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1. Introduction

There is increasing interest in phase transitions of QCD matter at finite temperatureT and
baryon density or chemical potentialµB. It has been established that strongly interacting matter
undergoes a phase transition atT which is comparable to the QCD energy scaleΛQCD∼ 200 MeV.
The phase transition is usually characterized by two approximate order parameters, i.e. the (traced)
Polyakov loop` = 1

3〈trL〉 and the chiral condensate〈q̄q〉. Although they seemingly indicate a
common change of the state of QCD matter,` and〈q̄q〉 belong to completely different dynamics
in QCD; the Polyakov loop is a good order parameter forquark deconfinementin the quenched
(mq → ∞) limit, while the chiral condensate forchiral restorationin the chiral (mq → 0) limit.

One may wonder that a rapid crossover in one side (quark deconfinement for example) could
be a trigger for transitional behavior in the other side (chiral restoration for the same example).
This is partially the case indeed. The Polyakov loop and the chiral condensate have a quantum
number 0++ same as that of the vacuum, so that they both describe the 0++ glueball and the scalar-
isoscalar (so-calledσ ) meson states, which can be mixed up with each other. Because of mixing it
is natural to anticipate simultaneous increase or decrease in the order parameters as a function of
T andµB [1, 2]. This explanation is not really adequate to give a full account for what has been
observed in the lattice QCD simulations [3].

In the density region where the Monte-Carlo simulation is feasible it has been found that
` and 〈q̄q〉 are monotonically increasing and decreasing, respectively, asT goes from below to
aboveTc which is common to both order parameters. This observation is something more than
implied by mixing. In general, only from the mixing argument, we cannot exclude a possibility
that there appear two separate crossovers with one dominated by deconfinement and another by
chiral restoration. The fact is, however, that quark deconfinement and chiral restoration should take
place at the same or nearly same temperature. Two phenomena which are originally opposite to
each other with respect to the quark mass must be locked together for a wide range of intermediate
quark mass [4].

As attempts to resolve this question about underlying mechanism in order to link quark decon-
finement and chiral restoration, a double expansion of strong coupling constant and large dimen-
sions was performed to build an effective model in terms of both order parameters [5, 6, 7, 8]. The
strong-coupling model was so successful that it could reproduce qualitative behavior of` and〈q̄q〉
similar to that resulting from the finite-T lattice QCD simulation. It was not easy, however, for the
model to go beyond qualitative agreement and to say anything quantitative, because the model was
formulated on the lattice which is far from the continuum limit. Besides, hopping of quarks in the
spatial directions is suppressed by the strong coupling constant and all quark excitations are static
in configuration space (straight along the temporal direction). The Fermi surface, hence, cannot
be formed correctly with a finiteµB introduced. Moreover, it is hopeless to recover the Stefan-
Boltzmann law at extremely highT due to the presence of dimensional scale other thanT, that is, a
lattice spacing or an ultraviolet (UV) cutoff. By the way the chiral sector of the model obtained in
the leading order of the double expansion takes a form of quark interaction through four-fermion
vertices. This is reminiscent of a chiral model in the continuum with an ultraviolet cutoff, known
as the Nambu–Jona-Lasinio (NJL) model [9, 10]. After revisiting the strong-coupling model [7, 8]
it had not been so long before an idea was proposed that the NJL model is augmented with the
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Polyakov loop̀ in a way inspired by the strong-coupling form [11]. Such a hybrid model with the
Polyakov loop coupling is called the PNJL model [12].

Although the PNJL model aimed to explain the simultaneous crossovers of quark deconfine-
ment and chiral restoration, a bonus has been recognized that thermodynamic quantities such as
the pressure, the entropy density, the quark number susceptibility, and so on are in good agreement
with those measured in the lattice simulation with dynamical quarks once the model parameters are
fixed by the data of the lattice simulation without quarks [12]. Since the lattice QCD simulation is
unable to access high-µB and low-T regions because of the sign problem, the PNJL model is quite
useful there. As we will see later, one important prediction from the PNJL model is that two phase
boundaries of deconfinement and chiral crossovers get apart from each other withµB comparable
to (quantitatively, one third to one half of) the baryon mass [11, 14].

When it comes to the phase structure, the existence or location of the chiral critical point of
QCD is also of great interest. There, a smooth crossover turns to a second-order critical point, and
the phase boundary becomes of first order at higher density than at the critical point [15, 16]. What
we can really learn about the critical point from the PNJL model studies is not where the QCD
critical point should sit but how easily its existence or location can be affected by small changes in
theory [17]. At the moment it is impossible to conclude where or even whether the QCD critical
point exists. We must emphasize that this is so because the existence or location of the critical
point is extremely sensitive to delicate factors rather than because of model uncertainties. Even
though we had a way to come by almost exact answer (for instance lattice simulations in the future
when the sign problem is resolved), it would be still difficult to make a precise identification of a
second-order critical point distinguished from a steep crossover and from a weak first-order phase
transition.

In this article we will discuss the idea of the PNJL model and its setup with model parameters
and look into a typical phase diagram from the PNJL model.

2. Polyakov Loop and Physical Degrees of Freedom

It is quite nontrivial that the PNJL model can reproduce full QCD thermodynamics aroundTc

because the Polyakov loop is expressed in terms of longitudinalA4 (temporal component of the
gauge field) and the thermally excited gluons are transverseAi . In fact the Polyakov loop is so
influential to colored objects that it can control the thermal excitation of transverse gluons as well
as quarks. In what follow let us discuss the Polyakov loop coupling with quarks and transverse
gluons, respectively.

2.1 Quarks

If we assume any interaction effect to be incorporated into the mean-fields (i.e. quasi-particle
approximation), the grand-canonical partition function for quasi-quarks is

Zquark= ∏
i,p

[
1+e−(Ei(p)−µq)/T][

1+e−(Ei(p)+µq)/T]
, (2.1)

wherei runs over 3 colors, 2∼ 3 flavors, and 2 spin states. Instead ofµB a quark chemical potential
µq = µB/3 is used above. We did not consider the Polyakov loop coupling yet. The Polyakov
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loop, L, is a 3×3 matrix in color space associated with thermal quarks, which represents a color-
screening phase factor in gluonic matter. Therefore, the covariant coupling with theA4 field leads
to a coupling ofL andL† with the thermal Boltzmann factor as

Zquark = ∏
i,p

det
[
1+Le−(Ei(p)−µq)/T][

1+L†e−(Ei(p)+µq)/T]
= ∏

i,p

[
1+3`e−(Ei−µq)/T +3 ¯̀e−2(Ei−µq)/T +e−3(Ei−µq)/T]

×
[
1+3 ¯̀e−(Ei+µq)/T +3`e−2(Ei+µq)/T +e−3(Ei+µq)/T]

. (2.2)

Here we note that̀ denotes the traced Polyakov loop` = 1
3trL and ¯̀the anti-Polyakov loop̄̀ =

1
3trL†. At zero baryon densitỳ̄ is just identical with̀ , but once a finite density is turned on,¯̀> `

for positiveµq (or µB) because an antiquark is more efficiently screened in a medium with quarks.
Each term has a clear physical meaning in eq. (2.2); in the angle brackets the first term without the
Boltzmann factor represents no particle excitation, the second term proportional toe−(Ei−µq)/T a
single particle excitation , the third term proportional toe−2(Ei−µq)/T a double particle or a diquark-
like excitation in the color antitriplet channel, and the last term a colorless baryon-like excitation.

Just for demonstrating how the Polyakov loop coupling controls thermal excitations we shall
compute the quark pressurepquark = TV−1 lnZquark from the partition function (2.2) in which
the quark mass and chemical potential are set to be zero so that the pressure is simply propor-
tional to T4. Then, in the free-quark limit (i.e.̀ = ¯̀= 1), the Stefan-Boltzmann law reads
pfree = (63π2/180)T4 for massless three flavors. We measure the quark pressure in the unit of
the Stefan-Boltzmann value;ν = pquark/pfree, which actually counts the relevant degrees of free-
dom. We plotν as a function of̀ in the simple case withmq = µq = 0 as is presented in the left
of fig. 1. It is apparent that the pressure contribution is nonzero but nearly vanishing at` = 0 and
is almost linearly increasing as̀becomes larger. If we recall that the Polyakov loop is an order
parameter for quark deconfinement, we can naturally understand this; no pressure from quarks in
the confined phase at` = 0 and the free-quark limit is reached in the deconfined phase at` = 1. It
should be mentioned here that the colorless baryon-like term in eq. (2.2) remains even at̀= 0 but
its contribution to the pressure is suppressed by a factor 1/34 = 0.012 as compared to the free-quark
excitation.

2.2 Transverse gluons

From the theoretical argument based on global (center) symmetry in the pure gluonic sector
the traced Polyakov loop in the color fundamental representation serves as an order parameter for
quark deconfinement but not forgluon deconfinement. Because gluons can screen other gluons,
a long-range confining force between gluons is saturated by string breaking due to two glueball
excitations even when color charge is strictly confined. Thus, it is not cleara priori whether̀ can
be useful to parametrize the pressure stemming from transverse gluons.

In the same manner as in the previous case of quarks we can consider the grand-canonical
partition function for quasi-gluons, that is,

Zgluon = ∏
i,p

det
[
1−Ladje

−p/T]
, (2.3)
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Figure 1: Pressure contributions from quasi-quarks (left) and quasi-gluons (right) as a function of the traced
Polyakov loop̀ in the color fundamental representation.

wherei runs over 8 colors and 2 transverse polarizations. Here we introducedLadj to denote an
8×8 Polyakov loop matrix in the color adjoint representation. In the Stefan-Boltzmann limit with
Ladj = 1, the pressure ispfree= (16π2/90)T4. Again, the gluon pressure is calculated from eq. (2.3)
in the unit of the Stefan-Boltzmann value and the numerical result is shown in the right of fig.1.
The pressure dependence on` is not linear this time but almost quadratic reflecting the fact that the
adjoint Polyakov loop is expressed as{Ladj}ab = 2tr[taLtbL†] in terms of the fundamental one.

It might be appropriate here to explain some more details on the evaluation of the transverse
pressure. Unlike the quark contribution (2.2) we cannot rewrite the gluon pressure (2.3) only in
terms of` and ¯̀. It requires us, therefore, to adopt an elaborated procedure for the mean-field ap-
proximation [5, 7, 18, 19, 20, 21]. Then, a mean-field weight factor is introduced ase−Smf = ∏extrL,
so that the expectation value of the fundamental Polyakov loop,`(x) =

∫
dL 1

3trLextrL/
∫

dLextrL

takes a nonzero value proportional to a mean-field variablex (that is;x is a source conjugate tò).
In the same way the gluon pressure is numerically calculated as a function ofx, from which we can
eliminate thex-dependence using̀= `(x).

It is surprising that a Polyakov loop value as large as 0.8 yields a transverse pressure less
than 0.6 times the Stefan-Boltzmann value. The right of fig.1 manifests the importance of the
Polyakov loop even in the deconfined region where` is substantially large but do not yet reach
unity. In this region the screening effect by the Polyakov loop overwhelmingly governs the degrees
of freedom allowed in the system, which would cause nonperturbative deviations from the Stefan-
Boltzmann limit however weakly the matter interacts itself. Such a highly nontrivial state of matter
is sometimes referred to as a semi-quark-gluon plasma (semi-QGP) [22].

3. Thermodynamics in Pure Gluodynamics

So far we have seen that the Polyakov loop can control the thermal excitation even for trans-
verse gluons which couple with the adjoint Polyakov loop which is always nonzero due to color
screening by other gluons. It should be acceptable to parametrize the physical pressure only in
terms of`, which can be justified by the observation in the right of fig.1 that ` is practically an
order parameter for gluon deconfinement as well.
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Figure 2: Comparison between the quenched lattice data (green thick curves) and the results from the
potential ansatz (red thin curves). The left shows the Polyakov loop and the right shows the thermodynamic
quantities.

Therefore, we may well assume that the pressure in pure gluodynamics is a function of` with
coefficients depending onT. A frequently used ansatz [23] is

V(`) = −1
2

a(T)` ¯̀+b(T) ln
[
1−6` ¯̀+4(`3 + ¯̀3)−3(` ¯̀)2] , (3.1)

wherea(T)/T4 = (3.51−2.47t−1 +15.2t−2) andb(T)/T4 = −1.75t−3 with t = T/Tc. There are
three independent parameters in this ansatz because of a constraint thatV(` = 1) should obey the
Stefan-Boltzmann law. This form (3.1) is very similar to another ansatz with two parametersα and
β motivated by the strong coupling analysis;a(T)/T = 54βe−α/T andb(T)/T = β , whereβ has
mass dimension 3 whose scale comes from the UV cutoff [11, 17]. In the vicinity of Tc in any case
both parametrizations end up with approximately same thermodynamics.

From the stationary conditiondV/d` = 0 the Polyakov loop expectation value is extracted
from eq. (3.1), which is compared with the lattice date taken from Ref. [24] as presented in the
left of fig. 2. Because of renormalization effect the Polyakov loop in the lattice simulation ex-
ceeds unity, whilè never gets greater than unity. This is why the agreement looks worse at high
temperature. We see, in contrast, that the fitting works nicely and the potential reproduces the ther-
modynamic quantities such as the pressurep, the entropy densitys, and the internal energy density
ε well. For the sake of comparison we plot the output from eq. (3.1) and the the lattice data taken
from Ref. [25]. Now we have finished fixing the pure gluonic sector.

4. Thermodynamics with Dynamical Quarks

The quark sector is described by the NJL model which has three parameters, namely, the
current quark massmu = md, the four-fermion coupling constantgs, and the UV cutoffΛ for the
two-flavor case, and two more parameters, namely, the strange quark massms and the ’t Hooft
interaction strengthgd for the three-flavor case. The model parameters are fixed by the hadron
properties;mπ , fπ , and〈q̄q〉 for two-flavor matter, andmK andmη ′ in addition for three-flavor
matter.
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Figure 3: Entropy density (left) and baryon number density (right) normalized by the Stefan-Boltzmann
limit values as functions ofT andµB obtained in the three-flavor PNJL model.

The NJL model with the Polyakov loop coupling in eq. (2.2) and the potential in eq. (3.1) gives
full thermodynamics in the plane spanned byT andµB. We plot some of thermodynamic quantities
in fig. 3. The left shows the entropy density that iss= −∂Ω/∂T and the right shows the baryon
number density that isnB = −∂Ω/∂ µB. The reason why we chose them is thats andnB should
be suitable for detecting a change of the state of matter asT andµB increases, respectively [26].
One can see thats is an increasing function ofT whose dependence onµB is mild, whilenB jumps
drastically with increasingµB. One possible interpretation is thats carries information on the
deconfinement andnB is an effective order parameter for the realization of so-calledquarkyonic
matter [27, 28, 29].

5. Phase Diagram

The PNJL model is capable of dealing with` and〈q̄q〉 both asT andµB change, from which the
phase diagram is deduced. The phase diagram in the context of the PNJL model was first depicted
in Ref. [23], and in Ref. [14] it was clearly recognized that the deconfinement line characterized
by the Polyakov loop (susceptibility) becomes distinct from the chiral transition line characterized
by the chiral condensate (or susceptibility). The model has been extended to the three-flavor case
later on [30, 31, 17]. In the presence of the Polyakov loop background it is not easy to take account
of the diquark condensate. In Refs. [23, 32, 33] the diquark condensate has been considered in a
gauge dependent treatment, but as pointed out in Ref. [32] such a treatment breaks color neutrality
even in normal quark matter, which is unphysical artifact. A remedy is formulated in Ref. [21], but
for technical reasons its application to the color superconducting phase has not been done yet.

So far, in view of existing works on the phase diagram using the PNJL model [23, 14, 30, 31,
17] the robust prediction is that two separate phase boundaries appear on the phase diagram. A
typical example is shown in fig.4.

This phase diagram is topologically the same as suggested by the largeNc argument [27, 28,
29]. In the region surrounded by two phase boundaries (which have finite width in fig.4 because
they are both crossovers) the color degrees of freedom is confined because of` ' 0 and chiral
symmetry is restored and the Fermi sphere is filled by light quarks. Intuitive understanding on this
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Figure 4: Typical phase diagram inferred from the PNJL model. The red band indicates a region in which`

takes a value from 0.4 to 0.6 and the blue band a region in which〈q̄q〉 from 0.4 to 0.6. A circle locates the
critical point below which the chiral phase transition is of first order and the blue band has no width.

peculiar state is as follows; the degenerated Fermi matter consists of light quarks and any excitation
on top of the Fermi surface should be colorless like mesons and baryons.

The chiral critical point is indicated by a circle on fig.4. The location or even existence of
this point is easily changed by many factors, however. The lattice QCD simulation results in a
significant drop in the topological susceptibility atTc, which suggests strong suppression of the
topological excitation aboveTc, and thus a reduction of the ’t Hooft interaction which is propor-
tional to the instanton density. The effect of U(1)A restoration on the location of the critical point
has been investigated in Refs. [30, 17] by means of the PNJL model and it has been found that only
35% reduction of the ’t Hooft coupling constant is enough to wash the critical point away from the
phase diagram. Also, at finite density, a renormalization of the chemical potential by the vector-
vector interaction is expected, as considered already in the earliest work [15]. The effect of the
vector interaction has been discussed in the context of the QCD phase diagram [14, 34, 17, 35, 36].
A vector-vector coupling constant as small as only 10∼ 20% of the four-fermion coupling constant
in the scalar channel is enough to make the critical point disappear from the phase diagram. Of
course we cannot say that the chiral critical point does not exist from these analysis, but we should
keep in mind that locating the critical point suffers from delicate subtleties. In the lattice simulation
in the staggered fermion the U(1)A anomaly might not be fully recovered and so, even without the
sign problem, a reliable determination of the critical point location is challenging. We could learn
this lesson from the model analysis, and, though the model does not give us a final theory answer,
the model is very useful as long as one treats the results with due respect.

Finally let us take a quick look at the isentropic trajectories [37, 38]. The advantage of the
PNJL model is, as stated before, that it can describe not a part of but full thermodynamics. There-
fore, the isentropic trajectories defined by a line on which the entropy to baryon number ratios/nB

is constant should be approximated better than any other chiral models [39, 40]. It is notable that
in any model studies [37, 38, 39, 40] no special behavior around the critical point has been found.

8



Phase diagram from PNJL models Kenji Fukushima

290

250

210

170

130

90

50

10
 0  100  200  300  400  500

T
em

pe
ra

tu
re

 [
M

eV
]

Quark Chemical Potential [MeV]

s/nB=2

s/nB=5

s/nB=10

s/nB=20
s/nB=30s/nB=40

s/nB=3.5
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Figure5 shows an example taken from Ref. [38] in which the three-flavor PNJL model is employed.
There are two reasons for this; one is that the critical region associated with the chiral critical point
is not wide on theµB-T plane, probably around 10 MeV or so in bothT andµB. The other is that
the critical part in the free energy does not diverge and thuss/nB is never singular at the critical
point. It is most unlikely that a focusing effect eases to pinpoint the chiral critical point in collider
experiments. We should not take the mode results like figs.4 and5 too seriously, and nevertheless,
the model results come to us with an impression that we must rely on tremendous luck to settle the
critical point business down in real experiments.
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