×
SO(6,22)

SO(6)⊗SO(22)

/
ΓT , with ΓT = SO(6,22;Z). The

factor SU(1,1)
U(1) is a separated component of moduli space spanned by a complex scalar including the

dilaton, which lies in the gravitational multiplet and does not mix with the other toroidal moduli,

12
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lying in the 22 abelian vector multiplets.

6. W 4
+ +W 4

− and extended supersymmetry

In this section we turn our attention to the new higher order term W 4
+ +W 4

− and try to super-
symmetrize it at the linearized level using different methods, according to [26].

We will only be working at the linearized level, for simplicity. Therefore we will not be par-
ticularly concerned with the string loop effects considered in the discussion on the string effective
actions, because of their dilaton couplings which are necessarily highly nonlinear. We will be
mainly concerned with the new R4 term in linearized supergravity, not worrying with the dilatonic
factor in front of it to begin with (later this factor will be considered).

6.1 Superfield expression of W 4
+ +W 4

−

In [27], a general (for all N ) formalism for constructing four dimensional superinvariants
by integrating over even-dimensional submanifolds of superspace ("superactions") was developed.
Using this formalism we will try to supersymmetrize W 4

+ +W 4
− in N = 8 superigravity, although

the results can be easily extended to 4≤N ≤ 8. For a more detailed treatment see [27, 28].
The superfield expression of W 4

+ +W 4
− is given by[

∇
c1
A1
· · ·∇c4

A4
∇

A1
c1
· · ·∇A4

c4
W d1d2d3d4W

d1d2d3d4
]2

+h.c. ∝
(
W A1A2A3A4WA1A2A3A4

)2
+h.c.. (6.1)

In order to understand this result, some preliminary basic calculations are necessary. From the
differential relations (5.1), one can see that, at the linearized level, each W abcd present cannot be
acted by more than four (either dotted or undotted) spinorial derivatives:

∇Aa∇Bb∇Cc∇Dd∇EeW f ghi = 0, ∇
a
Ȧ∇

b
Ḃ∇

c
Ċ∇

d
Ḋ∇

e
ĖW f ghi = 0. (6.2)

From (6.2) one sees that, in order for (6.1) not to vanish, each W abcd must be acted by four and
only four spinorial derivatives. This way we see that from (6.1) one gets only a sum of products
of four WABCD terms, eventually with different index contractions. Because of the uniqueness of
W 4 terms we mentioned - only (2.3), whose supersymmetrization is known [27, 28], and (2.4) -,
the final result must be W 4

+ +W 4
− . Therefore, (6.1) represents the expression of W 4

+ +W 4
− in terms

of superfields, up to some numerical factor. The fact that one can write this or any other term as a
superfield component does not necessarily mean that it can be made supersymmetric; for that one
has to show how to get it from a superspace invariant. For (6.1), the most obvious candidate is∫ (

W abcdW abcd

)2
d16

θ +h.c. (6.3)

By its structure (it requires integration over sixteen θs), (6.3) is only valid for N = 8 supergravity.
One can write a similar expression but which is also valid for 4 ≤N ≤ 8 by replacing W abcd by
some of its spinorial derivatives, while correspondingly lowering the number of θs in the measure:∫

W abcdW abcdW ABCDWABCDd8
θ +h.c.. (6.4)
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Although both (6.3) and (6.4) are equivalent in N = 8 as linearized component expansions (up to
some different numerical factor), they represent two distinct expressions at the nonlinear level.

To verify if these expressions are supersymmetric, we recall that at θ = 0 the spinorial su-
perderivatives equal the supersymmetry transformations: ∇Bb |= QBb| , ∇b

Ḃ

∣∣= Qb
Ḃ

∣∣ . Using (5.1),
(5.2) and (5.4), one can compute the supersymmetry variation of the result of the θ integrations,
which from (6.2) in both cases is uniquely given by (6.1). This variation, at the linearized level, is

∇
a
Ȧ

[(
W BCDEWBCDE

)2
+
(

W ḂĊḊĖWḂĊḊĖ

)2
]

= −8i∇BȦ
(
W FGHIWFGHIW BCDEW a

CDE
)
+16iW FGHI

∇BȦ
(
WFGHIW BCDEW a

CDE
)
. (6.5)

This supersymmetry transformation is not a total derivative and cannot be transformed into one.
Therefore neither (6.3) nor (6.4) represent a valid linearized superinvariant. This result is expected:
it is just the confirmation of the prediction from [17] in N = 8 which, as we said, is not easy to
circumvent. Also as we saw at the linearized level (6.3) only gives W 4

+ +W 4
− and no other terms. If

(6.3) were supersymmetric, this would mean W 4
+ +W 4

− was supersymmetric by itself, which would
be bizarre since it does not represent a topological invariant in d = 4, like W 2 does. Therefore the
supersymmetrization of W 4

+ +W 4
− , if it exists, must come in a different way.

6.2 Attempts of supersymmetrization without changing the linearized Bianchi identities

We now try to find out possible ways of supersymmetrizing W 4
+ +W 4

− at the linearized level
in N ≥ 4,d = 4 supergravity in superspace. The known solution to the superspace Bianchi identi-
ties [21] (equivalent to the x-space supersymmetry transformations) is only valid on-shell for pure
supergravity (without any kind of string corrections). In principle, in order to supersymmetrize
a higher-order term term in the lagrangian one needs higher-order corrections to the superspace
Bianchi identities (so one does to the x-space supersymmetry transformation laws), which should
be of the same order in α ′. In this section we attempt to supersymmetrize (2.4) assuming that the
solution to the Bianchi identities for pure supergravity remains valid. This a matter of simplicity:
the complete solution to the Bianchi identities involves, even without any α ′ corrections, many
nonlinear terms which we haven’t considered [21]. The α ′ corrections to the supersymmetry trans-
formations are necessarily nonlinear and should affect and generate only nonlinear terms; it does
not make sense to consider them if we are looking only for linearized superinvariants.

First we check if it is possible to make some change in (6.4) in order to make it supersymme-
tric. We notice that the result in (6.5) only tells us that (6.4) is not supersymmetric by itself; it does
not mean that it is not part of some superinvariant. In fact, maybe there exists some counterterm Γ

which can be added to (6.4) in order to cancel the supersymmetry variation (6.5), so that the sum of
(6.4) and Γ is indeed supersymmetric. In order for Γ to exist, it must then satisfy, for some Γe

AȦĖ ,

∇
e
Ė

[(
W ABCDWABCD

)2
+
(

W ȦḂĊḊWȦḂĊḊ

)2
+Γ

]
= ∇

AȦ
Γ

e
AȦĖ . (6.6)

Together with (6.5) this is a very difficult differential equation, to which we did not find any solution
in terms of known fields, both for Γ and Γe

AȦĖ .
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The second possibility in order to try to cancel (6.5) is to multiply (6.4) by some factors Γ,Γ,
such that the product is supersymmetric. In this case Γ,Γ must satisfy, for some Γe

AȦĖ ,

∇
e
Ė

[
Γ
(
W ABCDWABCD

)2
+Γ

(
W ȦḂĊḊWȦḂĊḊ

)2
]

= ∇
AȦ

Γ
e
AȦĖ . (6.7)

The factors Γ,Γ must satisfy some restrictions, both by dimensional analysis (we want an α ′3 term)
and by component analysis (we want to supersymmetrize W 4

+ +W 4
− in the Einstein frame (2.11)

and (2.12), with a factor of exp(−4φ) and at most some other scalar couplings resulting from the
compactification from d = 10). Therefore the only acceptable (and actually very natural) factors
Γ,Γ are simply functions of W abcd ,W abcd . In any case, again (6.7) is a very difficult differential
equation, which we tried to solve in terms of each of the different known fields. We were not able
to find any solution, both for Γ,Γ and Γe

AȦĖ , as one can see by considering (6.5), which cannot be
canceled simply by taking factors of W abcd ,W abcd . Therefore one cannot supersymmetrize (2.4)
using only the linearized (on-shell) solution to the Bianchi identities in pure supergravity. This
result is unexpected and is not a confirmation of the prediction from [17] in N = 8, which applies
to (2.4) by itself and not when it is multiplied by a scalar factor. In the following subsection we
will use the full nonlinear solution to the Bianchi identities, but still at α ′ = 0.

6.3 Attempts of supersymmetrization with nonlinear α ′ = 0 Bianchi identities

The generic effective action (1.9) has a series of terms which we designated by Ii(R̃,M ).
Some of these terms can be directly supersymmetrized: they constitute the "leading terms", each
one of them corresponding to an independent superinvariant. The remaining terms are part of the
supersymmetric completion of the leading ones.

In general it is very hard to determine the number of independent superinvariants. This prob-
lem becomes even more difficult in the presence of α ′ correction terms, because one single super-
invariant includes terms at different orders in α ′. For the complete supersymmetrization of a given
higher-derivative term of a certain order in α ′, typically an infinite series of terms of arbitrarily
high order in α ′ shows up. This series may be truncated to the order in α ′ in which one is working,
but when supersymmetrizing the terms of higher order in α ′ the contributions from the lower or-
der terms must be considered. The reason is, of course, the α ′ dependence of the supersymmetry
transformations. This has been explicitly shown for (2.3) and for N = 1,2 in [13, 15]. At any
given order in α ′, therefore, there are new leading terms (i.e. new superinvariants), and other terms
which are part of superinvariants at the same order and at lower order.

Each time the supersymmetry transformation laws of single fields include linear terms, it
should be possible to determine how to supersymmetrize an expression written only in terms of
these fields already at the linearized level. A "leading term" of an independent superinvariant
should then be invariant already at the linearized level. If this linearized supersymmetrization can-
not be found for the term in question, but it still has to be made supersymmetric, it cannot be a
"leading term", and must emerge only at the nonlinear level, as part of the supersymmetric comple-
tion of some other term. That must be the case of (2.4), which we have tried to supersymmetrize
directly at the linearized level and we did not succeed. For the remainder of this section we will
examine that possibility.
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Since the α ′ corrections necessarily introduce nonlinear terms in the supersymmetry trans-
formations, and since one should not consider any higher order term before considering all the
corresponding lower order terms, before looking for higher-order corrections to the supersymme-
try transformations one should first look at their nonlinear α ′ = 0 terms. Here we will only be
concerned with the nonlinear terms of the on-shell relations, i.e. of those relations which will
probably acquire α ′ corrections: (5.5), (5.6) and (5.10).

The first two linearized equations, (5.5) and (5.6), refer to the 70 scalar fields of N = 8
supergravity. As we mentioned, in the nonlinear theory these fields are given by the coset space
E7(7)/SU(8); they transform nonlinearly under E7(7), but they still transform linearly under SU(8)
[23]. On shell, in superspace, at order α ′ = 0, going from the linearized to the full nonlinear theory
corresponds to replacing the constraint "SU(8) curvature=0" by "E7(7) curvature=0". A complete
treatment can be found in [21].

The superspace equation (5.10) reflects the linearized field equation of the scalar fields in
4≤N ≤ 8 supergravity, including the dilaton. For (1.9) the complete dilaton equation is given by

∇
2
φ − 1

2 ∑
i

e
4

2−d (1+wi)φ Ii(R̃,M ) = 0. (6.8)

At order α ′ = 0, among the terms Ii(R̃,M ) there should be those which contain field strengths
corresponding to each of the vector fields present in the theory. Plus, still at order α ′ = 0 there are
couplings of the scalars to fermions, which we never considered explicitly but must be reflected in
their field equations. In that order in α ′, the N = 8 nonlinear version of (5.10), the field equation
for the scalars, is given by [21]

∇
AȦNabcd

AȦ = W ȦḂ
e f W abcde f

ȦḂ
+12W AB[abW cd]

AB −
2
3

iW Ȧ
e f gW A[abcNd]e f g

AȦ

+
i

12
W Ȧ

e f gW Ae f gNabcd
AȦ −

3
2

iW Ȧ
e f gW Ae[abNcd] f g

AȦ
+4− fermionterms. (6.9)

As one can see, this expression does not contain any nonlinear term which is exclusively dependent
on the Weyl tensor. As one can confirm in [21], the same is true for each of the differential relations
considered in (5.1) and (5.2). Therefore we cannot expect (2.4) to emerge from the nonlinear
completion of some (necessarily α ′3) linearized superinvariant. One must really understand the α ′-
corrections to the Bianchi identities. Since these corrections are necessarily nonlinear, this means
one cannot supersymmetrize (2.4) at the linearized level at all. Here one must notice that never
happened for the previously known higher-order terms, which all had its linearized superinvariant.

6.4 Corrections to the solution of the linearized Bianchi identities in N ≥ 4,d = 4
superspace: some considerations

In each of the three effective actions (2.10), (2.11), (2.12), only the W 2
+W 2

− term contains
the transcendental coefficient ζ (3). This term must then have its own superinvariant, as no other
term has such a coefficient. Therefore the changes in the supersymmetry transformation laws
the other terms generate do not have such a coefficient and could not, by themselves, cancel the
supersymmetry variation of (2.3).

Since the numerical coefficient in front of W 2 in the d = 4 effective actions (2.11) and (2.12)
is not transcendental, this term may eventually not need its own superinvariant and be part of some
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other superinvariant, with a different leading bosonic term, maybe even of a lower order in α ′,
being related to W 2 by an α ′-dependent supersymmetry transformation. But even if such relation
is valid in d = 4, that does not mean at all it should keep being valid in d = 10.

One can try to generate a higher-order (in α ′) term from a lower-order higher derivative su-
perinvariant; maybe the higher-order term would lie on the orbit of its supersymmetry transforma-
tions. But in order to generate the higher-order term this way, one obviously needs to know the
α ′-corrected supersymmetry transformation laws.

One possibility would be to see if (2.4) could be obtained from the supersymmetrization of
the R2 term, of order α ′. But this term does not come from type II theories, which only admit α ′3

corrections and higher; it only comes from the heterotic theories. Therefore a R2 term must only
be present as a correction to N = 4 supergravity: it can also be written as an N = 8 invariant,
but in this case its stringy origin is not so obvious. Indeed, R2 terms show up from the R4 terms
we are considering when we compactify string theory on a Calabi-Yau manifold [6], but for the
moment we are only considering toroidal compactifications with maximal d = 4 supersymmetry.

There are other different terms one can consider. For instance, when going from the string
frame (1.8) to the Einstein frame (1.9) with (1.7), one gets from a polynomial of the Riemann tensor
a dilaton coupling and powers of derivatives of φ . The α ′3 effective action should contain, besides
(2.3) and (2.4), the terms

(
(∇µ∇νφ)

(
∇µ∇νφ

))2
, (∇µ∇νφ)

(
∇µ∇νφ

)(
∇2φ

)2 and
(
∇2φ

)4
. One

therefore may expect the supersymmetrization of the higher derivative term I(R) (which in the
case we are interested includes W 4

+ +W 4
− ) to lie in the orbit of some power of ∇2φ or some other

superinvariant of lower order in α ′, so that one term may result from the other via an α ′ dependent
supersymmetry transformation. If that is the case, one needs to find the α ′ corrections to the (on-
shell) solution of the Bianchi identities, namely to the nonlinear versions of (5.5), (5.6) and (5.10).

Let’s take for example the nonlinear dilaton field equation. Considering the pure gravitational
α ′ corrections expressed in the effective actions (2.10), (2.11), (2.12), we are able to "guess" the
expected corrections to (6.9), knowing the field content of W abcd and its derivatives. Neglecting for
the moment the numerical coefficients, one can see that some of the expected corrections to (6.9)
(only the purely gravitational ones, i.e. those depending only on the Weyl tensor) are of the form

∇
AȦNabcd

AȦ

∣∣∣
α ′+α ′3

∝ α
′W abcd

[
W ABCDWABCD +W ȦḂĊḊWȦḂĊḊ

]
+ α

′3W abcd
[(

W ABCDWABCD
)2

+
(

W ȦḂĊḊWȦḂĊḊ

)2

+
(
W ABCDWABCD

)(
W ȦḂĊḊWȦḂĊḊ

)]
+ . . . (6.10)

Of course this equation must be completed with other contributions, which may be derived, includ-
ing the numerical coefficients, (2.11) and (2.12), once they are completed with the other leading α ′

corrections which do not depend only on the Riemann tensor.

It remains to be seen how are these corrections compatible with the superspace Bianchi iden-
tities. This would allow us to determine the α ′ corrections one needs to introduce in the other
superspace field equations in order to the superspace Bianchi identities remain valid to this order
in α ′. This is a technically very complicated problem which we are not addressing here.
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7. Conclusions

We showed in [10] that type IIA and heterotic string theories predict the term W 4
+ + W 4

− to
show up at one loop when compactified to four dimensions. Nonetheless, an older article [17]
stated that this term, by itself, simply could not be made supersymmetric in d = 4. We worked out
its N = 1 supersymmetrization, by coupling it to a chiral multiplet.

In [26] we considered the more complicated problem of its N = 8 supersymmetrization. We
obtained the superfield expression of that term, given by (6.1), and we have shown that expression
indeed was not part of a superinvariant. Since that term in d = 10 should come coupled to a
dilaton, and it may acquire other scalar couplings after compactification to d = 4, in order to try
to circumvent the argument of [17] we tried to construct a superinvariant which included this term,
together with a proper scalar coupling, in general 4 ≤N ≤ 8 superspace. We concluded that the
supersymmetrization of this term at the linearized level, by itself, cannot be achieved, something
which was always possible for the previously known higher-derivative string corrections.

We proposed some changes to the on-shell solution to the superspace Bianchi identities in
order to include the lowest order α ′-corrections. We did not present the whole set of possible α ′-
corrections to the Bianchi identities nor we tried to solve them in order to check the consistency of
these corrections and to determine their coefficients.

As we mentioned before, the "no-go theorem" for the supersymmetrization of (2.4) given in
[17] is based on N = 1 chirality arguments. In order to circumvent these arguments, a reasonable
possibility is to try to construct a superinvariant which violates the U(1) symmetry or (for N > 1)
some of the R-symmetry. But the superfield expression corresponding to (2.4) given by (6.1) is
even U(1)-symmetric, as WABCD is U(1)-invariant. (This is more clearly derived in N = 1 super-
space [10], but it is easily understood if one thinks that from (5.7) WABCD| is a component of the
Riemann tensor.) The best one can aim at is to break U(1) or part of the SU(N ) by taking a diffe-
rent integration measure, as suggested in [27] and as we tried with (6.4). In N = 8 superspace one
can keep trying extra couplings of the scalar superfields W abcd combined with different nonstan-
dard integration measures. But it is easier if we are allowed to consider other multiplets than the
gravitational, whose couplings automatically violate U(1). That is not possible in N = 8 super-
gravity, both because there are no other multiplets than the gravitational to consider, and because
the extra U(1) symmetry does not exist. We recall that N ≤ 6 theories have a U(N ) symmetry,
which is split into SU(N )⊗U(1), but the more restrictive N = 8 theory has originally only an
SU(8) symmetry. This may be part of the origin of all the difficulties we faced when trying to
supersymmetrize (2.4) in N = 8.

But the main obstruction to this supersymmetrization is that, opposite to W 2
+W 2

− , the term
W 4

+ +W 4
− does not seem to be compatible with the full R−symmetry group SU(8). In ref. [29], a

complete study has been made of all possible higher-order terms in N = 8 supergravity, necessarily
compatible with SU(8), and (2.4) does not appear in the list of possible terms.

Indeed, as we saw in the discussion of section 5.2, only the local symmetry group of the mo-
duli space of compactified string theories should be preserved by the four dimensional perturbative
string corrections. As we saw, for T6 compactifications of type II superstrings this group is given
by SO(6)⊗SO(6) ∼ SU(4)⊗SU(4), which is a subgroup of SU(8). Most probably the perturba-
tive string correction term W 4

+ +W 4
− only has this SU(4)⊗SU(4) symmetry. If that is the case,
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in order to supersymmetrize this term besides the supergravity multiplet one must also consider
U−duality multiplets [30], with massive string states and nonperturbative states. These would be
the contributions we were missing.

But in conventional extended superspace one cannot simply write down a superinvariant that
does not preserve the SU(N ) R−symmetry, which is part of the structure group. One can only
consider higher order corrections to the Bianchi identities which preserve SU(N ), like the ones
from (6.10), but these corrections would not be able to supersymmetrize (2.4). N = 8 supersym-
metrization of this term would then be impossible; the only possible supersymmetrizations would
be at lower N , eventually consider U−duality multiplets. If that is the case, in order to super-
symmetrize this term besides the supergravity multiplet one must introduce U−duality multiplets,
with massive string states and nonperturbative states. The fact that one cannot supersymmetrize
in N = 8 a term which string theory requires to be supersymmetric, together with the fact that
one needs to consider nonperturbative states (from U−duality multiplets) in order to understand a
perturbative contribution may be seen as indirect evidence that N = 8 supergravity is indeed in the
swampland, as proposed in [31]. This is a very fundamental topic of study, together with the recent
claims of possible finiteness of N = 8 supergravity. Plus, as we concluded from our analysis of
the dimensional reduction of order α ′3 gravitational effective actions, the new R4 term (2.4) has
its origin in the dimensional reduction of the corresponding term in M-theory, a theory of which
there is still a lot to be understood. We believe therefore that the complete study of this term and
its supersymmetrization deserves further study.
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