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Motivated by the fact that QCD critical point (CP) belongs tothe same universality class as the

liquid-gas transition, the dynamical density fluctuationsaround the CP is analyzed using relativis-

tic fluid dynamics for a viscous fluid. It is shown that relativistic effects on the dynamical structure
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ation which is enhanced by the relativistic effects are attenuated, whereas the entropy fluctuation
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1. Introduction

An interesting feature of the QCD phase diagram is the existence of a critical point[1, 2];
see Refs. [3, 4, 5] for possible variants and alternatives. At the QCD critical point (CP), the first
order phase transition terminates and turns to a second order phase transition. It is now known
that the QCD CP belongs to the universality class H in the classification scheme by Hohengerg-
Halperin[6], i.e., the same as that of the liquid-gas phase transition point[7, 8]. This implies that
the density fluctuating mode and, generically, fluid dynamicmodes coupled to conserved quantities
are the softening modes at the CP.

Theσ mode that is coupled to the fluctuation of the chiral order parameter〈q̄q)〉 becomes the
soft mode of the chiral transition at finite temperatureT but vanishing chemical potentialµ = 0.
The QCD CP exists, however, at finite chemical potentialµ and for finite current quark masses. In
such a case, as is first shown in [9], the scalar-vector cross term 〈: (q̄γ0q)(q̄q) :〉 does not vanish,
and, hence, the scalar mode is coupled with the density-density correlator 〈: (q̄γ0q)2 :〉; this is
because charge conjugation symmetry is violated with finiteµ , and the left- and right-handed
quarks are coupled owing to the breaking of chiral symmetry.1 Then, the would-be soft mode, the
σ mode, remains massive (a fast mode) and becomes a slaving mode of the genuine soft mode
given by the fluid dynamical modes coupled to the density fluctuation[7, 8]. Here we note that the
diverging behavior of the density fluctuation around the QCDCP was first shown in [10]; see also
[11].

Recently, it has been argued [12] on the basis of the analysisof the liquid-gas phase transition
by Onuki[13] that the bulk viscosity may show a singular behavior around the QCD CP.

We explore how the singularities of the thermodynamic quantities as well as the transport
coefficients affect the dynamical density fluctuations around the QCD CP thereby we can have a
hint how to identify the signal of the existence of QCD CP by experiment[14]. Our investigation
is based on an explicit use of therelativistic fluid dynamic equations for a viscous fluid. We also
demonstrate that even the so called first-order relativistic fluid dynamic equations have generically
no problem to describe fluid dynamical phenomena with long wave lengths contrary to a possible
naive suspect.

We find that the mechanical density fluctuation which is enhanced by the relativistic effects
are attenuated, but the entropy fluctuation in turn becomes more prominent around the QCD CP,
which is, to our surprise, precisely the same in effect as thecritical behavior in the nonrelativistic
case.[15] On the basis of these findings, we speculate that ifa Mach cone, which originates from
the dynamical density fluctuations stimulated by a fast particle and seems to have been observed
in RHIC experiment[16], disappears or is strongly suppressed as the incident energy of relativistic
heavy-ion collisions is lowered, it can be a signal of the existence of the QCD CP provided that the
incident energy is still high enough to make jets[17].

1It is also notable that the density-density correlator is a part of the polarization tensor〈: (q̄γµq)(q̄γνq) :〉, which
suggests that the vector couplinggV (q̄γµ q)2 plays an important role for the static and dynamic properties of the QCD
CP.[9]
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2. Dissipative Relativistic Fluid Dynamics

Relativistic fluid dynamic equations consist of the balanceequations for energy-momentum
and particle number,∂µTµν = 0 and∂µNµ = 0 whereTµν is the energy-momentum tensor andNµ

the particle current:

Tµν = (ε +P)uµuν −Pgµν + τ µν, Nµ = nuµ + νµ . (2.1)

Hereε is the energy density,P the pressure,uµ the flow velocity, andn the particle density; the
dissipative part of the energy-momentum tensor and the particle current are denoted byτ µν and
νµ , respectively.

The so called first-order equations such as Landau[18] and Eckart[19] ones are parabolic and
formally violates the causality, and, hence, are called acausal. Moreover, the Eckart equation which
is defined for the particle frame where the particle current does not have a dissipative part (νµ = 0)
shows a pathological property that the fluctuations around the thermal equilibrium is unstable[20].
The causality problem is circumvented in the Israel-Stewart equation[21], which is a second-order
equation with relaxation times incorporated.

One should, however, notice that formally acausal fluid dynamic equations should be valid in
describing fluid dynamical phenomena with longer wavelengths than the mean free path. In fact,
we will see that the results for fluid dynamical modes with long wave lengths are qualitatively the
same irrespective whether the second-order or first-order equations are used.

As for the instability seen in the Eckart equation, a new first-order equation in the particle
frame constructed by Tsumura, Kunihiro and Ohnishi (TKO) [22] has no such a pathological
behavior[23]. We employ Landau[18], Eckart[19] and Israel-Stewart(I-S)[21] equation as typical
equations, and TKO equation in particle frame.

3. Dynamic structure factor of density fluctuations

In this section, we first present a procedure for deriving thedynamical structure factor (spec-
tral function) of the density fluctuation for the Landau equation. Then we just give the results
for Eckart, Tsumura-Kunihiro-Ohnishi(TKO) equation and the Israel-Stewart equation in particle
frame.

3.1 Landau equation (energy frame)

The dissipative terms in the Landau equation are given by

τ µν = η [∂ µ
⊥uν + ∂ ν

⊥uµ − 2
3

∆µν(∂⊥·u)]+ζ∆µν(∂⊥·u), νµ = κ
(

nT
w

)2

∂ µ
⊥

(

µ
T

)

, (3.1)

whereη is the shear viscosity,ζ the bulk viscosity,κ the thermal conductivity andw = ε + P
the enthalpy density.∆µν = gµν − uµuν is the projection operator on the space-like vector, and
∂ µ
⊥ = ∆µν∂ν the space-like derivative (gradient operator).

We calculate the dynamical structure factor, or the spectral function, of the density fluctuation
around the thermal equilibrium state, as was done for the non-relativistic case[24, 25]; we refer to
the comprehensive text book Ref. [25].
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Let us express the dynamical quantities as follows,n(x) = n0 + δn(x), ε(x) = ε0 + δε(x),
P(x) = P0 + δP(x), µ(x) = µ0 + δ µ(x), anduµ(x) = uµ

0 + δuµ(x), where the variables with the
subscript0 denote those in the equilibrium state in at rest;uµ

0 = (1,0). Then,δuµ(x) = (0,δv(x))
with δv(x) yet to be determined together with other quantities likeδn etc. Now we have five equa-
tions for seven unknown quantities,δn, δT, δP, δs, andδv. Choosingδn andδT as independent
variables, we haveδP(x) = w0c2

s
n0γ δn(x)+ w0c2

sαP
γ δT(x) andδs(x) = −w0c2

sαP

n2
0γ δn(x)+ c̃n

T0
δT(x). Here

c̃n = T0(∂s/∂T)n andc̃P = T0(∂s/∂T)P are the specific heats at constant density and pressure, re-
spectively,cs = (∂P/∂ε)

1/2
s the sound velocity,αP = −(1/n0)(∂n/∂T)P the thermal expansivity

at constant pressure, andγ = c̃P/c̃n the ratio of the specific heats. The equation describing the
density fluctuations is finally found to be

{ ∂
∂ t

−κ
T0c2

s

w0γ
∇2}δn+n0∇ ·δv+ κ

n0

w0
(1− c2

sαPT0

γ
)∇2δT = 0, (3.2)

w0
∂δv
∂ t

−η∇2δv− (ζ +
1
3

η)∇(∇ ·δv)+
w0c2

s

n0γ
∇δn+

w0c2
sαP

γ
∇δT = 0, (3.3)

{−w0c2
sαP

n0γ
∂
∂ t

+ κ
c2

s

n0γ
∇2}δn+{n0c̃n

T0

∂
∂ t

+ κ(
c2

sαP

γ
− 1

T0
)∇2}δT = 0. (3.4)

Now we are interested in the dynamical structure factor of the density fluctuation as given by

Snn(k,ω) ≡ 〈δ ñ(k,ω)δn(k, t = 0)〉, (3.5)

whereδ ñ(k,ω) is the Fourier transform of the density fluctuation, and〈 〉 denotes the thermal
average in the equilibrium.

Note thatδT andδn are statistically independent in fluid systems which is established in Ein-
stein fluctuation theory[25];〈δT(k,0)δn(k,0)〉 = 0, and similarly,〈δv‖(k,0)δn(k,0)〉 = 0, where
δv‖(k,0) denotes the longitudinal component of the velocity field. Thus we have the dynamical
structure factor

Snn(k,ω)

〈(δn(k, t = 0))2〉 = (1− 1
γ
)

2ΓRk2

ω2 + Γ2
Rk4

+
1
γ
{ ΓBk2

(ω −csk)2 + Γ2
Bk4

+
ΓBk2

(ω +csk)2 + Γ2
Bk4

}. (3.6)

Here,ΓR = κ/(n0c̃P) andΓB = 1
2[χ(γ − 1)+ νl ] +1

2c2
sT0(

κ
w0

− 2χαP) with νl = (ζ + 4η/3)/w0

being the (relativistic) longitudinal kinetic viscosity; noticew0 in the denominator. We also remark
that the widthΓR is identified with the thermal diffusivityχ .

We see that the spectral function has three peaks at frequenciesω = 0 andω =±csk: The peak
at ω = 0 corresponds to thermally induced density fluctuations, which is called Rayleigh peak;
while the two-side peaks atω = ±csk correspond to mechanically induced density fluctuation, i.e.
sound waves. These two peaks are called Brillioun peaks.

We find that relativistic effects manifest themselves only in the width of the Brillouin peaks
ΓB, whereas the width of the Rayleigh peak is the same as the non-relativistic case[24, 25]. The
relativistic effects inΓB appear in two ways, as seen by the expression,

ΓB = ΓMR
B + δΓLa

B (3.7)

whereΓMR
B ≡ 1

2[χ(γ −1)+ νl ] andδΓLa
B ≡ 1

2c2
sT0(κ/w0−2χαP). Firstly, the first term has a non-

relativistic counter part only with a replacement of the enthalpy densityw0 with the mass densityρ0
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Figure 1: Left panel: The solid line is the spectral function for the density fluctuations from Landau/Israel-
Stewart equation withk = 0.1[1/fm], µ0 = 200[MeV], T0 = 200[MeV], η/(n0s0) = ζ/(n0s0) = 0.3 and
κT0/(n0s0) = 0.6; the dashed line in the minimal relativistic case. Right panel: the result from TKO equation
with the same parameters. Notice that the vertical scale is different from that of the left panel.

in νl . We call this modification the minimal relativistic (MR) effect. On the other hand, the second
termδΓLa

B is a genuine relativistic effect that is absent in the non-relativistic case; this comes from
the mass-energy equivalence inherent in the relativistic theory.

Figure 1 shows the spectral function Eq.(3.6) and the minimal relativistic case withδΓB = 0
for the parameter setk= 0.1[1/fm], µ0 = 200[MeV], T0 = 200[MeV], η/(n0s0) = ζ/(n0s0) = 0.3
andκT0/(n0s0) = 0.6. Note thatn0s0 represents the entropy density in the equilibrium state because
s0 is the entropy per particle number. As is expected, Fig.1 shows that the Brillouin peaks owing
to the sound mode is enhanced by the relativistic effects, while the Rayleigh peak owing to the
thermal mode is the same as in the non-relativistic case.

3.2 Stable first-order fluid dynamic equation in the particle frame

In the case of TKO equation[22] in the particle frame (νµ = 0), the dissipative terms are given
by

τ µν = η [∂ µ
⊥uν + ∂ ν

⊥uµ − 2
3

∆µν(∂⊥·u) ]−ζ
′
(3uµuν −∆µν)(∂⊥·u)+ κ(uµ∂ ν

⊥T +uν∂ µ
⊥), (3.8)

whereζ ′
= ζ/(3γ −4)2. From the same procedure as taken for the Landau equation, weobtain the

dynamical structure factor with the same form as (3.6) but with a different form of the width of the
Brillouin peaks[14];

ΓB =
1
2
[χ(γ −1)+ νTKO

l − αPc2
s

n0c̃P
(κT0+3ζ

′
)] ≡ ΓTKO

B . (3.9)

We emphasize that since the fluid dynamic fluctuations aroundthe equilibrium state is relaxing
in TKO equation, we have obtained the dynamical structure factor without any obstruction, in
contrast to the case of Eckart equation[19], for which we have found[14] that the unstable behavior
of the density fluctuation around the thermal equilibrium prevents us from obtaining the dynamical
structure factor in a sensible way.

5
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We see that the genuine relativistic effect in the width of the Brillouin peaks readsδΓTKO
B ≡

− αPc2
s

2n0c̃P
(κT0+3ζ ′

), which is definitely negative, implying that the relativistic effect acts to enhance
and sharpen the spectral function of the density fluctuationin comparison with the minimal rela-
tivistic case than in the energy frame; see the right panel inFig.1; notice that the scales of the right
and left panel are different.

3.3 Israel-Stewart equation

The derivation of the dynamical structure factor for the Israel-Stewart (I-S) equation[21] can
be performed much the same way as for the Landau equation withsome additional complications
due to the presence of the relaxation times. However, it is found that if the relaxation timeβ1 of
the heat current is so small as to satisfy the conditionβ1 < 1

w0
, the I-S equation in particle frame

takes over the pathological behavior of Eckart one even though the relaxation time is finite; i.e., the
density fluctuation will not relax down.

If we assume that the relaxation time is sufficiently large tosatisfy the inequalityβ1 > 1
w0

, then
we can have the spectral function,

Snn(k,ω)/〈(δn(k, t = 0))2〉 = (1− 1
γ
)

2χk2

ω2 + χ2k4 +
1
γ
[

ΓBk2

(ω −csk)2 + Γ2
Bk4

+
ΓBk2

(ω +csk)2 + Γ2
Bk4

]+O(k2)× [
2/β0ζ

ω2+1/(β0ζ )2

+
1/β2η

ω2+1/(2β2η)2 +
2w0/[(β1w0−1)κT0]

ω2 +w2
0/[(β1w0−1)κT0]2

]. (3.10)

Here,β0 andβ2 denote the relaxation times for the bulk viscosity and the shear viscosity, respec-
tively. Apparently the spectral function has six peaks including the conventional three peaks, but
the new three Lorentzian functions should vanish in the longwavelength limitk→ 0, because the
strength of these is in the second order ofk. Therefore Israel-Stewart equation gives completely the
same result for the dynamical structure factor for the density fluctuations in the long wavelength
limit as that Landau equation gives. That is, the relaxationtimes do not affect the result in the fluid
dynamical regime.

4. The behavior around the QCD critical point

We are now in a position to analyze the behavior of the spectral function of the density fluctu-
ations around the QCD critical point, on the basis of the dynamic as well as static scaling laws for
the liquid-gas transition [15, 13].

The specific heat at constant density ˜cn and the the isothermal compressibilityKT = 1
n0

( ∂n
∂P

)

T
diverge at the critical point as ˜cn = c0t−α̃ andKT = K0t−γ̃ , wheret = |(T −Tc)/Tc| is a reduced
temperature. The values of these critical exponents are known to beα̃ ∼ 0.11 andγ̃ ∼ 1.2, respec-
tively.

At the critical point, the correlation lengthξ diverges asξ = ξ0t−ν with ν ∼ 0.63. The bulk
viscosity may also show a singular behavior around the QCD CP, as shown in [13, 12];ζ = ζ0t−aζ

with ζ0 being a constant. The exponentaζ for the liquid-gas transition is predicted [13] to bezν− α̃

6
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with the dynamical critical exponentz; z∼ 3. Thus we haveaζ ∼ 1.8. The singular behavior of the
thermal conductivity around the critical point is given byaκ ; κ = κ0t−aκ with aκ ∼ 0.63 whereκ0

is a constant.
Now using these formulae, we can show[14] that the width of the Rayleigh peak behaves as

ΓR ∼ t γ̃−aκ , which tells us that the widthΓR becomes narrow as the QCD CP is approached. We
emphasize that this result is independent of the choice of the relativistic fluid dynamic equation or
frame.

We find that the width of the Brillouin peaksΓB show the following critical behavior for the
Landau and I-S equations,ΓB ∼ ζ0

2w0
t−aζ . We note that this singularity comes from that of the bulk

viscosity. In the case of TKO equation, we first note that the critical behavior of the effective
bulk viscosity is given asζ ′

= ζ
(3γ−4)2 ∼ t2γ̃−aζ , which shows that the effective bulk viscosity

has a positive exponent and does not show a singular behaviorbecauseaζ ∼ 1.8 and γ̃ ∼ 1.2.
Instead, the singularity of the Brillouin peaks for TKO equation comes from that of the thermal
conductivity[14];ΓB ∼ t−(aκ−α̃).

Anyway, we have found that the widthΓB diverges at the QCD CP, irrespective of the rela-
tivistic fluid dynamic equations, although the strength of the singularity may differ depending on
the choice of the fluid dynamic equation[14].
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Figure 2: Left panel: The spectral function att ≡ |T −Tc|/TC = 0.4 andk = 0.1 [1/fm]. The solid line
represents the Landau and I-S cases. The dashed line represents the TKO case. The strength of the Brillouin
peaks becomes small due to the singularity of the ratio of specific heats. Right panel:The spectral function
at t = 0.1 andk = 0.1 [1/fm]. We see that the Brillouin peaks which correspond tosound wave dies out and
the difference between the Landau and TKO cases disappears.

It turns out that these singular behaviors of the width of theBrillouin peaks around the QCD
CP may not be observed: Note that the strengths of the Rayleigh and the Brillouin peaks are given
in terms ofγ , which behaves likeγ = c̃p/c̃n ∼ t−γ̃+α̃ → ∞, in the critical region. Then the strength
of the Brillouin peaks is attenuated and only the Rayleigh peak stands out in the critical region, as
follows;

Snn(k,ω) ∼ 〈(δn(k, 0))2〉 2ΓRk2

ω2 + Γ2
Rk4

, (T ∼ Tc). (4.1)

Figure 2 shows how the dynamical structure factor for the density fluctuations in the Landau (I-
S) and TKO cases behaves around the QCD critical point fork = 0.1 [1/fm], t = 0.5 andt = 0.1,

7
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respectively. We see that the strength of the Brillouin peaks becomes small and dies out as the
system approach the QCD CP. In addition, the static correlation function〈(δn(k, t = 0))2〉 shows a
singular behavior in the forward directionk = 0. This is known as the critical opalescence[15, 25].
Then the strength of the Rayleigh peak will be most drastically enhanced in the forward angle in
the critical region.

Why at all do sound modes or mechanical density fluctuations die out at the critical point? To
answer this question, we first note that the fluid dynamic regime is expressed asξ << λs, where
λs represents the wave length of the sound mode. When this condition is satisfied, the sound mode
can be developed[6]. However, in the vicinity of the critical point, the correlation lengthξ becomes
very large and eventually goes to infinity, so the above inequality can not be satisfied, and the sound
mode is hardly developed in the vicinity of the critical point[6]. This is the reason why the sound
mode or density fluctuation is hardly developed around the QCD critical point.

5. Possible disappearance or suppression of Mach cone around the QCD CP

The result in the last section suggests that phenomena inherently related to the existence of the
mechanical density fluctuations may disappear around the critical point. One of such phenomena
is the possible Mach cone formation [17] by the particle passing through the medium with a speed
larger than the sound velocitycs. Such a Mach-cone like particle correlations are observed in the
RHIC experiment[16]. If such three-particle correlationshave been confirmed to be a Mach-cone
formation, then the disappearance or suppression of the Mach cone would be a signal that the
created matter has passed through the critical region, showing the existence of the QCD critical
point. Even if the thermal wake also contributes to the formation of Mach cone, a suppression of
Mach cone may be expected by the attenuation of the dynamicaldensity fluctuations. So it would
be very interesting to see possible variation of the strength of the Mach cone according to the
variation of the incident energy of the heavy-ion collisions. In theoretical side, it is an intriguing
task to explore the fate of Mach cone with an equation of statethat admits the existence of the CP.

6. Summary and concluding remarks

Motivated by the fact that QCD critical point (CP) belongs tothe same universality class as
the liquid-gas transition, we have analyzed the dynamical density fluctuations using relativistic
fluid dynamics. We have found that the mechanical density fluctuations are attenuated owing to
the divergence of the correlation lengthξ around the QCD CP; on the other hand, the entropy
fluctuation in turn gets enhanced and tends to makes a single peak around the QCD CP in the
dynamical structure factor of the density fluctuations. Sunch an attenuation of the mechanical
density fluctuations may lead to a suppression or even total disappearance of Mach cone at the
QCD CP. If the Mach cone formation is confirmed at the incidentenergy

√
sNN = 200 GeV in

RHIC experiments, possible disappearance or strong suppression of a Mach cone along with the
lowering of the incident energy can be a signal of the existence of the critical point; the created
matter should have gone through the critical region of the CP.

8
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Eexplicit calculations with equation of motion which admittes the existence of the critical
point is necessary for confirm the fate of Mach cone formation. To make a direct connection with
RHIC experiment, we should analyze the density fluctuationswith the expanding back ground[26].

As a future work, we should study the coupling between the thermal fluctuations and the
transverse mode using the mode-mode coupling theory in the close vicinity of the critical point for
the relativistic case.

Finally, we would like to indicate that there are still otherpossibilities in the structure of the
QCD phase diagram [3, 4, 5]: For example, there may exist multiple critical points when the color
superconductivity and the vector interaction likegV (q̄γµq)2 [3] and/or the anomaly term[4] are
incorporated. It suggests that the QCD matter is very soft along the critical line when the color
superconductivity is incorporated, which may imply that there are large fluctuations of various
observables including diquark-density mixed ones.

T.K. is grateful to Krishna Rajagopal for his valuable comments. This work was partially
supported by a Grant-in-Aid for Scientific Research by the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) of Japan (Nos. 20540265, 19·07797), by Yukawa International
Program for Quark-Hadron Sciences, and by the Grant-in-Aidfor the global COE program “ The
Next Generation of Physics, Spun from Universality and Emergence ” from MEXT.
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