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1. Introduction

The Standard Model (SM) is a theory invariant under the symmetry ggolip). ® SU(2). @
U(1)y. Inthe SM, the spontaneous symmetry breaking (SSB) mechanism is acdwedpligh one
scalar doublet whose vacuum expectation value (vev) is usually writtenggg >= (0 v/v/2)
wherev = 246 GeV. The charge operator is defineds 1/2(o3+Y|), whereos is the standard
Pauli matrix,| is the 2x 2 identity matrix andy is the weak hypercharge. With this definition
Q < @gsm >= 0 as it should because the vacuum has no electric charge. Had we stéhed
the most general vacuum configuratiengsy >= (V1 +iva vz +iv4)/v/2 we would still have
a massless photon. The electromagnetid)em can not be broken with only one doublet and
to choose the most general vacuum configuration simply amounts to a reciefof the charge
operator.

The situation changes radically once one adds a second doublet. Wadwawght fields
that can acquire a vev. We can however useSb€2), ® U (1)y gauge freedom to write the most

general vacuum structure as
0 \%)
- . 11

The gauge boson’s mass matrix can now have four non-zero eigeswalile mass eigenvalue
related to the photon is given by

=g [\/2(92 +9%) — \/VA(g2 +9?) - 1602 g’ZVEV%] (1.2)

wherev =, /v2 4+ V2 + V2 andg andg’ are theSU(2) andU (1) gauge couplings respectively. There
are two ways to recover a massless photon: either by sefttirg0 (the SM case) or by choosing
V> = 0 and the vevs are then aligned [1]. Otherwise the photon becomes massiv®nsequence
of the charged vacuum configuration.

Gauge invariance disallows not only a charge breaking vacuum bua &Bdoreaking vacuum
in the SM. Again the situation changes in THDM. Defining a CP transformatign-asq’, three
different types of vacua can be defined for a general THDM with alktants real,

<¢1>N:<\2> <@>N:<\Z>, (2.3)

which we call the normal vacuum,

0 a
< @ >cB= < @ >ce= ; (1.4)
( Vi ) ( V2 )
for a vacuum that breaks charge conservation, and finally
0 0
< @ >cp <\/1’+i5> <@ >cp (\/2,>, (1.5)

for a CP breaking vacuum. Vacua withandd simultaneously non-zero are not considered because
the minimisation conditions of the potential forbid thém

1Except for a very special case in the explicit CP breaking potential. Evéirat case, though, via a basis change,
that vacuum may be reduced to one with# 0 andd = 0.
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2. The THDM potentials

The vacuum structure of THDM has been the subject of many studie|[ivhile the vacuum
structure of an arbitrary number of doublets was studied in [12, 13].sthkr sector of a THDM
is built with eight independent fields, four from each doublet. The nurobgrdependent gauge
invariants is however four due to the SM gauge invariance uBdé?), @ U (1)y with four gauge
generator$. Therefore, all properties of the potential can be studied in terms ofridependent
gauge invariants, which we choose toxae= |@|2, X2 = |@|?, X3 = Re((plT(pz) andxy = Im(cpf(pz).
In terms of this basis set of gauge invariants, the most general renorbialidDM has 14 real
parameters and can be written as

V = aixg + axXe + agXs + auXs + b11X4 + 022X3 + baaxg + baaxg +
b1oX1X2 + D13X1X3 + D1aX1Xs + D23XoX3 + D2aXoXs + D3aXaXs . (2.1)

Under the CP transformation of the forgn— ¢, X1, X2 andxz remain the same bug switches
signal. Thus, the terms of the potential which are lineaxsibbreak CP explicitly. Therefore a
potential for which CP is not explicitly broken cannot have terms lineay in eq. 2.1:a4 = by4 =
bo4 = b3ga = 0. This potential has 10 free parameters and can still break CP spoasineo

To further reduce the number of parameters while keeping the modelmalipable we can
force the potential to be invariant under certain symmetries imposed to the figldbe case
of THDM the Z, and a softly broken globdl (1) symmetries lead [2] to two seven parameter
models with a very different phenomenology. Recently, it was shown iftified these are the only
two "simple" symmetries that can be imposed on THDM. In [2] an interesting rel&k@iween
CP-violation, symmetries and flavour changing neutral currents (FCN@elevel was found. In
fact, for the 10-parameter potential only one of the CP-breaking stagienaditions can be forced
to have no solution. This equation can be written as

bi3 (V12 + 62) +baVh? + (bas — bas) ViV = &g (2.2)

and renormalizability forcebs;z andb,s to be simultaneously either zero or non-zero. Therefore
the equation has no solution in the two following situations

biz=bpz3=a3=0; bzgz#bss  (¢— —@; ®— @)
b13=b23=b33—b4420; 337'50 ((p—>e'9(pl; (,02—>(p2) (2.3)

Hence, forcing the CP-breaking minimum not to exist leads to two phenongaally different
7-parameter potentials. Furthermore, by extending the symmetry to the Yislkestea one avoids
the existence of FCNC at tree level. There are still two other potentials tadesnthe 6-parameter
potential with an axion (exatt (1) symmetry) or a potential that softly breakswhich has 8 free
parameters and can be written as

stzOft =X + QX+ 83Xs + b11X§ + 0p2X3 + ba3Xg + baaxg + bioxaxe - (2.4)

2A similar counting for the SM with one doublet would naively lead to the conaiuthat we would end up with
zero gauge invariants. However this reasoning does not apply to theu8lb dhe existence of a little group, subgroup
of the gauge group, that leaves the doublet invariant.
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From the phenomenological point of view all these models can be studiediragiag case of
st,fft in the case of normal minima. Choosing as free parameté@’cﬂ‘the four Higgs masses,
tanf = v»/v1, a (the rotation angle in the CP-even sector) agdif we setag = 0 we obtain the
potential with the exacZ, symmetry\Vz, and wherag = —M32/sin(2f3) we find the potential with
the softly brokerJ (1) symmetry,\/j‘(’lf)t.

3. Minima of different nature

Contrary to the SM, THDM can have several stationary points of diftaratures. The three
possible types of stationary points which we called Normal (N), Chargeksrg (CB) or CP-
breaking (CP) were defined in the introduction. Therefore, one mayrangbout the possibility of
having two minima of different nature for the same set of parameters. Thid pose a problem
to THDM as we could be living in a Normal minimum and suddenly tunnel to a degserge
breaking minimum where the photon acquires a mass. To answer this questi@vevto compare
the vacuum energy at the different stationary poilts, Vcp andVy. In [3] we found a very
interesting relation between the difference of the value of the potential & stafionary point,
Vce, and the value of the potential at a normal stationary pofat,

M3

Vee — W = o2

[(\/lVZ - \/2V1)2 + GZVﬂ , (3.1
wherev? = v2 + vZ andM3. is the value of the squared mass of the charged Higgs scalar, evaluated
at the normal stationary point. The normal stationary point is a minimum if allreguscalar
masses are positive. Hence, this equation tells us that if the normal statmiarys a minimum,
it is definitely below the charge breaking stationary point. Furthermoref.ifidleve proved that
in this case the charge breaking stationary point is a saddle point. The stabitltg normal
minimum against tunneling to a deeper charge breaking stationary point isribused in THDM.

A similar result holds when one compares a CP and a normal stationary pdien @GP is a
good quantum number at the potential level, we found that the differeztegebn the value of the
potential at the CP stationary poiltp, and at the normal stationary poily,is given by [3]

2
Vep — W = % [(\/{Vz — \/2,V1)2 + 52V%] . (32)
M2 is now the value of the squared pseudoscalar mass at the normal stapoiraryAgain, if
the normal stationary point is a minimum, positivity Mf,{ ensures that the CP stationary point
is above it. Furthermore, I. lvanov has proved [11] that in this situatican,GQR stationary is a
saddle point. As the CP stationary point is also uniquely determined, the stabilitg aormal
minimum against tunneling is guaranteed. Similar results hold for the CP breakthdpr the
CB minima. If a CP breaking stationary point is a minimum, the competing normal aardeh
breaking stationary points are saddle points above it - the CP breaking minsrthen a global
one. Although probably not of fundamental importance, the CB statiorany,pvhen a minimum
is the global one.
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4. Normal minima

There is still one situation that deserves our attention - the case of two sinoutanermal
minima. The THDM can have at most two normal minima [11] and from last sect®kvow
that minima of different nature never coexist. However we could still haeerminima that had
different spontaneous symmetry breaking patterns with different mémstge gauge bosons. In
the most general 14-parameter potential with explicit CP-violation the relagibvelen two normal
stationary pointsiN; andN; as defined in eq. (1.5) is given by

Vi, — Vi = v

(Mai) - (Mﬁ> ] (V2 — vzvi)® + 8%3] . (4.1)
Ny N

In this equation we havé?)y, = V2 + V3 and (V)y, = V{° + V4 + 32, and (M2 )y, , are the
squared charged scalar masses at each ofthél, stationary points. This interesting relation
tells us that the deepest stationary point will be the one with the largest ratiedrethe square of
the charged Higgs mass and #fe This means that the deeper minimum has the largest splitting
between the charged Higgs mass and the "theoreti¢dbson mass. In a CP conserving potential,
the equation is similar but with = 0 because the normal minima configuration have no phases in a
CP conserving potential. However this expression adds very little to théepnaif the competing
normal minima.

We have mentioned that the CB and CP stationary points are unique sinceréhgiven
by linear equations on the vevs. However, this is not true for the norntadrstgy points. The
stationarity conditions are always a set of two coupled cubic equationdiwhit only be solved
analytically for the potential with the exaZb symmetry,Vz,, where the stationarity points are
again uniquely determined. Therefore the stationarity equations can oslyhNel numerically.
The question we are addressing now is the following: is it possible to hasen@ahminimum for
a definite set of parameters with the right gauge boson masses and b#wer axormal minimum
below it with completely different masses for the gauge bosons? And theeats this question
is yes as long as the soft breaking term is present. As an example We\xfal‘nh‘atzszOft a local
minimum with my = my= = my = 300 GeV,m, = 100 GeV andn, = 80.4 GeV and a global
minimum withmy = my = 436 GeVmy+ = 365 GeV,m, = 190 GeV andn, = 107.5 GeV. The
vacuum energy difference between the twdds- V| = —4.2 x 18. Hence, tunneling effects can
occur in this situation and the subject needs further and more detailed $otly.however that
all potentials are well behaved for the CP breaking minima no matter how smalRhéo@tion
phase is because the CP breaking minima is uniquely determined. Finaly, oplgtémgial with
the exactZ, symmetry guarantees that the minimum, being a normal one, is unique. Even the
competing normal stationary points with one of the vevs set to zero are #@béwr a discussion
on this point see [10].

5. Conclusions

In this section we try to sum up our present knowledge about the trekevieseum of THDM in
the following points [2, 3, 8, 10, 11]:
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THDM bounded from below have no maxima (except for the trivial);
o THDM have at most two minima;

e Minima of different nature never coexist;

e Unlike Normal minima, CB and CP minima are uniquely determined,;

e If a THDM has only one normal minimum then this is the absolute minimum - all other
stationary points if they exist are saddle points and above it;

e If a THDM has a CP breaking minimum then this is the absolute minimum - all other sta-
tionary points if they exist are saddle points and above it;

e THDM with no explicit CP breaking show problems for two competing normal minima;

e The THDM with an exacZ, symmetry has several interesting features: the minimization
equations are uniquely determined which is not true when the soft bresgingetry term
is present; being in a normal minimuemtomaticallyguarantees tree-level vacuum stability -
no extra conditions have to be imposed; it is the only THDM where the only masssent
in all scalar couplings are the ones in the corresponding interaction vedgain this is
no longer true when the soft breaking term is present. It has howewalr#twback of not
allowing for CP violating minima. This version of the THDM is not related to the MSSM
where the existence of the soft breaking term is mandatory to avoid theredsiéan axion.
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