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Critical Opalescence

1. Introduction

One of the major goals of high energy heavy ion physics is the exploration of the phase diagram
of strongly interacting hot and dense matter. The exploration of this diagram is of fundamental
interest. It allows for exploring the properties of early Universe a few microseconds after the Big
Bang, but also to understand the collective properties of a non-Abelian gauge theory, Quantum
Chromo Dynamics (QCD), the theory of strong interactions, and to explore the dynamics of color
confinement.

A schematic, theoretical phase diagram of QCD is shown in Fig. 1. At high temperatures and /
or net baryon densities one expects, based on asymptotic freedom, that a gas of weakly interacting,
nearly massless quarks and gluons exists. A popular model ofthis state was formulated in terms
of an ideal Bose-gas equation of state for gluons and an idealFermi gas of quarks, and a bag
constant was introduced to model confinement. This simple bag model incorporates a first order
confinement-deconfinement phase transition.

At the end of the line of the first order QCD phase transitions,a critical end point (CEP) is
supposed to exist, where the phase transition becomes of second order. Locating and characteriz-
ing this point on the QCD phase diagram in a definitive manner could be of a great significance: if
such a point exists, it separates a line of first order deconfinement/chiral symmetry restoration phase
transitions from a smooth cross-over region. Cross-over transition means that in a narrow temper-
ature and density region the degrees of freedom change quickly but, in a strict thermodynamical
sense, there are no phase transitions any more and in this region different physical quantities are
extremal at different values of the temperature as discussed e.g. in ref. [1].

2. Four Criteria for Definitive Measurements of a QCD Critical Point

Although the experimental identification of the QCD critical end point of the line of the first
order phase transitions is of great significance, this task is not an obvious one. Although it is not
shown in the illustration of Fig. 1, recent results suggeststhat more than one such critical points of
QCD are theoretically possible [2]. Alternatively, it is possible that no critical point exists in QCD,
as discussed in ref. [3]: an empty phase diagram cannot be excluded at present.

Ref. [1] predictedTE = 164±2 MeV andµE = 360±40 MeV for the location of the end point
of the line of first order QCD deconfinement phase transitions, however, the errors are statistical
only and different theoretical approximations yield different values for this location.

An alternative possibility is that a critical point in fact exists, but it it may be located in a re-
gion not accessible by experiments at CERN SPS or BNL RHIC. However, an experimental search
for a critical point in heavy ion collisions is not a mission impossible: A power-law distribution
of intermediate mass fragments was found in intermediate energy in heavy ion reactions, and re-
lated to the critical point of a nuclear liquid-gas phase transition [4], [5]. This nuclear liquid-gas
critical point is also shown schematically in Fig. 1. Note, that chiral symmetry restoration and
deconfinement phase transition are in principle different kind of phase transitions, they may have
two different lines of first order phase transitions in the(µB,T) plane, that may have two different
critical end points, however their critical temperatures may have two closely, dynamically related
values, which are numerically similar [6]. Note furthermore, that color confinement is a sound
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Critical Opalescence

Figure 1: Schematic phase diagram of QCD based on ref. [7], reproducedfrom ref. [8]. Two critical points
are shown: at lower values of temperature, the nuclear liquid-gas phase transition line ends in a critical point,
while at higher temperatures the so called “QCD critical point" is shown, as the end of the line of first order
deconfinement/chiral symmetry restoration phase transitions.

property of all the observed hadronic states, which is not reflected on the schematic phase diagram
of Fig. 1, that allows for color deconfined states atT < Tc temperatures, with thermally suppressed,
small but non-zero probability, due to the cross-over at small chemical potential.

For a definitive, quality search for the QCD critical point(s), I think that the following four
criteria have to be satisfied: we have toidentify, locate, characterizeandcross-checkthe properties
of QCD Critical End Point(s), by answering the questions outlined below.

Identify: What is the type of phase transition – is it chiral symmetry restoration, or is it the phase
transition that leads to quark (de)confinement, or do these apriori different type of phase
transitions coincide a posteriori [6]?What are the experimental order parametersthat are
measurable not only in lattice QCD but also in laboratory experiments of heavy ion physics?
Do we find experimental indication for the creation of quarkionic matter [9]?

Locate:How many critical points exist on the accessible part of the phase diagram? At what
temperatures and net baryon densities is (are) the CEP(s) located - what are the values of
(TE,µE)? How can we reach this(these) point(s), i.e. what kind of collisions, at what cen-
tralities and what

√
sNN produce critical phenomena?

Characterize:In order to be able to relate the properties of a QCD Critical End Point to other
critical points of statistical / solid state physics and physical chemistry, e.g. that of water, we
should characterize and quantify the QCD Critical End Point(s) using the standard language
of statistical mechanics. To make such comparisons possible, we should attempt to measure
the critical exponents, and the universality class of the QCD critical point(s).
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Cross-check and control:How significant is the determination of the critical exponents and the
universality class? Can we measure more than the minimally necessary two critical expo-
nents? Do the additional critical exponents satisfy the constraints given by the general theory
of second order phase transitions, as discussed in ref. [8]?If a characteristic power-law be-
havior is found experimentally, we should cross-check if this behaviour is really due to a
QCD CEP, or due to e.g. anomalous diffusion [10], fractal structures or other effects.

3. Four possible forms of QCD Phase Transitions and their correlation signatures

For simplicity, let us consider the case when the chiral symmetry restoration and the decon-
finement phase transitions coincide [6]. Let us then consider, what kind of the deconfinement/re-
confinement type of phase transitions are logically possible. In a heavy ion collision, confinement
can be realized either in a thermal equilibrium or in a non-equilibrium manner. Thermal equi-
librium states may pass, as a function of time, through a lineof phase transitions or through a
cross-over region. Phase transitions can be either with latent heat (first order phase transitions)
or without latent heat (second order phase transitions). Thus we obtain four possibilities and four
different kind of characteristic correlation signatures,see ref. [11] for details.

i) (Strong) first order phase transitions:Several groups calculated the Bose-Einstein or HBT
correlation function from hydrodynamical models assuminga first order phase transition in equi-
librium, with a significant amount of latent heat. This is reflected in long life-times and large widths
of the time distribution of particle production. The corresponding picture is that of a slowly burning
cylinder of QGP [12]. This physics is signaled asRout ≫ Rside, regardless of the exact details of the
calculation [13, 14, 15, 16, 17, 12]. Experimentally,Rout ≈ Rside both at CERN SPS [18, 19] and
at RHIC [20, 21, 22]. Thus a slowly burning, predominantly longitudinally expanding QGP “log"
is excluded by correlation measurements inA+B reactions both at CERN/SPS and at RHIC. Three
alternatives remain: either a second order or a cross-over or a non-equilibrium phase transition.

ii) A second order deconfinement phase transitionand its signature in Bose-Einstein/HBT cor-
relations was discussed recently in ref. [23]. Such second order phase transitions are characterized
by critical exponents. One of these, traditionally denotedby η , characterizes the tail of the spatial
correlations of the order parameter. This exponent was shown to be measurable with the help of the
two-particle correlation function [23], where it was shownalso thatη = α , whereα stands for the
Lévy index of stability of the correlation function itself,i.e.,C(q) = 1+ λ exp[−(qR)α ]. The ex-
citation function of theshape parameterα has unfortunately not yet been studied experimentally,
although such a measurement may lead to the experimental discovery of the location of the QCD
Critical Point at the minimum of this exponent.

iii) Cross-over transitions:According to recent lattice QCD calculations, if the temperature is
increased at zero, or nearly zero chemical potentials, the transition from confined to deconfined
matter is a cross-over [24], and various observables yield different estimates for the critical tem-
perature itself: the peak of the renormalized chiral susceptibility predictsTc=151(3) MeV, whereas
critical temperatures based on the strange quark number susceptibility, and Polyakov loops, result
in values higher than this by 24(4) MeV and 25(4) MeV, respectively. This scenario can be sig-
naled by emission of hadrons from a region above the criticaltemperature,T > Tc, or, by finding
deconfined quarks or gluons at temperaturesT < Tc. Indeed, emission of hadrons from a small but
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superheated region, withT > Tc ≃ 176±7 MeV [25, 26], has been suggested by Buda-Lund hydro
model fits to single particle spectra and two-pion HBT radii in Au+Au collisions at RHIC [27].

iv) A non-equilibrium transition: hadron flash from a supercooled QGP. In relativistic heavy
ion collisions at CERN SPS and at RHIC the expansion time-scales are∼ 10 fm/c, which are short
as compared to the∼ 100 fm/c nucleation times of hadronic bubbles in a first order phase transition
from a QGP to a hadron gas. Ref. [28] suggested, that a rapidlyexpanding QGP fluid might strongly
supercool in Au+Au collisions at RHIC and then rehadronize suddenly while emitting particles
in a flash. Such a sudden recombination from quarks to hadronshas been considered at CERN
SPS energies as well, as the mechanism for hadron formation in the ALCOR model [29]. Other
realizations of sudden hadron formation and freeze-out were used to explain the observed scaling
properties of elliptic flow [30] with the number of constituent quarks. Ref. [28] suggested that
the comparable magnitude ofRout ≈ Rside≈ Rlong could be a signature of a non-equilibrium flash
of hadrons (pion-flash) from a deeply supercooled QGP phase [28]. Note, that the thermodynamic
considerations in [28] also allow, that from a supercooled QGP a super-heated hadron gas is formed
in about 50 % of the parameter space. The calculations of refs.[28, 27], even currently, are not in
a clear disagreement with RHIC data on Au+Au collisions (with the possible exception of an in-
mediumη ′ mass modification signal reported in ref. [31]). There are other more exotic possibilities
for new phases, like color superconducting quark matter, orquarkyonic matter, but these are not
discussed here as we focus on the search for the QCD critical point.

4. Locating the Critical Point by Critical Opalescence

Before we attempt to locate and characterize a critical point in QCD, it can be useful to con-
sider, how a critical point is located in a more conventionalscenario, for example in statistical
physics and in chemical experiments on second order phase transitions involving ordinary gases
and fluids. The presentation in this section follows the lineof ref. [8], where the above point of
view lead the present author to a new, experimental definition of opacity in high energy heavy ion
physics, hereafter referred to as “optical opacity".

Critical opalescence is apparently a smoking gun signatureof a second order phase transition
in statitical physics and physical chemistry. Fig. 2 indicates that a laser beam shining through a
test tube becomes more and more scattered and the fluid becomes maximally opaque at the critical
point, where density fluctuations are present on all possible lengthscales, including that of the
wave-lenght of the penetrating beam.

In optics, opacityκ is defined as the rate of absorption or extinction, at which the intensityI
of a beam of radiation is absorbed or scattered per unit distance along a ray of propagation:

∂ I
∂x

= −κ I (4.1)

More generally the opacityκ may depend on the wavelength (or momentum) of the radiation,as
well as on the density, temperature and composition of the medium. For example, air has nearly
zero opacity for visible light, and for radio waves, but it isalmost completely opaque for gamma
and X rays, and in most of the infrared part of the spectrum. The solution of the above differential
equation for constant values of opacity is

I = I0exp(−κx) = I0exp(−x/λ ). (4.2)
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Figure 2: Critical opalescence is a smoking gun signature of a second order phase transition in statitical
physics and physical chemistry. A laser beam shining through a test tube becomes more and more scattered
and the fluid becomes more and more opaque, as the critical point is approached. These pictures are snap-
shots from a video of ref. [32]. See also ref. [8] for their first discussion in the context of search for a QCD
critical point.

In chemistry, this relation is also observed and known as theBeer-Lambert law, but it also appears
in describing the change of intensity of an energeticγ beam passing through a lead target - sim-
ply if opacity κ is momentum and position independent, then the intensity ofradiation decreases
exponentially while it penetrates certain materials.

In the above equationλ = 1/κ is the so called attenuation length or penetration depth, defined
as the distance where the detected radiationI after passing through a material of widthλ falls to
1/e ≈ 36.7% of its incoming intensityI0. Thus a quantitative signature of critical opalescence is
a minimum of the attenuation lengthλ or a maximum of opacityκ on many wavelengths simul-
taneously. Measuring opacity as a function of pressure and temperature, the critical point can be
located on the phase diagram.

Let us follow ref. [8] in rewriting the defining relation of optical opacity in a manner that has
a straightforward application to heavy ion physics. In heavy ion physics, the nuclear modification
factorRAA can be defined as

RAA =
I(transmitted)
I(generated)

=
I(measured)
I(expected)

=
I
I0

, (4.3)

where the measured yield is defined as

I(measured) =
1

NAA
event

d2NAA

dydpt
, (4.4)

while for point-like processes like production of high transverse momentum jets the generated rate
is the same yield measured in proton-proton reactions scaled up by〈Ncoll〉, the number of binary
initial nucleon-nucleon collisions, given by a Glauber model calculation:

I(expected) =
〈Ncoll〉
σNN

inel

d2σNN

dydpt
. (4.5)

It is important to note that in high energy heavy ion reactions in thept > 4 GeV kinematic
range we are measuring not tiny absorbtions, but quite significant values, so the thickness of the
absorber or the fraction of the absorbed intensity cannot beconsidered small, 1−RAA≈ 0.8. Hence
we have to solve eq. (4.2) to get a more precise definition, keeping in mind the interpretation
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of the nuclear absorbtion factor asRAA = I/I0. The nuclear modification factorRAA includes a
mixture of hot and cold nuclear matter effects, its most apparent shortcoming is that it measures the
change in intensity but does not specify the distance over which the change of the yield happened.
Opacity as defined in optics, on the other hand, compares the rate of change of intensities per unit
distance. Thus a proper opacity definition should include both the nuclear modification factor and
the characteristic length scale of the attenuation.

A possible approach was proposed in ref. [8] to measure the source sizes utilizing Gaussian and
Lévy fits to two-particle Bose-Einstein correlation functions. These radii are frequently referred
to as Hanbury Brown - Twiss or HBT radii to honor the two radio astronomers, who invented a
similar technique for photons to measure the angular diameter of main sequence stars.

It is well known that the size of nuclei change on the average as A1/3, which in a collision
would then be modified to an averageN1/3

part dependence. PHENIX published the freeze-out volume
(more precisely, the size of the region of homogeneity) of charged pion emission in 200 GeV
Au+Au collisions using Bose-Einstein or HBT techniques as afunction of centrality [34]. The
Gaussian HBT radii were found to scale asRi = p0 + p1N1/3

part, wherep0 ≈ 0.83± 0.25 fm and
p1 ≈ 0.54±0.05 fm andi = (long, out, side) stands for the three principal directions with respect
to the beam and the mean transverse momentum of the particle pair. Note that ref. [34] fitted the
centrality dependence of each HBT radius components separately, but in the different directions
these radii were found, within one standard deviation, to have the same values [34]. Thus their
average value was quoted above. The corresponding HBT volume as well as the initial volume
scales withN1/3

part, i.e. a posteriori the initial static volume and the dynamically generated HBT
source sizes are proportional. Expansion effects may introduce absolute calibration errors on the
opacityκ that is difficult to control. However, the relative error on the centrality dependence of the
opacitiesκ and in particular its minimum or maximum structure is not affected by these expansion
effects, as both the initial and the final volumes scale proportional toN1/3

part.
Using an average value of the HBT radius asRHBT = (Rout +Rside+Rlong)/3 and the nuclear

modification factors of neutral pions measured by PHENIX it was possible to evaluate the opacity
and the attenuation lengths in

√
sNN = 200 GeV Au+Au collisions, as a function of centrality.

For arbitrary thickness and nuclear modification factor, the optical opacity (and its inverse, the
attenuation length) was determined [8] as

κ = − ln(RAA)

RHBT
, λ = − RHBT

ln(RAA)
. (4.6)

A simple test of such opacity measurement was reported in ref. [8]. The results are shown in
Table 1. One finds that changing centrality from 0-5 % to 50 - 60% , the opacity is decreased sub-
stantially, by about a factor of 2 (a 4σ effect). Thus nearly half of the increased nuclear suppression
originates from the increased opacity of the hot and dense, strongly interacting matter created in
more central collisions, while the rest arises due to an increased volume of matter produced in these
collisions.

The attenuation lengthsλ -s vary as a function of centrality in the range of 3-8 fm, for neutral
pions with pt = 4.75 GeV/c, periferal events correspond to less stopping and large attenuation
lengths while for central collisions the attenuation lenghts decrease, and the matter becomes more
and more opague.
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A similar approach to opacity determination is to constrainthe relevant length-scales by mea-
suringRAA relative to the reaction plane of the collision, as has been recently reported by PHENIX
in ref. [33]. In this paper, nuclear modification factors were plotted as a function of distances calcu-
lated from hard sphere or from RMS approximations, and an exponential like suppression pattern,
just like the form of eq. (4.2) was observed. However, the attenuation lengths and optical opaci-
ties were not evaluated from the available information in ref. [33]. In this approach, one does not
provide a direct measurement of the spatial scales, insteadone relies on simple theoretical models
of the initial geometry, and the relevant lengthscales are evaluated in a hard sphere or in an rms
approximation. In fact, the distance that is covered by penetrating probes in the medium is not a
static distance, but a length scale of the dynamical, expanding source that is covered by the jets
during their punch through.

Centrality 0-5 % 20-30 % 30-40 % 40-50 % 50-60 %

Opacityκ (fm−1) 0.35± 0.04 0.27± 0.03 0.26± 0.04 0.12± 0.02 0.15± 0.05

Attenuationλ (fm) 2.9± 0.3 3.7± 0.4 3.8± 0.6 8.1± 1.5 6.5± 2.0

Table 1: Examples of opacitiesκ and attenuation lengthsλ = 1/κ in
√

sNN = 200 GeV Au+Au reactions,
evaluated from nuclear modification factors measured atpt = 4.75 GeV/c in ref. [35] and HBT radii mea-
sured in ref. [34], averaged over all directions and charge combinations, measured in the same centrality
class asRAA.

5. Cross-checks

In Table 1, optical opacities and nuclear attenuation lengths were calculated from measured
centrality dependent nuclear modification factors and HBT radius parameters. In this section, some
cross-checks are presented.

A simple cross-check was to use the measured nuclear modification factor of the transverse
momentum integratedRAA(pt > 5GeV) from ref. [33] and the HBT radiiRHBT from ref. [34],
both measured as a function of the number of participants. Inthis case, the dependence of the
HBT radii on the number of participant was parameterized with a linear dependence in ref. [34]
as RHBT = p0 + p1N1/3

part. Using eq. (4.6), the nuclear attenuation lengths in 200 GeVAu+Au
collisions were evaluated and plotted as a function of number of participants in Fig. 3. This figure
is consistent with Table 1, that was obtained from direct measurements of HBT radii and nuclear
modification factors at a fixedpt = 4.75 GeV. Fig. 3 also indicates that the nuclear attenuation
length is the smallest in most central collisions, and its range in these collisions is about 3 to 9 fm,
depending on the centrality.

Optical opacity can also be evaluated from the reaction plane angle dependent nuclear sup-
pression factor measurements of PHENIX [33] and the corresponding Glauber calculations of the
relevant length scaleL, that corresponds to the lengthscale of the nuclear geometry in the given
direction. Fig. 4 indicates an approximate scaling law: if the nuclear attenuation lengthscales are
similar, but transverse momenta or centralities are different, the measured optical opacitiesκ are
within errors similar. This also indicates, that opacitiescharacterize a local property of the hot
and dense matter. It is interesting to contrast this scalinglaw to theL dependence of the nuclear
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from nucl-ex/0903.4886v1 and nucl-ex/0401003

Figure 3: Attenuation length in 200 GeV Au+Au collisions as a functionof number of participants, evalu-
ated from PHENIX transverse momentum integrated nuclear modification factorRAA(pt > 5GeV) and num-

ber of participant dependent HBT radius,RHBT measurements, using the formulaRHBT = 0.83+0.54N1/3
part.

modification factors (Fig. 22 of ref. [33]), that change withcentrality and transverse momentum
even if the initial nuclear geometry orL is similar.

It is also interesting to compare the results of Fig. 3 and Fig4. The nuclear attenuation length,
evaluated from PHENIX reaction plane angle dependent nuclear suppression factor measurements
and Glauber calculations is compared with attenuation lenght evaluated from PHENIXpt inte-
gratedRAA measurement combined with lenght-scale estimates from thecentrality dependence of
PHENIX HBT data,RHBT = p0 + p1N(1/3)

part . Note that the two scaling laws coincide if the nuclear
attenuation lenght is plotted as a function ofRHBT − p0 or as a function ofL, as indicated in Fig. 5.

6. Summary and Outlook

I argued that for a definitive experimental program to discover a QCD critical point, it is not
sufficient to locate only such a point on the baryochemical potential vs temperature or(µB,T) plane,
but we also should measure at least two of its critical exponents, and determine the universality class
of such a CEP.

Even if we do not find a such a CEP, but instead we can find a line offirst order phase transi-
tions using strong interactins, I believe that the experimental program should be quantitative, and
determine the speed of sound, the latent heat, the critical temperature and pressure of such a phase
transition.

Note that this program is not a mission impossible, althoughsome authors expressed an oppo-
site opinion – sometimes in no uncertain terms. In his CPOD 2009 talk, Rajagopal suggested, that
critical exponents will not/need not be measured in high energy heavy ion physics [36]:“Since the
correlation length cannot be larger than 2-3 fm, heavy ion experiments can never be used to mea-
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factor measurements and Glauber calculations of the relevant length scaleL.
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PHENIX pt integratedRAA measurement combined with lenght-scale estimates from thecentrality depen-
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part . Note that the two scaling laws coincide if the latter is
plotted as a function ofRHBT − p0.
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sure the critical exponents of the 2nd order critical point.That’s OK: we know that (its univerality
class) is (that of the 3d) Ising (model). What we don’t know and we need experiments for, is whereit
is located."With all due respect to Rajagopal, I disagree with his opinion, and would like to encour-
age my experimentalist colleagues to determine the critical exponents as well as the universality
class of the QCD CEP, because without the measurement of these quantities a definitive search for
the critical points cannot be realized, and the results cannot be compared with similar measure-
ments of other, well understood critical points, e.g. that of water. My arguments for experimental
determination of the propertied of the QCD CEP are based on the following observations:

1. In physics, theoretical predictions are compared to experimental results, as a matter of basic
principle. Only from a comparision with data it becomes possible to select the best of com-
peting models/theories, and new predictions are tested against new measurements to refine
them further. The existence of theoretical predictions in physics does not imply the lack of
need for an experimental determination of key physical quantities, for example, the value of
the critical exponents of the Critical Point of QCD.

2. In the theory of critical phenomena, there are static and dynamic universality classes, and
models that belong to the same static universality class maybelong to different dynamical
universality classes [38]. For QCD, the static universality class is predicted to be that of
the 3d Ising model [39], while the dynamic universality class is predicted to be different,
corresponding to that of the liquid-gas phase transition [40].

3. In a heavy ion collisions, violent initial dynamics may create random fields that in fact may
modify the critical dynamics as well. The presence of randomfields is known to modify the
universality class and the critical exponents of the 3d Ising model, for example the critical
exponent of the correlation function increases dramatically from the value of 0.03±0.01 to
0.50±0.05 if the universality class of the 3d Ising model is changed to that of the random
field 3d Ising model, see e.g. ref. [8] for more details.

4. It has been demonstrated experimentally that another critical phenomena, namely nuclear
multifragmentation can be studied in p+Xe collisions at 1≤ Ep ≤ 20 GeV measuring the
inclusive production of light fragments(3 ≤ Zf ≤ 17), ref. [4]. From a measurement of
intermediate mass fragment production in heavy ion collisions with 1 A GeV beam ener-
gies of Au, La, and Kr, the critical exponents of the nuclear liquid-gas phase transition were
extracted at these relatively low energies. The results allowed for a discrimination among
various universality classes, see Table I of ref. [5]. If theuniversality class and the critical
exponents can be determined reasonably well in these low multiplicity heavy ion and proton
induced reactions at relatively moderate energies, extracted from distributions that have less
than 2 orders of magnitude vertical range, then even better measurements should be possi-
ble in the RHIC low energy scan and in the SPS future heavy ion program, because these
measurements span already several orders of magnitude vertical scales e.g. in the transverse
momentum distributions, and simply because the number of produced particles is substan-
tially larger than that of the nuclear fragments.
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5. I would also like to draw attention to the presentation of J.T. Mitchell [37] where he reported
on a search for a QCD Critical Point at RHIC using various observables that were already
published or are in a preliminary data status, which includePHENIX preliminary results for
observables that become critical exponents at the CEP, but of course they can be measured
at other points of the phase diagram, too. Using the presently available PHENIX/RHIC data
set, no significant indication for the existence of a QCD critical point was seen. Further
searches are in progress in STAR and PHENIX, in the forthcoming RHIC low energy scan
program.

Based on these arguments, the experimental identification,location, characterization and cross-
checking of the properties of a QCD critical point is apparently experimentally possible and scien-
tifically desirable.

7. Summary and conclusions

Critical opalescence is a smoking gun signature of a Critical Point. In QCD, optical opacity is
a function of nuclear modification factorRAA and the distance covered by the attenuated jet in the
medium, which is proportional to the initial nuclear geometry, for exampleN1/3

part. A lengthscale
with such a known centrality dependence is measured by femtoscopy, with HBT correlation tech-
niques, calledRHBT. The combination of the nuclear modification factor with such a length scale
can be used to measure optical opacityκ or nuclear attenuation lengthλ . Azimuthally sensitive
nuclear modification factor and HBT radius measurements allow directional dependent studies of
spatial dimensions, that add valuable information to directional dependentRAA measurements.

By measuring the critical exponents of the correlation function and the correlation length with
methods discussed below, a first estimate of the universality class of the QCD critical point can be
given.

1. Search for critical opalescence, i.e. looking for the maximum of opacity, or the minimum of
attenuation length, as a function of centrality, bombarding energy and size of the colliding
nuclei in a broad, high transverse momentum range.

2. Search for a non-monotonous behaviour of the correlationlength as a function of colliding
energy and centrality (related to critical exponentα), from multiplicity fluctuation mea-
surement and fits of Negative Binomial Distributions to multiplicity distributions in limited
rapidity intervals. This method can locate experimentallythe critical end point (CEP) of the
line of 1st order phase transitions, if such a CEP exists.

3. Search a minimum of the exponent of the correlation function, η , as a function of colliding
energy and centrality, using Lévy fits to the Bose-Einstein (HBT) correlation function.

4. Determine the chemical freeze-out temperatureT on an event-by-event basis for an event
selection that corresponds to the maximum of opacity. Checkthat various observables (heat
capacity, correlation length) indeed indicate a power-lawbehavior as a function oft = |T −
Tc|/Tc simultaneously.
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5. The correlation length can be determined from the multiplicity distribution using the nega-
tive binomial distribution, and the exponent of the correlation lengthν can be obtained from
event-by-event determination ofboththe correlation length and the chemical freeze-out tem-
peratureT.

6. Determine the critical exponents for at least two observables, recommended exponents are
η and ν . Use theoretical relations to determine the remaining critical exponents, so that
all the six critical exponents be given, providing the universality class of the QCD critical
point. The critical exponent of the correlation functionη is defined in the momentum-space,
and the power-law shape of the correlation function shows upas a function of the relative
momentum of particle pairs and not as a function of the reduced temperaturet, which requires
an event-by-event analysis. Hence this critical exponentη is relatively easy to measure.

7. Cross-check the result by measuring additional criticalexponents and cross-check these mea-
surements with constraints obtained from the theory of second order phase transitions. For
example, determining the exponent of the heat capacityα seems to be straight-forward, as
the heat capacity is measured by the event-by-event fluctuations of the chemical freeze-out
temperature.

Although it is an extremely challenging task, that some may even consider as mission impos-
sible, the above items indicate that we realistically may locate the critical point and also to estimate
at least two of the critical exponents, hence the universality class of the QCD Critical End Point.
These measurements will be possible in the low energy scan program at RHIC, in a future CERN
SPS heavy ion program and also utilizing the upcoming FAIR facility.

Acknowledgments

I would like to thank Frithiof Karsch, Paul Sorensen and the Local Organizing Committee of
CPOD 2009 for creating an inspiring and useful workshop atmosphere. It is my pleasure to thank
professor Roy Glauber for his kind hospitality at Harvard University.

13



P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
3
5

Critical Opalescence

References

[1] Z. Fodor and S. D. Katz, JHEP0404, 050 (2004)

[2] E. S. Bowman and J. I. Kapusta, Phys. Rev. C79 (2009) 015202 [arXiv:0810.0042 [nucl-th]].

[3] Ph. de Forcrand, arXiv:0807.0860 [hep-lat].

[4] M. Mahi et al., Phys. Rev. Lett.60, 1936 (1988).

[5] B. K. Srivastavaet al., Phys. Rev. C65 (2002) 054617 [arXiv:nucl-ex/0202023].

[6] J. Braun, L. M. Haas, F. Marhauser and J. M. Pawlowski, arXiv:0908.0008 [hep-ph].

[7] M. G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, Rev. Mod. Phys.80 (2008) 1455

[8] T. Csörg̋o, arXiv:0903.0669 [nucl-th].

[9] L. McLerran and R. D. Pisarski, Nucl. Phys. A796, 83 (2007) [arXiv:0706.2191 [hep-ph]].

[10] M. Csanád, T. Csörg̋o and M. Nagy, Braz. J. Phys.37, 1002 (2007) [arXiv:hep-ph/0702032].

[11] T. Csörg̋o and S. S. Padula, Braz. J. Phys.37 (2007) 949 [arXiv:0706.4325 [nucl-th]].

[12] D. H. Rischke and M. Gyulassy, Nucl. Phys. A608, 479 (1996) [arXiv:nucl-th/9606039].

[13] S. Pratt, Phys. Rev. Lett.53, 1219 (1984).

[14] S. Pratt, Phys. Rev. D33, 1314 (1986).

[15] Y. Hama and S. S. Padula, Phys. Rev. D37, 3237 (1988).

[16] G. Bertsch, M. Gong and M. Tohyama, Phys. Rev. C37, 1896 (1988).

[17] G. F. Bertsch, Nucl. Phys. A498, 173C (1989).

[18] H. Boggildet al. [NA44 Collaboration], Phys. Lett. B349, 386 (1995).

[19] S. Kniegeet al. [NA49 Collaboration], J. Phys. G30, S1073 (2004) [arXiv:nucl-ex/0403034].

[20] C. Adleret al. [STAR Collaboration], Phys. Rev. Lett.87, 082301 (2001) [arXiv:nucl-ex/0107008].

[21] S. S. Adleret al. [PHENIX Collaboration], Phys. Rev. Lett.93, 152302 (2004)
[arXiv:nucl-ex/0401003].

[22] B. B. Backet al. [PHOBOS Collaboration], Phys. Rev. C73, 031901 (2006) [arXiv:nucl-ex/0409001].

[23] T. Csörg̋o, S. Hegyi, T. Novák and W. A. Zajc, AIP Conf. Proc.828(2006) 525 also T. Csörgő,
S. Hegyi, T. Novák and W. A. Zajc, Acta Phys. Polon. B36, 329 (2005) [arXiv:hep-ph/0412243].

[24] Y. Aoki, G. Endr̋odi, Z. Fodor, S. D. Katz and K. K. Szabó, Nature443, 675 (2006)
[arXiv:hep-lat/0611014].

[25] Y. Aoki, Z. Fodor, S. D. Katz and K. K. Szabó, Phys. Lett. B643, 46 (2006) [arXiv:hep-lat/0609068].

[26] Z. Fodor and S. D. Katz, JHEP0404, 050 (2004) [arXiv:hep-lat/0402006].

[27] M. Csanád, T. Csörg̋o, B. Lörstad and A. Ster, J. Phys. G30, S1079 (2004) [arXiv:nucl-th/0403074],

[28] T. Csörg̋o and L. P. Csernai, Phys. Lett. B333, 494 (1994) [arXiv:hep-ph/9406365].

[29] J. Zimányi, T. S. Biró, T. Csörg̋o and P. Lévai, Phys. Lett. B472, 243 (2000) [arXiv:hep-ph/9904501].

[30] A. Adareet al. [PHENIX Collaboration], [arXiv:nucl-ex/0608033].

14



P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
3
5

Critical Opalescence

[31] R. Vértesi, T. Csörg̋o and J. Sziklai, arXiv:0905.2803 [nucl-th].

[32] http://www.msm.cam.ac.uk/doitpoms/tlplib/solid-solutions/videos/laser1.mov

[33] S. Afanasievet al. [PHENIX Collaboration], arXiv:0903.4886 [nucl-ex].

[34] S. S. Adleret al. [PHENIX Collaboration], Phys. Rev. Lett.93 (2004) 152302

[35] A. Adareet al. [PHENIX Collaboration], Phys. Rev. Lett.101(2008) 232301

[36] K. Rajagopal: Closing talk at CPOD’09, BNL, Upton, USA,June 8-12, 2009,

http://quark.phy.bnl.gov/~karsch/talks/Fri/Rajagopal.pdf

[37] J.T. Mitchell, PHENIX Collaboration: Inv. talk at CPOD’09, BNL, Upton, USA, June 8-12, 2009,

http://quark.phy.bnl.gov/~karsch/talks/Mon/Mitchell.pdf

[38] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49 (1977) 435.

[39] K. Rajagopal and F. Wilczek, Nucl. Phys. B399(1993) 395

[40] D. T. Son and M. A. Stephanov, Phys. Rev. D70 (2004) 056001 [arXiv:hep-ph/0401052].

15


