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1. Introduction

Fluctuations of conserved charges, like baryon number, electric elzanrg strangeness are
generally considered to be sensitive indicators for the structure of theahenedium that is pro-
duced in heavy ion collision§][1]. In fact, if at non-vanishing baryomber a critical point exists
in the QCD phase diagram, this will be signaled by divergent fluctuationg oftee baryon number
density [2].

We present here results from lattice calculations of baryon number amgjstress fluctuations
in QCD with dynamical light and strange quark degrees of freedom. Téhdtseare based on
calculations with an improved staggered fermion action (p4-action) thatgiyroeduces lattice
cut-off effects in bulk thermodynamics at high temperature. The valuesajuhrk masses used
in this calculation are almost physical; the strange quark mmasss fixed to its physical value
while the light up and down quark masses are taken to be degenerateusmidaans/10. This
is about twice as large as the average up and down quark masses rgahatute. We obtained
results from calculations performed with two different values of the lattiteffucorresponding
to lattices with temporal extet; = 4 and 6. This allows us to judge the magnitude of systematic
effects arising from discretization errors in our improved action calculatidime spatial volume
has been chosen to ¥&/3T = 4, which insures that finite volume effects are small.

At the QCD critical endpoint (CEP) the correlation length of the chiral cliticade o will
diverge. Correspondingly, all kinds of fluctuations of conserveatgs, which couple to the-
field, become large in the vicinity of, and diverge at the CEP. It has begred in [2,[B] that
quadratic variances of event-by-event observables such as pattisthelances, particle ratios or
mean transverse momenta will reflect these divergent fluctuations atitargood experimental
observables for the determination of the CEP. It will thus be very interestisigdy baryon number
and strangeness fluctuations as well as baryon number-strangemetations at nonzero density
as they are related to the event-by-event fluctuations of the proton, dmeakal their ratio. The
latter has been recently measured by the NA49 collaboration for centi@bRiollisions at five
different SPS energief] [4].

2. The Taylor expansion method

Direct lattice calculations at nonzero baryon density are not possible bpsmaf standard
Monte Carlo methods. We follow here the Taylor expansion approach to famiisitg QCD on the
lattice, as described in detail ifif[F, 6]. Starting from an expansion of tharitbgn of the QCD
partition function,.e. the pressure, one obtains

p_ 1 _ 5 BS(He) (s
where _ .
1 0" 9 InZ(\V,T,us, Us)
"It M ok He=Hs=0

Here ug and us are the baryon and strangeness chemical potentials, respectivel edniche
obtained as appropriate linear combinations of the quark chemical potemiatis.that we treat
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Figure 1: Diagonal (upper row) and off-diagonal (lower row) expansioefficients of the pressure of 2nd
(left column), 4th (middle column) and 6th (right columnier. For diagonal coefficients up to the 4th
order we compare results from two different lattice spagifdy = 4 andN; = 6 lattices). Here we have

normalized the data by its corresponding SB-values.

the up and down quarks as degenerated, both in mass as well as tkatpdder density. Accord-
ingly, isospin and electric charge chemical potential vanish. Due to clcargagation symmetry
only coefficients withi + j even are nonzero. In Fi§]l 1 we show the diagonal and off-diagonal
coefficients of this expansion up to 6th order. For diagonal coefficigmt® 4th order we show
results that have been obtained for different lattice spacings, i ¥; er4 andN; = 6 lattices. We

note that results obtained on lattices with temporal extent 6 are in good agreement with those
obtained on the coarsBl = 4 lattice. The slight shift towards smaller temperatures, visible for the
N; = 6 data relative to th&l; = 4 data, is consistent with findings for the equation of state, e.g. the
trace anomalye — 3p) /T4, and also reflects the shift in the transition temperature observed when
comparing the locations of the cusp in the chiral susceptib[fity [7].

The general pattern of the coefficients can be understood from thetustrwof the singular
part of the free energy. In the chiral limit of our (2+1)-flavor simulatidres with vanishing light
guark masses, but finite and physical strange quark mass, we exp&2Ci transition to be of
second order{[8]. The relevant scaling field which contains the bachiemical potential will be
the reduced temperature, for which we make the ansatz

I

Accordingly two derivatives of the free energy with respecpugo(at g = 0) are similar to one
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Figure 2: A fit to the expansion coefficients of the pressure belgyinspired by the critical behavior of the
free energy. At this lattice size and quark mass £ 4, my; = 0.1ms) we havele ~ 202 MeV.

derivative with respect to the temperature. Therefore we obtain the faliciermulas, which can
be used to fit the critical behavior of the Taylor expansion coefficients

2053 ~ F2AL(2— a)K |t " +bot + ¢y ; (2.4)
41.cg% ~ —12A: (2— a)(1— a)K?t| @ + st +C4 ; (2.5)
6l g ~ £120A: (2—a)(1—a)(—a)k3t| 1. (2.6)

Here uppers signs are valid for- 0, whereas lower signs are fok 0. We see that the critical
behavior is governed by the critical exponentwhich is small and negative for the universality
classes of interest. For staggered fermions at finite lattice spacing, veeohitial symmetry is
broken down to & (1) subgroup, we expect the relevant universality class to be that of t&3d
symmetric model, where we have~ —0.015. We thus expeafs s to develop a cusp, whileg%

will diverge in the chiral Iimit.cé’g will be dominated by the regular part of the free energy. Hence,
we took into account the leading order regular terms, indicated by theaiertfib,, bs, cp, andc,

in Eq.[2.4 and E. 2 5. Far < Tc we show the fit results in Fig] 2. Although the ansatz is strictly
valid only in the chiral limit, the fit works quite well. It has already been obsémreviously that

at this quark massg; = 0.1mg) the QCD thermodynamics enters the scaling regime of the critical
behavior [B]. Currently the coefficiert, which determines the slope of the critical line as function
of ug is, however, not very well constrained.

3. Baryon number and strangeness fluctuations

We now construct baryon number and strangeness susceptibilities whasluradluctuations
at nonzero chemical potentials. The corresponding expansions aaxplessed in terms of the
pressure coefficients from EQ.2.1. We obtain for the baryon numhztuétions

XB—<N§>VT3 i )(2i—1 c§'§<ﬁf) : (3.1)
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Figure 3: Baryon number fluctuations (left), strangeness fluctuatigmiddle) and baryon number
strangeness correlation coefficient (right) at nonzergdrachemical potential. Data points are obtained
by a truncated Taylor series up to the 4th ordeugi T, while dashed lines indicate the 6th order results.

and for the strangeness fluctuations

NZ — (N 2 00 ) 2i
<s>VT§S>:_ZOZCQ§(‘_‘rB) . (3.2)

Here (-) indicates the expectation value evaluated in the grand canonical ensemiiteEéndan-
ulations. Ng andNs are the net number of baryons and strange particles, respectivelyg. |8
(left and middle) we show results for the baryon number and strangéoetgtions at zero and
nonzeropg/T, obtained by truncating the serigs {3.1 4nd 3.2) after the 4th order. Veéeasy
indicated the 6th order results by dashed lines in order to give a feelitiggfdruncation errors. At
us/T =0, the generic form of the temperature dependence is a smooth crosgalethe leading
order term in(ug/T)? has a peak &k. It is thus clear that at sufficiently large valuesigf/T the
fluctuations will develop a peak. However, it is important to stay within the sadilconvergence
of the series, in order to keep the truncation errors small. We will discusadies of convergence
in Sec.[b in more detail; here we find that fog/T < 1.5 the truncation error is small. For this
value of the chemical potential the baryon number fluctuations show aleeshall peak, whereas
the strangeness fluctuations are only slightly enhanced.

We note, that all fluctuations of modes that couple to the relevant chiralatnitiode at the
QCD critical point (the sigma-field) will diverge at the QCD critical endpdiGEP). As light
quarks carry also a baryon number, the baryon number fluctuatiorxpeeted to diverge at the
CEP.

Xs=

4. The baryon number — strangeness correlation

The baryon number-strangeness coefficient was introduced assimgool for the effective
degrees of freedom in the quark gluon plasfipa [9]. It is defined as

(NgNs) — (Ns) (Ns)

CgsE —3 <N§>_<NS>2

: (4.1)
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Lattice calculations of this quantity in the (partially) quenched approximafigreid® 2+ 1-flavor
QCD [g] indicate that this quantity reaches unity for temperatures largerltbag whereas it is
significantly smaller folT < T.. l.e, the quark flavors are uncorrelated abdveas in the ideal
Quark Gluon Plasma (QGP). This behavior indicates the transition fronohiaditegrees of free-
dom to that of a QGP.

Similar to the expansion of baryon number fluctuations (Eq. 3.1) and strasgéuctuations
(Eg. [3:2) we can also expand the baryon number- strangeness ieoeffidgain we express its
expansion coefficients in terms of the expansion coefficients of theyseeisg.[2]1) and obtain

0 2) (MB\2 (4 (HB\* Mg\ ©
Cosin/T) =+ (42) +e2 (%9) o | (%2)'] @2)
cO_ Cur. @ _ G112 02031 . 4.3)
BS ~ T, 8BS’ BS 5o\ 2 , (4.
Co2 2 <Co,’z)
and ) 5
BS(.BS B,S.B.S.BS |, .BS.BSBS BS\2 B.S
o) -3 (Cz,z) +9Cy5C;5C31 +3C5C11C42 — 15 (Co.z) Cs'1 (4.4)
BS — 3 .
B,S
2(c53)

In Fig. B (right) we show the correlatioBizs at zero and nonzero density. We find that at
nonzero baryon number density a peak is developing already at smadbwafiyus /T where the
truncation errors are small (data points are the 4th order results, whileaghed lines indicate
the 6th order results). Atig/T = 1.0, the correlations af; increase by almost 50%, and rise
to a value which is about 20% larger than the Stefan-Boltzmann value. It vilhteresting to
see whether the increase in the baryon number strangeness coeffitlignte rise to a peak in
proton over kaon fluctuations obtained in Heavy lon Collisions and whétlese fluctuations can
be used as an experimental signal for locating the critical point. Also b&ldive correlations
increase drastically with increasing, whereas abové&; the correlation coefficienfgs remains
rather unaffected by the increasing baryon density.

5. The radius of convergence

It is known that in the temperature region closd¢dhe convergence properties of the Taylor
expansion of the pressure (§qgJ]2.1) and therefore also of the éapams the baryon number and
strangeness fluctuations (Eq.]3.1) and (Ed. 3.2) are poor. Here phesian coefficients wildly
fluctuate in sign and magnitude. Only for temperatures below the CEP, this neidigtter as in
this case all expansion coefficients are positive. It has been argaethéradius of convergence
can be used to determine the location of the [12]. One way to definadibe cd convergence
of the pressure series jiy/T (EQ.[2.1) is

p=lmp, with pn= g /T =\ /eBS/eBS, . (5.1)

The convergence radius can be estimated in a similar manner by the cotffioi¢he series of
the baryon number fluctuations (Eq.]3.1). Each omlewill, however, differ by a constant factor
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Figure 4: Two estimates of the radius of convergence of the pressuesgull symbols) and the series of
baryon number fluctuations (open symbols) as a functionroptgature p, indicates our best estimate for
the location of the critical endpoint. Dashed lines showrds®nance gas limit of the different estimators.

which goes to one in the limih — . We define a second estimator of the convergence radius,
based on thgg-series as
n(n—1)

- Dmez P 62

PnlXe] =
The method to estimate the location of the CEP by the radius of convergenk® iwdwo steps:

1. Find the largest temperature where all (available) expansion coefficdee positive. Only
if all expansion coefficients are positive, the corresponding singubatitgh is limiting the
convergence radius lies on the real axis and can be associated witly#iegbphase transi-
tion.

2. Estimate the radius of convergence at this temperature by usifig Fq.Eql[®2.

It is clear, that in practice we can not perform the limit- o but have to stop at some finite
Eventually at this point different estimators of the radius of convergesiitagree within errors.

In Fig. B we have summarized current results on the radius of convag&he first non trivial
approximation which does not explicitly include contributions from the gluaiosgcontributes
to cg’g), is given byp,, shown by the square data points. Here both contributing expansidir coef
cients €55 andcyy) are positive for all values of the temperature, hence an approximatiohefo
temperatureI(z)) of the CEP can not be deduced. At this order the estimates from theiprass
ries (full symbols) and from the series of the baryon number fluctuatiies duite dramatically.
The next higher approximatiqoy, of the CEP, which is currently our best approximation, is shown
by the circle data point. We obtain for the temperaflif® ~ 0.96T;(ug = 0). Here the difference
between the two estimators becomes less severe. For the convergeaséragspan the range of
p ~ (1.5—2.4). ltis interesting to note that the two different estimators of the convergewies
seem to approach thre— oo limit from different sites. However, thgg-estimator seems to be the
more stable one. Also shown are the resonance gas limits of the two approxispatiicated by
the dashed lines.
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Figure 5: Baryon number fluctuations @t= 0.96T. ~ T“EP as a function of the baryon chemical potential
(left). We compare different order of the truncated Taylenies vs two Padé approximants. The right panel
shows the same but on a much larger scale.

6. Taylor expansion vs. Padé approximation

So far our analysis of observables at nonzero baryon density lemsta@sed on the Taylor
expansion of the pressure (§q.]2.1) arowsdT = 0. Now we want to discuss the Padé approxi-
mation, which is usually considered to be a better approximation of the trugdoneven beyond
the radius of convergencg J11]. One can construct different Bagéoximants from the Taylor
expansion coefficients. Padé approximants are rational functions ifieh by the order of the
polynomials in the numerator and denominator. For the baryon number fluctsiateobtain e.g.

2
20 40 4,0 20 60\ /)2
4Cg Cgst2 <12 (CB,S) _5CB7SCB,S) (%)

243 sE3(P)°

Padé2, 2] (Xs) = (6.1)

In Fig. B(left) we compare different orders of the truncated TayloesgEq.[3]1) with the Padé
approximations [2,2] and [4,2], where the latter one has a fourth ordgmgmial in the numerator.
We show the baryon number fluctuations at fixed, but varying baryemidal potential. T ~
0.96T, is currently our best approximation for the temperature of the critical éntipb“E") as
it was estimated by the radius of convergence method. The most prominamefeathe Padé
approximations is the appearance of a pole. The location of the polessarelyi the roots of the
denominator. From Eq. 6.1 it is obvious that the pole in the [2,2] approximatiactly coincides
with the p4[xg| estimate of the convergence radius.

Note that for the Taylor series g¢fs which was truncated after the 6th order, as well as for
the [4,2] Padé approximant we need the coefficté[%t In the following analysis we set the so far
unknown coefficient tag g = c3%/x.

Given the coefficients%%— cg’g atT ~ 0.96T, we vary the strength cn%% by the parameter
X. We have fixed the parametgrby assuming that the asymptotic behavior of the [4,2] Padé
approximant for largetg should be governed by the free gas result which is given by

. 1 1 HUs 2
Ao~ 3t g () (62
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Using this property, we obtair ~ 4.95 and the next approximation for the convergence radius
(Ps = /X), which we also shown in Fig] 5(right). Again we find that the Pole in the [R&]é
approximant forxg coincides exactly with the corresponding estimator for the convergeduera

Pe[X8]-

7. Summary and conclusions

We have performed a comprehensive study of the Taylor expansidficegs of the baryon
number fluctuation, strangeness fluctuation as well as their correlatasex] bn the Taylor expan-
sion coefficients of the pressure. We found that all these quantities wilaiea peak atf ~ T for
nonzero baryon chemical potential, which is the dominant effect from #ubrlg order coefficient
in ug. The sub-leading coefficient will in general lead to a shift of the peakaitg-dependence
of the peak position. Our current analysis takes into account the deetfiaip to 6th order. On the
highest order the errors are barely under control. As most obssat®mnzero chemical potential
crucially depend on the relative strengh of the coefficients, a more dedimaysis which also takes
into account the 8th order coefficents is highly desired. This will also hedprifirm the structure
of the Taylor expansion coefficients which can be understood in terms appropriate scaling
ansatz of the free energy in the chiral limit. With a combined fit of all Taylol@son coefficients
it will in principle be possible to determine the-dependent curvature of the critical temperature
in the chiral limit.

When comparing different orders of the truncated Taylor series wesfirall truncation errors
below /T <(1—1.5), while for ug/T ~ (1.5—2.5) consecutive orders become compatible. The
latter fact can be used to estimate the radius of convergence of the Tayiles, svhich will be
connected with a physical singularity in the QCD phase diagram (criticgdant) when all ex-
pansion coefficients are positive. The temperaure of the cirical endpeinurrently approximate
to TCEP~ 0.96T...

We also constructed Padé approximants from the Taylor coefficientsin Agafind good
agreement between different approximants as well as the truncated Jesiés belows /T <(1—
1.5T..
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