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In this talk I first discus hydrodynamical simulations of relativistic heavy-ion collisions within the

lab energy domain of (5-40) AGeV. The calculations are done within the 3d one-fluid model start-

ing with cold nuclei in the initial state. Parameters of the compressed zone and matter trajectories

in the temperature-density plane are calculated for two cases, with and without the deconfinement

phase transition. An interesting observation is that in theequilibrium scenario the parameters

of the final hadronic state are insensitive to the presence ofthe phase transition at early times.

Then I consider the possibility of explosive hadronizationwhere the quark-gluon plasma first dis-

integrates into droplets which later on decay into hadrons.This scenario is quite natural in the

case of the first order phase transition when the spinodal instability drives the system into the

inhomogeneous droplet phase. I present simple estimates for the droplet size based on the energy

balance between the collective expansion energy and the surface energy. It is interesting that the

fragmentation of the quark-gluon phase is predicted also for the crossover-type transition if the

bulk viscosity becomes large in the transition region. In both cases the characteristic droplet size

should decrease with increasing the collective expansion rate. Finally I will discuss possible ob-

servable signatures of quark-gluon droplets such as strongnon-statistical fluctuations of hadron

multiplicities in momentum space. These predictions can bechecked in the energy scan program

at RHIC, as well as in the future FAIR and NICA experiments.
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1. Introduction

High–energy heavy–ion collisions provide a unique tool forstudying properties of hot and
dense strongly–interacting matter in the laboratory. The theoretical description of such collisions is
often done within the framework of a hydrodynamic approach.This approach opens the possibility
to study the sensitivity of collision dynamics and secondary particle distributions to the Equation of
State (EOS) of the produced matter. In this way one can get information about the deconfinement
phase transition at intermediate stages of the collision process when the temperature and/or baryon
density become high enough. The problem is however that manytraces of the deconfinement
phase transition may be erased during the hadronization process. Therefore, detailed dynamical
simulations and comparisons with experimental data are needed to find convincing evidences of
this phase transition.

2. Equation of state with first order phase transition

In our hydrodynamical simulations we use an EOS derived recently in ref. [1]. which includes
the Hadron Gas (HG) at low energy densities. the Quark-GluonPlasma (QGP) at high energy
densities and a Mixed Phase (MP) in between. In the hadronic phase we include contributions of
lightest hadrons with massesmi . 2 GeV, altogether 59 mesonic and 41 baryonic species listed
in [2]. This corresponds to 307 different isospin states of mesons, baryons and antibaryons. In
these calculations we do not include a very broad scalar meson resonancef0(600) with massm∼
0.6 GeV and widthΓ & 0.6 GeV. Except of this state a very similar set of hadrons has been used
in the THERMUS thermal model [3]. For the quark-gluon phase we use the EOS of the MIT bag
model including a perturbative correction due to the chromomagnetic interaction as in ref. [4].
Properties of the MP were determined by applying the Gibbs criteria for the system characterized
by two chemical potentials, responsible for the baryon number and strangeness conservation. The
condition of zero net strangeness was imposed.

It should be emphasized that using different models for describing different phases may lead
either to the first order phase transition or no phase transition at all. In our calculations we have
faced the latter situation when considering ideal multi-species hadron gas. To obtain a reasonable
phase diagram, e.g. as shown in Fig. 1, we were forced to introduce a finite volume of hadrons,v≃
1 fm3. The thermodynamical functions were calculated within theexcluded volume approximation
following the method of ref. [5]. Results of these calculations are shown in Figs. 1 and 2. As
expected, we obtain a first order deconfinement phase transition between the HG and the QGP. The
phase transition is rather week at small baryon chemical potentialsµ but becomes stronger at larger
values ofµ . The critical temperatureTc = 165 MeV atµ = 0 was obtained by a proper choice of
the bag constant.

The figures also show the adiabatic trajectories for severalvalues of entropy per baryon S/B
ranging from 5 to 300. It is interesting to note that the temperature grows when going through the
mixed phase from the QGP to the HG phase. This effect was first noticed in ref. [7]. But such
behavior is not universal, e.g. chiral models like linear sigma model or NJL model demonstrate the
opposite trend [8].
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Figure 1: Phase diagram of strongly interacting matter in theµ − T plane constructed in ref. [1] (see
the text). The solid line represents the phase transition boundary. The dashed and dash-dotted lines show
isentropic trajectories for different values of entropy per baryon. Full dots correspond to theµ ,T values
obtained from thermal fits of hadron yields [6] observed in central Au+Au and Pb+Pb collisions at different
bombarding energies. The region between the dotted and solid lines contains acausal states withcs > 1.
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Figure 2: Boundaries of different phases and adiabatic trajectoriesin the n−T plane (v = 1 fm3). The
shaded area shows the mixed phase region. The hadronic states on the right from the dotted line have sound
velocitiescs > 1.
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Figure 3: Time dependence of the energy density (left) and the baryon density (right) of the fluid in the
central box as predicted by the 3d hydro simulations for central Au+Au collisions at different bombarding
energies (indicated in the figure). Full lines and dashed lines correspond to the EOS with and without the
deconfinement phase transition.

3. 3d hydrodynamical simulations of nuclear collisions

The hydrodynamic modeling of relativistic nuclear collisions has a long history. The most
popular simple versions of this approach were proposed by Landau [9] and Bjorken [10]. To study
the matter evolution in the course of a relativistic heavy-ion collision we use a full 3d version of
the perfect-fluid dynamical model developed by the Frankfurt group and employing the SHASTA
algorithm [11]. The numerical aspects and detailed resultsof this work will be described in ref.
[12]. Here we present only a few results of numerical simulations obtained for two equations of
state, EOS-PT and EOS-HG, where the first one corresponds to the hadron resonance gas and the
second one includes the deconfinement phase transition.

Figure 3 shows the time evolution of the energy density and baryon density in central Au+Au
collisions at different bombarding energies. Their valuesare calculated in the central box with
dimensions(2×2×2/γcm) fm3. One can see that the threshold energy to reach the pure QGP phase
(energy density above 2 GeV/fm3) is about 5 AGeV. Comparison of calculations with different
EOS shows that with the phase transition the matter reaches higher energy and baryon densities as
compared with the pure hadronic phase. The corresponding maximum values range from 2 to 13
GeV/fm3 and from 1 to 3 fm−3 when bombarding energy increases from 5 to 40 AGeV.

More clear information about the states of matter in centralbox can be extracted from Fig. 4
showing the matter trajectories in theT − µ plane. One can see that the initial heating and com-
pression of matter is very fast, so that the QGP phase is reached within less than 1 fm/c after the
first contact of nuclei. At 10 AGeV the system spends abut 4 fm/c in the QGP phase and then
about 3 fm/c in the mixed phase before returning into the hadronic phase. At 40 AGeV the time
spent in the QGP phase is somewhat longer. In any case these times are very short, so that the
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Figure 4: Evolution of temperature and chemical potential of the fluidin the central box as predicted by the
3d hydro calculations for central Au+Au collisions at Elab=10 (left) and 40 (right) AGeV. Results are shown
for two equations of state: with (full line) and without (dashed line) the phase transition.

transformation of the QGP into the hadron gas may not follow the equilibrium scenario. in the next
Section I will consider an alternative mechanism. Here I want only to point out one more problem
associated with the equilibrium scenario: besides of a short delay of about 1 fm/c the final states
of the system are very similar in calculations with and without the phase transition. This means
that the final spectra of produced hadrons are not sensitive to the intermediate stages of the reaction
where the deconfinement-hadronization transition was taking place.

4. Explosive hadronization

Let us consider now a simplified picture where the system expands according to the Hubble
law,v(r) = H ·r, wherev is the local collective velocity andH is a function of time, as e.g.H ∝ 1/t,
in the Bjorken model.

As demonstrated in refs. [13, 14], in a rapidly expanding system a first order phase transi-
tion will not follow the equilibrium phase coexistence trajectory as predicted by the hydrodynamic
model (see Fig. 4). The formation of the mixed phase will be hindered by the potential barrier
separating two competing phases. Instead, the high-temperature phase will expand further, until
it enters the spinodal region wherec2

s < 0 and the existence of the uniform phase becomes im-
possible. Then, due to intrinsic instabilities it will disintegrate into droplets surrounded by the
undersaturated low-temperature phase. Different aspectsof spinodal decomposition in expanding
systems were discussed in refs. [15, 16, 17]. For clarity, below we use capital letters Q and H (not
to be confused with the Hubble constantH) for the deconfined quark-gluon phase and the hadronic
phase, respectively.

Following this picture, let us assume that the dynamical fragmentation of the deconfined phase
has resulted in a collection of Q droplets embedded in a dilute H phase, as illustrated in Fig. 6. The

5



P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
1
2

Modeling phase transitions Igor Mishustin

optimal droplet size can be determined by applying a simple energy balance argument saying that
the droplets are formed when the collective kinetic energy within the individual droplet is equal to
its surface energy,Ekin(R) = Esurf(R), where

Ekin(R) =
1
2

∫ R

0
∆E [v(r)]24πr2dr =

2π
5

∆E H2R5, (4.1)

andEsurf(R) = 4πR2γ , where∆E = EQ−EH is the energy density difference of the two phases, and
γ is the corresponding surface tension. Then the optimal droplet radius is obtained as

R∗ =

(

10γ
∆E H2

)1/3

. (4.2)

As eq. (4.2) indicates, the droplet size depends strongly onH. When expansion is slow (small
H) the droplets are big. In the adiabatic limit the process maylook like a fission of a cloud of
plasma. But fast expansion should lead to very small droplets. This state of matter is very far from
a thermodynamically equilibrated mixed phase, particularly because the droplet size is determined
by the expansion rate but not by the thermodynamics alone. One can say that the metastable Q
matter is torn apart by a mechanical strain associated with the collective expansion.

Figure 5: (Color online) Schematic view of multi-droplet state produced after the dynamical fragmentation
of a unstable high energy-density Q phase. The Q droplets areembedded in the low energy-density H phase.
Each droplet emits hadrons as a thermal source, as well as participates in the overall Hubble-like expansion.

In numerical estimates I consider two cases:H−1 = 2 fm/c, i.e. fast expansion associated with
nuclear collisions at top SPS and RHIC energies, andH−1 = 6 fm/c, i.e. slow expansion associated
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with the low SPS and future FAIR-NICA energy domain. One should also specify two other param-
eters,γ and∆E . The surface tensionγ is a subject of debate at present. Lattice simulations indicate
that it could be as low as a few MeV/fm2 in the vicinity of the critical point. However, for our non-
equilibrium scenario, more appropriate values may be closer to 10-20 MeV/fm2, which follow from
effective chiral models. So, let us takeγ = 10 MeV/fm2 for rough estimates. Bearing in mind that
nucleons and heavy mesons are the smallest Q droplets, one can take∆E = 0.5 GeV/fm3, i.e. the
energy density inside the nucleon. Then one getsR∗ = 0.9 fm for H−1 = 2 fm/c andR∗ = 1.9 fm
for H−1 = 6 fm/c. As follows from eq. (4.2), for a spherical dropletV ∝ 1/∆E , and in the first
approximation its mass,

M∗ ≈ ∆EV =
40π

3
γ

H2 , (4.3)

is independent of∆E . For the two values ofR∗ given above the optimal droplet mass is∼ 1.7 GeV
and∼ 15 GeV, respectively.

It is interesting that in the first case the droplet size and mass are in the range of typical
hadron parameters. This means that in a very fast expansion the QGP phase splits into minimal-
size droplets, i.e. hadrons and hadronic resonances. Nevertheless, this is not a standard phase
transition but a direct conversion of the overcooled and overstretched QGP phase into hadrons,
without going through the mixed phase. As argued in ref. [18], this mechanism can naturally
explain such interesting observations as constituent quark scaling in elliptic flow and enhanced
production of multi-strange baryons.

However, in the case ofH−1 = 6 fm/c the droplet size and mass are quite large as compared
with the typical hadronic scales. Such droplets will eventually hadronize by emitting hadrons from
the surface. This multi-source emission mechanism should lead to strong non-statistical fluctua-
tions of observables (see below). In refs. [19, 20] the evolution of individual droplets was studied
numerically within a hydrodynamical approach including dynamical chiral fields (Chiral Fluid Dy-
namics). It has been demonstrated that the energy released at the spinodal decomposition can be
directly transferred into the collective oscillations of the (σ ,π) fields which give rise to the soft
pion radiation.

The above presented arguments apply for the case of a first order deconfinement phase transi-
tion as expected at high baryon densities. Recently in ref. [21] we have demonstrated that similar
fragmentation phenomenon can occur in a system with crossover type of the phase transformation,
if the bulk viscosity becomes large in the transition region. As follows from the lattice calculations
[22], such situation can be expected in the QCD. This means that atT ∼ Tc the system suddenly
becomes very stiff so that it cannot expand uniformly any more and breaks into pieces like a glass.
The piece size in this case is determined by the condition that the collective expansion energy is
fully dissipated due to the viscosity forces.

5. Anomalous multiplicity fluctuations

After the QGP break-up the Q droplets recede from each other according to the global ex-
pansion, predominantly along the beam direction. Hence their center-of-mass rapiditiesyi are in
one-to-one correspondence with their spatial positions. Presumablyyi will be distributed more or
less evenly between the target and projectile rapidities. Since rescatterings in the dilute H phase
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between the droplets are rare, most hadrons produced from individual droplets will go directly
into detectors. This may explain why freeze-out parametersextracted from the hadronic yields are
always very close to the phase transition boundary [6].

Figure 6: (Color online) Schematic view of the momentum space distribution of secondary hadrons pro-
duced from an ensemble of droplets. Each droplet emits hadrons (mostly pions) within a rapidity interval
δy∼ 1 and azimuthal angle spreading ofδφ ∼ 1.

In the droplet phase the mean number of produced hadrons in a given rapidity interval is

〈N〉 =
ND

∑
i

ni = 〈n〉〈ND〉, whereni is the mean multiplicity of hadrons emitted from a droplet i,

〈n〉 is the average multiplicity per droplet and〈ND〉 is the mean number of droplets produced
in this interval. If droplets do not overlap in the rapidity space, each droplet will give a bump
in the hadron rapidity distribution around its center-of-mass rapidityyi [15, 13, 14]. In case of
the Boltzmann spectrum the width of the bump will beδη ∼

√

T/m, whereT is the droplet
temperature andm is the particle mass. AtT ∼ 100 MeV this givesδη ≈ 0.8 for pions and
δη ≈ 0.3 for nucleons. Due to the radial expansion of the fireball thedroplets should also be
well separated in the azimuthal angle. The characteristic angular spreading of pions produced by
an individual droplet is determined by the ratio of the thermal momentum of emitted pions to their
mean transverse momentum,δφ ≈ 3T/〈p⊥〉∼ 1. The resulting phase-space distribution of hadrons
in a single event will be a superposition of contributions from different Q droplets superimposed
on a more or less uniform background from the dilute H phase. Such a distribution is shown
schematically in Fig. 6. It is obvious that such inhomogeneities (clusterization) in the momentum
space will reveal strong non-statistical fluctuations of observables. The fluctuations will be more
pronounced if primordial droplets are big, as expected in the Fair-Nica energy domain. If droplets
as heavy as 15 GeV are formed, each of them will emit up to∼50 pions within a narrow rapidity
and angular intervals,δη ∼ 1, δφ ∼ 1. If only a few droplets are produced in average per unit
rapidity, ND & 1, they will be easily resolved and analyzed. On the other hand, the fluctuations
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will be suppressed by factor
√

ND if many small droplets shine into the same rapidity interval, as is
expected at high collision energies.

It is convenient to characterize the fluctuations by the scaled varianceωN ≡ (〈N2〉−〈N〉2)/〈N〉.
Its important property is thatωN = 1 for the Poisson distribution, and therefore any deviationfrom
unity will signal a non-statistical emission mechanism. Asshown in ref. [23], for an ensemble of
emitting sources (droplets)ωN can be expressed in a simple form,

ωN = ωn + 〈n〉ωD, (5.1)

whereωn is an average multiplicity fluctuation in a single droplet,ωD is the fluctuation in the
droplet size distribution and〈n〉 is the mean multiplicity from a single droplet. Sinceωn and
ωD are typically of order of unity, the fluctuations from the multi-droplet emission are enhanced
by the factor〈n〉. According to the picture of a first order phase transition advocated above, this
enhancement factor could be as large as∼ 10. It is clear that the nontrivial structure of the hadronic
spectra will be washed out to a great extent when averaging over many events. Therefore, more
sophisticated methods of the event sample analysis should be applied as e.g. measuring event-by-
event fluctuations in the hadron multiplicity distributions in a varied rapidity bin.

Finally it should be mentioned that up to now no significant effects in fluctuation observables
have been found (see e.g. ref. [24]). Possible explanation is that the search was done at too high
bombarding energies, when the expansion rate is too high to see traces of the phase transition. The
future hopes are associated with experimental studies at lower bombarding energies, in the range of
10-40 AGeV. There are at least two arguments in favor of such strategy. First, such collisions will
bring matter into the domain of high baryon densities where the first order deconfinement phase
transition is predicted. Second, the produced matter will expand less violently, so that the predicted
QGP droplets will be large enough to produce observable effects.

6. Conclusions

• Hydrodynamic modeling is very useful tool for understanding complicated dynamics of
heavy-ion collisions at relativistic energies;

• In equilibrium scenario manifestations of the deconfinement phase transition are rather weak.
Non-equilibrium effects like clusterization of the QGP andits direct conversion into hadrons
may help to identify this phase transition;

• Strong non-statistical fluctuations of observables associated with the QGP droplets represent
a very promising signal of the deconfinement phase transition;

• Low energy program at RHIC and future FAIR-NICA experimentswill certainly help to find
the onset of deconfinement and identify signals of the quark-gluon plasma.

I thank my colleagues A.V. Merdeev and L.M. Satarov for many fruitful discussions and help
in the preparation of this talk. This work was supported in part by the DFG Grant 436 RUS
113/711/0-2 (Germany), and by the Grants NS-3004.2008.2 and RFFI 09-02-91331 (Russia).
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