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1. Third Moments of Conserved Charges

Quantum chromodynamics (QCD) is believed to have a rich phase structure in the temperature
(T) and baryon chemical potential (µB) plane. Lattice QCD calculations indicate that the chiral and
deconfinement phase transitions are a smooth crossover on the temperature axis [1], while various
models predict that the phase transition becomes of first order at high density [2]. The existence
of the QCD critical point is thus expected. To map these components of the phase diagram on
theT-µB plane is one of the most challenging and stimulating subjects which may be achieved by
relativistic heavy ion collisions.

Various observables have been proposed for this purpose [3, 4, 5, 6]. Most scenarios suggested
so far are concerned with fluctuations, such as those of conserved charges, momentum distributions,
slope parameters, and so forth. For example, fluctuations of conserved charges behave differently
between the hadronic and quark-gluon plasma phases, and may be used as an indicator of the real-
ization of the phase transition [4, 5]. The singularity at the critical point, at which the transition is
of second order, may also cause enhancements of fluctuations if fireballs created by heavy ion col-
lisions pass near the critical point during the time evolution [3, 6]. Because of finite size effects and
critical slowing down, however, such singularities are blurred and its experimental conformation
may not be possible [8, 9]. In fact, so far no clear evidence for the critical point has been de-
tected in event-by-event analyses. Approaches to use higher order moments for this purpose have
been also suggested recently [7] and experimental attempts to measure those higher order moments
were reported. Almost all previous studies, however, focus on theabsolute value, especially the
enhancement, of each observable around the phase boundary.

Here we propose to employsigns of third moments of conserved charges around the averages,
which we call, for simplicity, the third moments in the following, to infer the states created by
heavy ion collisions. In particular, we consider third moments of conserved quantities, the net
baryon and electric charge numbers, and the energy,

m3(ccc)≡ 〈(δNc)3〉
VT2 , m3(EEE)≡ 〈(δE)3〉

VT5 , (1.1)

whereNc with c = B,Q represent the net baryon and electric charge numbers in a subvolumeV,
respectively,E denotes the total energy inV, δNc = Nc−〈Nc〉, andδE = E−〈E〉. We also make
use of the mixed moments defined as follows:

m3(ccE)≡ 〈(δNc)2δE〉
VT3 , m3(cEE)≡ 〈δNc(δE)2〉

VT4 . (1.2)

To understand the behaviors of these moments around the QCD phase boundary, we first notice
that the moments Eqs. (1.1) and (1.2) are related to third derivatives of the thermodynamic potential
per unit volume,ω, with respect to the corresponding chemical potentials andT. The simplest
example ism3(BBB), which is given by

m3(BBB) =−∂ 3ω
∂ µ3

B

=
∂ χB

∂ µB
, (1.3)

where the baryon number susceptibility,χB, is defined as

χB =−∂ 2ω
∂ µ2

B

=
〈(δNB)2〉

VT
. (1.4)
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The baryon number susceptibilityχB diverges at the critical point and has a peak structure around
there [3, 10]. Sincem3(BBB) is given by theµB derivative ofχB as in Eq. (1.3), the existence of
the peak inχB means thatm3(BBB) changes its sign there. Although the precise size and shape
of the critical region are not known, various models predict that the peak structure ofχB well
survives far along the crossover line [2, 10, 11] (See, Fig.1 as a demonstration of this feature in a
simple effective model; the details will be explained later). This means that the near (hadron) and
far (quark-gluon) sides of the QCD phase boundary can be distinguished by the sign ofm3(BBB)
over a rather wide range around the critical point. It is this feature that third moments carry more
information than fluctuations (second moments); fluctuations are, by definition, positive definite
and cannot differentiate the near side from the far side as decisively as the third moments. We note
that odd power moments around the averages in general do not vanish except the first order one.
As we shall see later, all third moments presented in Eqs. (1.1) and (1.2) are related to derivatives
of corresponding susceptibility which diverges at the QCD critical point, and hence change their
signs there.

Once the negativeness of third moments is established experimentally, it is direct evidence of
two facts: (1) the existence of a peak structure of corresponding susceptibility in the phase diagram
of QCD, and (2) the realization of hot matter beyond the peak, i.e. the quark-gluon plasma, in
heavy ion collisions. We emphasize that this statement using thesignsof third moments is free
from any theoretical ambiguities. The experimental measurements of signs of moments also have
an advantage compared to their absolute values: it is usually essential to normalize experimentally
obtained values by observables proportional to the volume in order to extract physically meaningful
quantities [4, 5]. In the measurement of signs, however, normalization is not necessary. It is this
feature that our proposal is less subject to experimental and theoretical ambiguities and more robust
than previously proposed ones.

Let us now consider the behavior of third moments other thanm3(BBB) around the critical
point. First, the third moment of the net electric chargem3(QQQ) is calculated to be

m3(QQQ) =−1
8

∂ 3ω
∂ µ3

B

− 3
8

∂ 3ω
∂ µ2

BµI
− 3

8
∂ 3ω

∂ µBµ2
I

− 1
8

∂ 3ω
∂ µ3

I

, (1.5)

where µQ represents the chemical potential associated withNQ, i.e. ∂/∂ µQ = (2/3)∂/∂ µu−
(1/3)∂/∂ µd = (∂/∂ µB + ∂/∂ µI)/2, and the isospin chemical potential is defined asµI = (µu−
µd)/2 with µu,d being the chemical potentials of the up and down quarks, respectively. In relativis-
tic heavy ion collisions, the effect of isospin symmetry breaking is small. Assuming the isospin
symmetry, the second and last terms in Eq. (1.5) vanish and one obtains

m3(QQQ) =
1
8

∂
∂ µB

(χB +3χI) , (1.6)

with the isospin susceptibilityχI =−∂ 2ω/∂ µ2
I . Under the isospin symmetry,χI does not diverge

at the critical point because the critical fluctuation does not couple to the isospin density [6]. The
critical behavior of the term in the parenthesis in Eq. (1.6) in the vicinity of the critical point is
thus solely governed byχB. Sincem3(QQQ) is a µB derivative of this term, a similar behavior as
m3(BBB) is expected.
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Figure 1: T andµB dependence of the baryon number susceptibilityχB multiplied byT in the Nambu-Jona-
Lasinio model. The bold line on the bottom surface shows the first order phase transition line and the point
at the end is the critical point.

Next, it can be shown that mixed moments including a single E are concisely given by

m3(ccE) =
1
T

∂ (Tχc)
∂T

∣∣∣∣
µ̂
, (1.7)

with c = B, Q, whereχQ ≡−∂ 2ω/∂ µ2
Q = (χB + χI)/4 is the electric charge susceptibility. TheT

derivative in Eq. (1.7) is taken along the radial direction from the origin with fixedµ̂ ≡ µB/T, i.e.
∂/∂T|µ̂ = ∂/∂T|µB +(µB/T)∂/∂ µB|T . SinceTχc diverges at the critical point, Eq. (1.7) again
leads to a similar behavior ofm3(ccE) as the above-mentioned moments.

To argue the behaviors of remaining third moments including two or three E’s, it is convenient
to first defineCµ̂ =−T(∂ 2ω/∂T2)µ̂ = 〈(δE)2〉/VT2. The third moments are then given by

m3(EEE) =
1

T3

∂ (T2Cµ̂)
∂T

∣∣∣∣∣
µ̂

, m3(BEE) = 2m3(QEE) =
1
T

∂Cµ̂

∂ µB
. (1.8)

SinceCµ̂ is the second derivative ofω along the radial direction, it diverges at the critical point
which belongs to the same universality class as that of the 3D Ising model. Therefore,m3(EEE),
m3(BEE), andm3(QEE), all change their signs at the critical point.

While the above arguments, based on the divergence of second derivative ofω, guarantee the
appearance of the region with negative third moments in the vicinity of the critical point, they do
not tell us anything about the size of these regions in theT-µB plane. In fact, all third moments
considered here become positive at sufficiently highT andµB > 0 where the system approaches a
free quark and gluon system. The regions are thus limited more or less near the critical point.

The range ofµB/T where lattice simulations are successfully applied is limited to smallµB/T
with the present algorithms. In particular, thermodynamics around the critical point cannot be
analyzed with the Taylor expansion method. In order to evaluate the qualitative behavior of the third
moments in such a region, one has to resort to effective models of QCD. To make such an estimate,
here we employ the two-flavor Nambu-Jona-Lasinio model [12, 13] with the standard interaction
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Figure 2: Regions where third moments take negative values in theT-µB plane. The regions are inside the
boundaries given by the lines.

Lint = G{(ψ̄ψ)2 +(ψ̄ iγ5τiψ)2}, whereψ denotes the quark field. For the model parameters, we
take the values determined in Ref. [12]; G= 5.5 GeV−2, the current quark massm= 5.5 MeV, and
the three-momentum cutoffΛ = 631 MeV. For the isospin symmetric matter, this model gives a
first order phase transition at largeµB, as shown on the bottom surface of Fig.1 by the bold line.
The critical point is at(T,µB)≈ (48,980)MeV.

In Fig. 1, we also show theT andµB dependence ofTχB calculated in the mean-field approx-
imation. One observes thatχB diverges at the critical point, and the peak structure well survives
along the crossover line up to higher temperatures [10]. The region where each moment becomes
negative in theT-µB plane is shown in Fig.2. One sees that all the moments become negative on
the far side of the critical point as it should be, whereas the extent of the region depends on the
channel. The figure shows that areas withm3(BBB) < 0 andm3(BBE) < 0 extend to much lower
µB and much higherT than the critical point. This suggests that even if the critical point is located
at highµB the negative third moments can be observed by heavy ion collision experiments. The
figure also shows that the areas have considerable thicknesses along the radial direction. Since the
system stays near the phase transition line considerably long regardless of the order of the phase
transition, first order or crossover, once the state on the far side is created, negative third moments
are very likely to be formed and observed. The wide regions of negative moments also indicate that
they are hardly affected by critical slowing down during the dynamical evolution of fireballs.

Figure2also shows that areas with negativem3(EEE), m3(QEE) andm3(BEE) are much larger
than those of the other moments in theT-µB plane; although not shown in the figure, these areas
extend even to theT-axis. The behaviors ofm3(EEE) andm3(cEE) near theT-axis can be checked
directly by the lattice simulations. If the range ofT satisfyingm3(EEE) < 0 is sufficiently wide
at µB = 0, it is possible that the negative third moments are measured even at the RHIC and LHC
energies. Whether the negative moments survive or not in this case depends on the diffusion time of
the energy density, in other words the heat conductivity. One can thus use the signs ofm3(EEE) and
m3(cEE) to estimate the diffusion time of the charges and energy. The third momentsm3(QQQ)
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andm3(QQE), on the other hand, become negative only in a small region near the critical point.
These behaviors come from the large contribution ofχI in Eq. (1.6).

It should be, however, remembered that the results in Figs.1 and2, are obtained in an effective
model. In particular, the model employed here gives the critical point at relatively lowT and high
µB [14]. If the critical point is at much lowerµB, the areas with negative moments in Fig.2 should
also move toward lowerµB and higherT.

Here we have pointed out that the third moments of conserved charges, the net baryon and
electric charge numbers and the energy, carry more information on the state around the QCD phase
boundary than usual fluctuation observables. They change signs at the phase boundary correspond-
ing to the existence of the peaks of susceptibilities. If the negative third moments grow at early
stage of the time evolution of fireball created in the collisions and if the diffusion of charges is slow
enough, then the negative third moments will be measured experimentally through event-by-event
analyses. Once such signals are measured, they serve direct evidence that the peak structure of
corresponding susceptibility exists in the phase diagram of QCD, and that the matter on the far
side of the phase transition, i.e. the quark-gluon plasma is created. The combination of the third
moments of different channels, and their comparison with the numerical results in lattice QCD will
bring various information on the phase structure and initial states created in heavy ion collisions at
different energies.

2. Focussing Effect and Antiproton-to-proton Ratio

Ideas for experimental signatures for the presence of the critical point have mostly focused
on fluctuations in certain observables related to the order parameter of the chiral transition [3, 15].
Unfortunately, several reasons throw doubt on the usefulness of fluctuation observables as practical
signatures of the QCD critical point as explained in the previous section.

Here we propose a possible signature of the presence of a critical point in the QCD phase
diagram, which may be more robust than fluctuations associated with the order parameter of the
chiral phase transition. Our idea is based on the observation that the critical point serves as an
attractor of the hydrodynamical trajectories in theµB−T plane describing the expansion of the
hot matter [9]. We describe below how this focusing effect manifests itself in an experimental
observable.

The universality argument tells us that the critical exponents around second order phase tran-
sitions are determined only by the dimensionality and symmetry of the system. The QCD critical
point, if it exists, belongs to the same universality class as the 3-dimensional Ising model and
liquid-gas phase transition [15]. The singular part of the thermodynamic variables near the critical
point is a function of two variables, which can be mapped onto the variables characterizing the
phase diagram of the 3-dimensional Ising model: the reduced temperaturer = (T−Tc)/Tc and the
external magnetic fieldh. In the QCD phase diagram, the axis corresponding tor points in the di-
rection of the phase boundary; the direction of the axis associated with the variableh is not known
[8, 10]. However, it is clear that the critical region is more elongated along ther-direction, because
the critical exponent associated withr is larger than that associated withh [8].

The focusing effect can now be understood as follows. The entropy densitys and the baryon
densitynb depend in different ways onr and h. As a result, the ratios/nb, which is constant
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along an isentropic trajectory, assumes many different values in the vicinity of the critical point.
Therefore, hydrodynamic trajectories for a range of different values ofs/nb pass near the critical
point, thus causing the focusing effect.

The extent of the focusing region depends on the size of the critical region in theµB−T plane,
in which thermodynamic susceptibilities are significantly enhanced by the critical exponents. The
size of the attractive basin can, in principle, be determined by lattice QCD simulations. At the
moment this information is not available, as the location and even the existence of the critical point
in QCD are not established. Model studies in simplified theories suggest that the size of the attrac-
tive region is sensitive to calculational details [16]. Here we will simply assume that the critical
region is sufficiently large to induce a significant focusing effect. We use the model of Nonaka
and Asakawa [9] to describe the influence of the critical point on the thermodynamic variables.
In this model the entropy density is obtained by interpolation between the entropy densities of the
hadronic and quark phase. Here we differ from ref. [9] by choosing the parameters∆Tcrit = 20 MeV,
∆µcrit = 100 MeV, andD = 0.5.

The main characteristic of the fireball evolution in the presence of a critical point is that hy-
drodynamical trajectories, which would normally tilt to the right after crossing the phase boundary
(see solid line in Fig.3 for a smooth crossover or the dash-dotted line for a first order transition),
make a detour into the vicinity of the critical point and then turn to the left as the temperature falls
below Tc (see dashed line in Fig.3). For our argument, the important difference is the behavior
just belowTc, where bothT andµB decrease for the trajectory through the critical point, whileµB

stays roughly constant or increases with falling temperature for trajectories away from the critical
point. This difference can have visible consequences if hadron emission occurs over a finite range
of temperatures, and if emission from different points along the trajectory can be discriminated.
For instance, the ratioµB/T monotonically increases belowTc along the “normal” (solid or dash-
dotted) trajectories in Fig.3, implying a falling antiproton-to-proton (̄p/p) ratio. On the other hand,
the dashed trajectory in Fig.3 implies an approximately constant or even slightly decreasing value
of µB/T and thus a risinḡp/p ratio as the temperature falls belowTc.

In order to confirm this qualitative argument we present a quantitative analysis based on the
assumption that the attractive basin of the critical point is reached in central Pb+Pb collisions

at 40 GeV/A. In Fig. 4 we show thep̄/p ratio along the three trajectories shown in Fig.4
as a function of the entropy density betweenTc and the chemical freezeout point, which has been
determined to lie at(µch,Tch) ≈ (400,145) MeV by a statistical model fit to experimental data.
As anticipated, thēp/p ratio falls or remains constant between the phase boundary and chemical
freezeout for the “normal” trajectories (solid and dash-dotted lines), but rises for the trajectory
deformed by the presence of the critical point (dashed line).

We next discuss how baryon emission from different points along the hydrodynamical tra-
jectory may be distinguished. We first note that data from Au+Au collisions at RHIC have been
explained by the assumption that the emission of hadrons with intermediate transverse momentum
(pT ∼ 2−5 GeV/c) occurs at the phase boundary by recombination of constituent quarks [17, 18].
Bulk freezeout of hadrons, on the other hand, occurs when the mean free path of hadrons becomes
comparable to the size of the fireball. The mean free path relevant to transport properties generally
grows with increasing hadron momentum. This implies that hadrons with large transverse momen-
tum should freeze out earlier, on average, than hadrons with a small transverse momentum. In the
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Figure 3: Hydrodynamical trajectories in the QCD phase diagram with and without the presence of a critical
point. Possible trajectories in theµB−T plane in the absence of a critical point are shown as solid line (for
a crossover transition) or dash-dotted line (for a first order transition); the trajectory in the presence of a
critical point is shown as dashed line. All trajectories meet at the bulk chemical freezeout point. Arrows
indicate the direction of time evolution.
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Figure 4: Antiproton-to-proton ratio along the trajectories shown in Fig.3 as a function of the entropy
density. The curves start at the phase boundaryTc ≈ 160 MeV and continue down toT ≈ 110 MeV. The
location of the chemical freezeout point(µch,Tch) deduced from experimental data is indicated by the open
and solid squares. Note that thēp/p ratio only rises for the trajectory deformed by the critical point.

extreme, intermediatepT hadrons may be produced at or near the phase boundary. This effect can
also be understood by invoking detailed balance. A highly energetic hadron, impinging onto the
fireball from the outside, would penetrate deeper into the matter than a low-energy hadron. Con-
versely, energetic hadrons will be emitted, on average from deeper inside the matter and thus earlier
than low-energy hadrons.

The differential emission of baryons as a function of transverse momentum can be analyzed
quantitatively in the framework of a microscopic hadron transport model, e.g. UrQMD [19, 20].
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Figure 5: Top: UrQMD predictions for the emission time (last interaction time) distribution of protons and
antiprotons in central Au+Au collisions at 40 GeV/A. The emission time distributions are shown separately
for the kinematic windowsβT < 0.25and0.5< βT < 0.75. Fast particles are emitted on average significantly
earlier than slow particles. Bottom:̄p/p ratio as a function of transverse velocityβT.

The bottom frame of Fig.5 confirms the expectation from the solid line in Fig.4, that thep̄/p ratio
should rise as a function ofβT in the absence of a critical point. Because the UrQMD calculation
does not include finite-density corrections to thep+ p̄ annihilation cross section, the overall value
of the ratio should not be compared with experiment. We also note that UrQMD does not contain
any physics related to the QCD phase transition and only serves here as a model to study the
correlation between emission time and transverse velocity. We expect the observed correlation
to persist in the presence of a critical point. The fall in thep̄/p ratio for βT > 0.8 is due to
kinematical constraints on thēp production and independent of collision size and energy. Since
only a very small fraction of the baryon yield resides in theβT > 0.75 range we have selected the
0.5 < βT < 0.75 range as representative for highβT and early freezeout nucleons.

In this section, we have shown that the evolution of thep̄/p ratio along isentropic curves be-
tween the phase boundary in the QCD phase diagram and the chemical freezeout point is strongly
dependent on the presence or absence of a critical point. When a critical point exists, the isentropic
trajectory approximately corresponding to hydrodynamical expansion is deformed, and thep̄/p ra-
tio grows during the approach to chemical freezeout. If nucleons of high transverse momentum are
chemically frozen out earlier than the slow nucleons, as it is suggested by microscopic simulations
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of hadronic dynamics, this result will translate into ap̄/p ratio that falls with increasing transverse
momentum instead of a rise or flat behavior in scenarios without critical point. This behavior would
only occur at those beam energies, for which the fireball reaches the critical point. Depending on
the actual size of the attractive region around the critical point, the search for an anomaly in the
yT dependence of thēp/p ratio may require small beam energy steps. Note that the location of
the critical point in our model study was chosen such that it is encountered by the hydrodynamical
trajectory for conditions reached for a beam energy of 40 GeV/A and a fixed-target. For a different
location of the critical point, similar behavior would occur at other beam energies.
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