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Identifying the QCD Critical Point Teiji Kunihiro

1. Introduction

An interesting feature of the QCD phase diagram is the existeof a critical poinf]L[]2];
see Refs. [J3}]4]] 5] for possible variants and alternativesthé QCD critical point (CP), the first
order phase transition terminates and turns to a second phdese transition. It is now known
that the QCD CP belongs to the universality class H in thesiflaation scheme by Hohengerg-
Halperin[§], i.e., the same as that of the liquid-gas pheaesttion poinf[7[J8]. This implies that
the density fluctuating mode and, generically, fluid dynamdcles coupled to conserved quantities
are the softening modes at the CP.

The o mode that is coupled to the fluctuation of the chiral ordeapeeter(qq)) becomes the
soft mode of the chiral transition at finite temperattiréut vanishing chemical potentigl = 0.
The QCD CP exists, however, at finite chemical potentiaind for finite current quark masses. In
such a case, as is first shown jih [9], the scalar-vector cevss(t (qy°q)(qo) :) does not vanish,
and, hence, the scalar mode is coupled with the densityitgetmrrelator (: (qy°q)? :); this is
because charge conjugation symmetry is violated with fipgiteand the left- and right-handed
quarks are coupled owing to the breaking of chiral symmeffjen, the would-be soft mode, the
o mode, remains massive (a fast mode) and becomes a slaving ofidde genuine soft mode
given by the fluid dynamical modes coupled to the density diation[7,[8]. Here we note that the
diverging behavior of the density fluctuation around the QCPwas first shown i{J}0]; see also

[LT).

Recently, it has been argudd][12] on the basis of the anay#ie liquid-gas phase transition
by Onuki[L3] that the bulk viscosity may show a singular hetaaround the QCD CP.

We explore how the singularities of the thermodynamic qgtiastas well as the transport
coefficients affect the dynamical density fluctuations atbthe QCD CP thereby we can have a
hint how to identify the signal of the existence of QCD CP bperkment[I4]. Our investigation
is based on an explicit use of thelativistic fluid dynamic equations for a viscous fluid. We also
demonstrate that even the so called first-order relativiktid dynamic equations have generically
no problem to describe fluid dynamical phenomena with longesangths contrary to a possible
naive suspect.

We find that the mechanical density fluctuation which is esbdrby the relativistic effects
are attenuated, but the entropy fluctuation in turn beconm® prominent around the QCD CP,
which is, to our surprise, precisely the same in effect astitieal behavior in the nonrelativistic
case[[15] On the basis of these findings, we speculate taatidich cone, which originates from
the dynamical density fluctuations stimulated by a fastiglarand seems to have been observed
in RHIC experimen{[16], disappears or is strongly suppésss the incident energy of relativistic
heavy-ion collisions is lowered, it can be a signal of thestxice of the QCD CP provided that the
incident energy is still high enough to make jgtb[17].

Lit is also notable that the density-density correlator i pf the polarization tensqt (Qy*q)(qy¥q) :), which
suggests that the vector coupligg(cTyiL‘q)2 plays an important role for the static and dynamic propgemiethe QCD

cP.1
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2. Dissipative Relativistic Fluid Dynamics

Relativistic fluid dynamic equations consist of the balaageations for energy-momentum
and particle numbeg, TH#¥ = 0 andd,N# = 0 whereT*" is the energy-momentum tensor &ax
the particle current:

TH = (e + P)uHu¥ — Pg"V + 1"V, NH =nu* 4+ vH. (2.1)

Here¢ is the energy densityp the pressurey# the flow velocity, anch the particle density; the
dissipative part of the energy-momentum tensor and thécfgadurrent are denoted bs#V and
vH| respectively.

The so called first-order equations such as Larjdhu[18] akdrHE9] ones are parabolic and
formally violates the causality, and, hence, are calledisala Moreover, the Eckart equation which
is defined for the particle frame where the particle curr@etsthot have a dissipative pavt(= 0)
shows a pathological property that the fluctuations arobadtermal equilibrium is unstabje]20].
The causality problem is circumvented in the Israel-Stewauatior[[2/1], which is a second-order
equation with relaxation times incorporated.

One should, however, notice that formally acausal fluid dyicaequations should be valid in
describing fluid dynamical phenomena with longer wavelesghan the mean free path. In fact,
we will see that the results for fluid dynamical modes withgamave lengths are qualitatively the
same irrespective whether the second-order or first-ogigateons are used.

As for the instability seen in the Eckart equation, a new-firster equation in the particle
frame constructed by Tsumura, Kunihiro and Ohnishi (TK{3][Bas no such a pathological
behaviol[2B]. We employ Landgu]18], Eckari[19] and Isr&&wart(I-S)[2]L] equation as typical
equations, and TKO equation in particle frame.

3. Dynamic structure factor of density fluctuations

In this section, we first present a procedure for derivingdyreamical structure factor (spec-
tral function) of the density fluctuation for the Landau diprm Then we just give the results
for Eckart, Tsumura-Kunihiro-Ohnishi(TKO) equation ama tsrael-Stewart equation in particle
frame.

3.1 Landau equation (energy frame)

The dissipative terms in the Landau equation are given by

2
™ =nlot'u’ +oYuH - gA“V(dl-u)] +ZAMY (9, u), VH=k (%) o (#) . (31

wheren is the shear viscosity] the bulk viscosity,k the thermal conductivity and/ = € + P
the enthalpy densityAHV = gHt¥ — uHu" is the projection operator on the space-like vector, and
ot = AHV9, the space-like derivative (gradient operator).

We calculate the dynamical structure factor, or the spkfttnetion, of the density fluctuation
around the thermal equilibrium state, as was done for therelativistic cas€[34], 25]; we refer to
the comprehensive text book Ref.][25].
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Let us express the dynamical quantities as follon(s) = np + dn(x), £(X) = & + d&(X),
P(X) = Po+ 0P(X), t(X) = to + 6(x), andu¥ (x) = uf + Su¥(x), where the variables with the
subscriptp denote those in the equilibrium state in at ret= (1,0). Then,du(x) = (0,5V(X))
with dv(x) yet to be determined together with other quantities dkeetc. Now we have five equa-
tions for seven unknown quantitiedn, 6T, oP, ds, anddv. Choosingdn anddT as independent
variables, we havéP(x) = W°°§5n( X) + W°°§°’F’ OT(x) andds(x) = —%5n(x)+%5T(x). Here
€= To(ds/9T), andcp = To(ds/dT )p are the specific heats at constant density and pressure, re-
spectively,cs = (dP/ae)%/2 the sound velocitygp = —(1/ng)(dn/dT )p the thermal expansivity
at constant pressure, ayd= &p /€, the ratio of the specific heats. The equation describing the
density fluctuations is finally found to be

9 To% 121 504 ol 5V—|—Kn0 (1 %oy 25t g (3.2)
ot WoY Wo y
Wl 028y — (¢ + )00 8v) + WO 5 WOSSP sy (3.3)
ot 3 Noy
_woclap 9 G o NoCy 0 Gap 1. o
e g T TPYon (" G k(B =) IP8T =0 (3.4)

Now we are interested in the dynamical structure factor efdénsity fluctuation as given by
Sin(k, w) = (8fi(k, w)dn(k,t = 0)), (3.5)

where dfi(k, w) is the Fourier transform of the density fluctuation, anddenotes the thermal
average in the equilibrium.

Note thatd T anddn are statistically independent in fluid systems which iskdsthed in Ein-
stein fluctuation theor{[25§8T (k,0)dn(k,0)) = 0, and similarly,(v; (k,0)3n(k,0)) = 0, where
dv|(k,0) denotes the longitudinal component of the velocity fieldudke have the dynamical
structure factor

Sk, @) 1 Rk 1 rak? rak?
L 1 . (36
Enk,t=007 ~ Y rrze Tyl o aoir e T wrakerrze ) GO

Here,'r = k/(npCp) andlg = %[X(y— D+v] + c2 ( —2xap) with vi = ({ +4n/3)/wo
being the (elativistic) longitudinal kinetic ViSCOSIty, notlcwo in the denominator. We also remark
that the widthl" is identified with the thermal diffusivity.

We see that the spectral function has three peaks at freggeme- 0 andw = csk: The peak
at w = 0 corresponds to thermally induced density fluctuationschvis called Rayleigh peak;
while the two-side peaks ab = +-csk correspond to mechanically induced density fluctuatian, i.
sound waves. These two peaks are called Brillioun peaks.

We find that relativistic effects manifest themselves onlyhe width of the Brillouin peaks
s, whereas the width of the Rayleigh peak is the same as theeataivistic casd[34], 25]. The
relativistic effects il g appear in two ways, as seen by the expression,

g =rMR 4 6r5? (3.7)

wherel ¥R = $[x(y— 1)+ v] andorg? = 1c2To(k /wo — 2x ap). Firstly, the first term has a non-
relativistic counter part only with a replacement of thehaippy densitywg with the mass densitgy
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Figure 1: Left panel: The solid line is the spectral function for thesigy fluctuations from Landau/Israel-
Stewart equation withk = 0.1[1/fm], o = 200[MeV], To = 200[MeV], n/(npso) = {/(npsp) = 0.3 and
KTo/(noSo) = 0.6; the dashed line in the minimal relativistic case. Rightedathe result from TKO equation
with the same parameters. Notice that the vertical scaléféseht from that of the left panel.

in vi. We call this modification the minimal relativistic (MR) efft. On the other hand, the second
term &2 is a genuine relativistic effect that is absent in the ndatrastic case; this comes from
the mass-energy equivalence inherent in the relativisgory.

Figure[1 shows the spectral function £qJ)3.6) and the mihiedativistic case withdl'g = 0
for the parameter sé¢= 0.1[1/fm], Lo =200[MeV], To =200[MeV], n/(npsp) = ¢/(noSp) = 0.3
andk Tp/(noS) = 0.6. Note thahpsy represents the entropy density in the equilibrium statabse
o is the entropy per particle number. As is expected,[Fig. Wshbat the Brillouin peaks owing
to the sound mode is enhanced by the relativistic effectilevthe Rayleigh peak owing to the
thermal mode is the same as in the non-relativistic case.

3.2 Stable first-order fluid dynamic equation in the particle frame

In the case of TKO equatioh[22] in the particle franw & 0), the dissipative terms are given
by

™ =nlot'u’ +oVuH - \,%A“"(al.u)] — ' (BuFW’ — AMY)(0,u) + k(UHYT +u’at), (3.8)

wherel' = ¢ /(3y—4)2. From the same procedure as taken for the Landau equatiashtaie the

dynamical structure factor with the same form[as]|(3.6) bt widifferent form of the width of the
Brillouin peaks[I}];

o = Sy~ 1)+ v 25 7, 37 =1 @9)
NoCp

We emphasize that since the fluid dynamic fluctuations argbecequilibrium state is relaxing

in TKO equation, we have obtained the dynamical structuctofawithout any obstruction, in

contrast to the case of Eckart equat[of[19], for which weetfaund[I}#] that the unstable behavior

of the density fluctuation around the thermal equilibriurayents us from obtaining the dynamical

structure factor in a sensible way.
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We see that the genuine relativistic effect in the width &f Brillouin peaks readéFEKo =
— 20;12%%, (KTo+ 3(’), which is definitely negative, implying that the relativeseffect acts to enhance
and sharpen the spectral function of the density fluctuatiawomparison with the minimal rela-
tivistic case than in the energy frame; see the right panigfil; notice that the scales of the right

and left panel are different.

3.3 Israel-Stewart equation

The derivation of the dynamical structure factor for thedrStewart (I-S) equation[21] can
be performed much the same way as for the Landau equatiorswitie additional complications
due to the presence of the relaxation times. However, ituadahat if the relaxation timg; of
the heat current is so small as to satisfy the condifipr: io the I-S equation in particle frame
takes over the pathological behavior of Eckart one evenghdloe relaxation time is finite; i.e., the
density fluctuation will not relax down.

If we assume that the relaxation time is sufficiently largsatsfy the inequality3; > Wio then
we can have the spectral function,

1. 2xk? 1 gk?
B Y/) w? + x2k4 + Y/[(w— csk)2+T3k4
Mgk’ 2/Bo
(w+cgk)? + Tkt w?+1/(Bo{)?
1B . 2wo/[(Buwo— 1)K To]
w?+1/(2Bn)?  w?+w3/[(Biwo — 1)K To)2

Sk, w)/{(dn(k,t =0))%) = (1

]+ O(K?) x [

]. (3.10)

Here, 3o and 3, denote the relaxation times for the bulk viscosity and theaslviscosity, respec-
tively. Apparently the spectral function has six peaksudatg the conventional three peaks, but
the new three Lorentzian functions should vanish in the lwagelength limitk — 0, because the
strength of these is in the second ordek.of herefore Israel-Stewart equation gives completely the
same result for the dynamical structure factor for the dgrikictuations in the long wavelength
limit as that Landau equation gives. That is, the relaxatiimes do not affect the result in the fluid
dynamical regime.

4. The behavior around the QCD critical point

We are now in a position to analyze the behavior of the spdctnation of the density fluctu-
ations around the QCD critical point, on the basis of the dyicaas well as static scaling laws for
the liquid-gas transitior{ 14, [13].

The specific heat at constant densifyafid the the isothermal compressibilky = n—lo (%)T
diverge at the critical point a5, = cot=* andKy = Kot 7Y, wheret = |(T — T¢)/T¢| is a reduced
temperature. The values of these critical exponents anerktobed ~ 0.11 andy ~ 1.2, respec-
tively.

At the critical point, the correlation lengih diverges a€ = &t~V with v ~ 0.63. The bulk
viscosity may also show a singular behavior around the QCmEBhown in[[A3[ 12 = {ot %

with {o being a constant. The exponentfor the liquid-gas transition is predicteld [13] to he— &
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with the dynamical critical exponeatz~ 3. Thus we hava; ~ 1.8. The singular behavior of the
thermal conductivity around the critical point is givendyy, kK = Kot~ with a, ~ 0.63 wherekg
is a constant.

Now using these formulae, we can shpv[14] that the width efRfayleigh peak behaves as
[k ~ t¥-a which tells us that the widthig becomes narrow as the QCD CP is approached. We
emphasize that this result is independent of the choiceeofdlativistic fluid dynamic equation or
frame.

We find that the width of the Brillouin peakss show the following critical behavior for the
Landau and I-S equationBg ~ ;N—%t‘az. We note that this singularity comes from that of the bulk
viscosity. In the case of TKO equation, we first note that ttitcal behavior of the effective
bulk viscosity is given ag = (3%_@2 ~ t?-2  which shows that the effective bulk viscosity
has a positive exponent and does not show a singular behastauses, ~ 1.8 andy ~ 1.2.
Instead, the singularity of the Brillouin peaks for TKO etjoa comes from that of the thermal
conductivity[T#];l g ~ t~ (&),

Anyway, we have found that the widifs diverges at the QCD CP, irrespective of the rela-
tivistic fluid dynamic equations, although the strengthha singularity may differ depending on
the choice of the fluid dynamic equatiprj[14].
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Figure 2: Left panel: The spectral function &= |T — T¢|/Tc = 0.4 andk = 0.1 [1/fm]. The solid line
represents the Landau and I-S cases. The dashed line nefsrs=TKO case. The strength of the Brillouin
peaks becomes small due to the singularity of the ratio ofiipdeats. Right panel:The spectral function
att = 0.1 andk = 0.1 [1/fm]. We see that the Brillouin peaks which correspongddond wave dies out and
the difference between the Landau and TKO cases disappears.

It turns out that these singular behaviors of the width ofBhidouin peaks around the QCD
CP may not be observed: Note that the strengths of the Raydaid the Brillouin peaks are given
in terms ofy, which behaves likgy= €,/Cn ~ t=7+@ _, », in the critical region. Then the strength

of the Brillouin peaks is attenuated and only the Rayleiglkpgiands out in the critical region, as
follows;

2l rk?
w2+ F2k4

Sin(k, ) ~ ((dn(k, 0))?) (T ~ To). (4.1)

Figure[2 shows how the dynamical structure factor for thesifgfluctuations in the Landau (I-
S) and TKO cases behaves around the QCD critical poirit fo0.1 [1/fm], t = 0.5 andt = 0.1,



Identifying the QCD Critical Point Teiji Kunihiro

respectively. We see that the strength of the Brillouin geladcomes small and dies out as the
system approach the QCD CP. In addition, the static coieldtinction ((dn(k,t = 0))?) shows a
singular behavior in the forward directidn= 0. This is known as the critical opalescefce[L$, 25].
Then the strength of the Rayleigh peak will be most dradficathanced in the forward angle in
the critical region.

Why at all do sound modes or mechanical density fluctuatiemeuat at the critical point? To
answer this question, we first note that the fluid dynamicmegis expressed ds << As, where
As represents the wave length of the sound mode. When thistmnd satisfied, the sound mode
can be developeld[6]. However, in the vicinity of the critipaint, the correlation length becomes
very large and eventually goes to infinity, so the above iaBtyucan not be satisfied, and the sound
mode is hardly developed in the vicinity of the critical piffi}. This is the reason why the sound
mode or density fluctuation is hardly developed around th®@f@ical point.

5. Possible disappearance or suppression of Mach cone araiithe QCD CP

The result in the last section suggests that phenomenaeimtiyerelated to the existence of the
mechanical density fluctuations may disappear around theatmpoint. One of such phenomena
is the possible Mach cone formatidn][17] by the particle pastgirough the medium with a speed
larger than the sound velocityg. Such a Mach-cone like particle correlations are obsemdta
RHIC experimen{[16]. If such three-particle correlatidre/e been confirmed to be a Mach-cone
formation, then the disappearance or suppression of théhMaoe would be a signal that the
created matter has passed through the critical region, isgdive existence of the QCD critical
point. Even if the thermal wake also contributes to the faromaof Mach cone, a suppression of
Mach cone may be expected by the attenuation of the dynauéceity fluctuations. So it would
be very interesting to see possible variation of the stremdtthe Mach cone according to the
variation of the incident energy of the heavy-ion colligorin theoretical side, it is an intriguing
task to explore the fate of Mach cone with an equation of steteadmits the existence of the CP.

6. Summary and concluding remarks

Motivated by the fact that QCD critical point (CP) belongsthe same universality class as
the liquid-gas transition, we have analyzed the dynamieaisily fluctuations using relativistic
fluid dynamics. We have found that the mechanical densityfaiions are attenuated owing to
the divergence of the correlation lengfharound the QCD CP; on the other hand, the entropy
fluctuation in turn gets enhanced and tends to makes a siegle ground the QCD CP in the
dynamical structure factor of the density fluctuations. Guan attenuation of the mechanical
density fluctuations may lead to a suppression or even ti@apdearance of Mach cone at the
QCD CP. If the Mach cone formation is confirmed at the incidemergy,/Syx = 200 GeV in
RHIC experiments, possible disappearance or strong ssgpreof a Mach cone along with the
lowering of the incident energy can be a signal of the excsent the critical point; the created
matter should have gone through the critical region of the CP
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Eexplicit calculations with equation of motion which adia# the existence of the critical
point is necessary for confirm the fate of Mach cone formatiimmake a direct connection with
RHIC experiment, we should analyze the density fluctuatiitis the expanding back grourd[26].

As a future work, we should study the coupling between thenthé fluctuations and the
transverse mode using the mode-mode coupling theory indise gicinity of the critical point for
the relativistic case.

Finally, we would like to indicate that there are still othmrssibilities in the structure of the
QCD phase diagrani][8] f], 5]: For example, there may existiphiitritical points when the color
superconductivity and the vector interaction ligg(qy#q)? [B] and/or the anomaly terifj[4] are
incorporated. It suggests that the QCD matter is very sofigathe critical line when the color
superconductivity is incorporated, which may imply thagrdh are large fluctuations of various
observables including diquark-density mixed ones.
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Science and Technology (MEXT) of Japan (Nos. 20540268)71/®7), by Yukawa International
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