
P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
1
1

Finite-size effects and the search for the critical
endpoint in heavy ion collisions

Letícia F. Palhares ∗

Instituto de Física, Universidade Federal do Rio de Janeiro,
Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
E-mail: leticia@if.ufrj.br

Eduardo S. Fraga
Instituto de Física, Universidade Federal do Rio de Janeiro,
Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
E-mail: fraga@if.ufrj.br

Takeshi Kodama
Instituto de Física, Universidade Federal do Rio de Janeiro,
Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
E-mail: tkodama@if.ufrj.br

We discuss how the finiteness of the system created in a heavy-ion collision affects possible

signatures of the QCD critical endpoint. We show sizable results for the modifications of the

chiral phase diagram at volume scales typically encountered in current heavy-ion collisions and

address the applicability of finite-size scaling as a tool inthe experimental search for the critical

endpoint.

5th International Workshop on Critical Point and Onset of Deconfinement
June 8-12, 2009
Brookhaven National Laboratory, Long Island, New York, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
1
1

Finite-size effects and the search for the critical endpoint in heavy ion collisions Letícia F. Palhares

1. Introduction

The existence and the position of the chiral (second-order) critical endpoint (CEP) are key
questions in mapping the phase diagram of strong interactions. Recently, thepossibility that heavy-
ion collisions (HICs) may probe experimentally this point has generated an increasing interest in
how it would affect different observables, yielding possible signatures.

Since the CEP is associated with a second-order phase transition and diverging correlation
length, some of the signatures [1] are based on the expected (divergent) critical behavior of the
correlation functions of the quasi-particleσ , related to the order parameter of the chiral transition:

〈σn〉 ∼ ξ pn , (1.1)

whereξ is the correlation length andpn is a positive exponent. This feature should be translated
into final observables in a HIC via mesonic decays of the sigma field into other particles, especially
softpions (created as soon as the medium-dependentσ reaches the mass threshold).

Figure 1: Then-point correlation function of the
order parameterσ is shown as a function of the
external parameterT. The singular (black) curve
corresponds to the thermodynamic limit, while
the behavior in a finite system is illustrated by
the shifted peak (red curve).

In any real system, however, the correlation
length is trivially bounded by the finite volume
and, through causality1, by the finite lifetime of
the system. Instead of the divergent critical be-
havior expected for correlation functions in the
thermodynamic limit, the observables measured
will show pseudocriticalpeaks, corresponding to
a smoothening of the associated critical singular-
ity. As illustrated in Figure 1, these peaks are
actually shifted from the position of the original
singularity by a size-dependent amount.

In HIC experiments, the volume of the sys-
tem is finite and centrality-dependent [2]. The
typical linear sizesL are actually quite small (L .

dion, with the ion diameterdion ≈ 10−15 fm), cor-
responding to energiesL−1 & 13.1− 19.7 MeV,
not negligible in comparison with the expected scales in the critical region of thephase diagram
Tc . 200 MeV, especially in non-central collisions. This suggests that finite-volume effects may
affect significantly the different physical phenomena occuring in a heavy-ion collision.

Nevertheless, these effects have been mostly overlooked in the descriptions of phenomena
related to the quark-gluon plasma, with some exceptions (e.g. Refs. [3, 4, 5, 6, 7, 8, 9, 10]).

Here, we are concerned with the role played by finite-size effects on the QCD phase diagram
and on the physics of the CEP. In particular, we address the following question: how can the
centrality-dependent, finite volume of the system created in HICs affect possible signatures of the
CEP? Using two different approaches, we point out that finite-size effects are relevant and should
be thoroughly investigated in the context of the QCD phase diagram probedin HICs and may

1In principle, one has to consider the growth rate of correlated domains in afully dynamical approach, the speed of
light (i.e. causality) being the ultimate bound in a relativistic system.
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play an important role in the experimental search for the CEP. In Section 2, we show estimates of
the amplitudes of the shifts of pseudocritical lines in the chiral phase diagramat typical HIC size
scales. The large effects obtained suggest that the actual phase diagram probed in HICs can be
quantitatively very different from the usual picture in the thermodynamic limit. In Section 3, we
discuss how one can take advantage of the fact that HIC data are constituted of a set of systems
with different volumes to construct a complementary tool for the experimentalsearch of the CEP.
Finally, we conclude and discuss some perspectives in Section 4.

2. Volume dependence of the chiral CEP at HIC scales

To investigate whether the pseudocritical phase diagram probed in heavy-ion collisions differs
significantly from the usually adopted picture in the thermodynamic limit, we estimated [11] the
shift of the critical line in the temperature-chemical potential plane in a well-established [12, 13,
14], chiral effective model: the linear sigma model with constituent quarks [15], described by the
Lagrangian density

L = ψ f

[

iγµ∂µ + µγ0−gσ)
]

ψ f +
1
2

∂µσ∂ µσ −V(σ) , (2.1)

whereµ is the quark chemical potential,

V(σ) =
λ
4

(σ2−v2)2−hσ (2.2)

is the self-interaction potential for the mesons, exhibiting both spontaneous and explicit breaking of
chiral symmetry. The pions were dropped for simplicity and all parameters are fixed to reproduce
known properties (observed or simulated on the lattice) of the QCD vacuum (cf. Ref. [11] and
references therein for details). As usual, the scalar fieldσ plays the role of an approximate order
parameter for the chiral transition, being an exact order parameter for massless quarks. Investigat-
ing how this field changes with temperature and chemical potential we obtain the phase diagram
for the chiral effective model.

Our main goal here is to establish a well-defined and clean measure of the finite-size correc-
tions to the position of the chiral CEP, so that we can investigate their relevance in the context of
HICs. In this vein, we concentrate on bulk effects, restricting our analysis to the comparison within
a simple (though largely adopted) picture: theequilibriummean-field approximation2, neglecting
completely fluctuations and inhomogeneities.

Therefore, we calculate the effective potential of the model in the mean-field approximation,
including quark thermal fluctuations to one loop. In the case of a finite systemof linear sizeL, the
momentum integral from the one-loop quark contribution to the effective potential is substituted by
a sum

Vq

T4 =
2Nf Nc

(LT)3 ∑
k

[

log
(

1+e−(Ek−µ)/T
)

+ log
(

1+e−(Ek+µ)/T
)]

, (2.3)

whereEk =
√

k2 +m2
e f f, and me f f = g|σ | is the effective mass of the quarks. The boundary

conditions enter the expression above via the dispersion relationk(n) with ni being the labels of

2The results for the thermodynamic limit have been discussed in Ref. [13]
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the discrete spatial Fourier modes. The sensitiveness of the results to different boundary conditions
is then illustrated by the comparison between two extreme cases, periodic (PBC; ki = 2πni) and
antiperiodic (APC;ki = (2ni +1)π) boundary conditions.
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Figure 2: Trajectories of the pseudo-CEP as the sys-
tem size is decreased for PBC (dotted line) and APC
(dashed line).
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Figure 3: Isentropic lines in theT − µ plane in
the thermodynamic limit (red, solid line) and for
a finite system withL = 2 fm (blue, dashed line),
labeled by the value of entropy per baryon number
s/nB.

Figure 4: Cartoon illustrating the broadening of
a pseudocritical signal due to the averaging over
a centrality interval.

One can calculate [11] the transition lines
representing pseudo-first-order transitions, char-
acterized by a discontinuity in the approximate
order parameter, the chiral condensateσ , and the
production of latent heat through the process of
phase conversion. The CEP is then identified as
the end of those lines. We find that those lines are
displaced to the region of higherµ and shrinked
by finite-size corrections. The former effect is
sensibly larger when PBC are considered, indi-
cating that the presence of the spatial zero mode
tends to shift the transition region to the regime of
larger chemical potentials. Both boundary condi-
tions reproduce the infinite-volume limit forL &

10 fm. Figure 2 shows the corresponding displacement of the pseudocritical endpoint, comparing
PBC and APC: both coordinates of the critical point are significantly modified, andµCEP is about
30% larger for PBC. Our findings for the corresponding isentropic trajectories in theT − µ plane
are shown in Figure 3, comparing the infinite-volume limit with the finite system withL = 2 fm in
the case with APC. For sufficiently high temperatures, the isentropic lines in thethermodynamic
limit are reproduced, while large discrepancies are found around and below the transition region.
The reader is referred to Ref. [11] for further details and plots.

Our results clearly indicate that finite-size corrections to the chiral phase diagram at volume
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scales typically encountered in HICs can be large and therefore different signatures of the CEP
should be affected. First of all, signatures related to the nonmonotonic behavior of fluctuation
measurements are actually probing the pseudocritical peak that would occur at significantly largerµ
as compared to the usual expectation in the thermodynamic limit. Figure 3 indicates that signatures
based on the focussing of isentropic trajectories could probe a quantitatively different scenario
due to the finiteness of the systems created at HICs. It is also interesting to note that, since the
system size realized at HICs depends on the centrality of the collision, measurements obtained
as averages over not sufficiently small centrality windows could broadenthe already smoothened
pseudocritical peaks (as illustrated in Figure 4), helping to hide it in the background. Of course,
the width of the centrality bins in data analysis is also bounded from below so that the statistics is
enough to guarantee reasonable statistical errors.

3. Finite-size analysis as a tool for searching the CEP in HICs

Now that we have argued that finite-size corrections to critical phenomenain the context of
HICs can be sizable, we can approach this issue from a different perspective with the aim of taking
advantage of this feature in the experimental search for the CEP.

As is well-known [16, 17, 18], the second-order transition that occursat the CEP in the ther-
modynamic limit is characterized by a divergent correlation length and by the property of scale
invariance. These constraints in the thermodynamic limit are translated into real,finite systems as
the existence of finite-size scaling (FSS) [19, 20, 21] in the vicinity of criticality. The phenomenon
of FSS can be rigorously proved through a renormalization group analysis and is extensively stud-
ied and successful in condensed matter physics (cf. Ref. [22] for anexample within the context of
spin glass transitions in disordered Ising systems).

One can state the FSS via its consequences on the correlation functions of the order param-
eter. In the FSS regime, any correlation functionX(T,L) of the order parameter does not depend
independently on the external parameterT and on the sizeL of the system, having the following
scaling form [19]:

X(T,L) = Lγx/ν fx(tL
1/ν) , (3.1)

wheret = (T−Tc)/Tc represents a dimensionless measure of the distance, in the external parameter
domain, to the genuine CEP (in the thermodynamic limit),γx is a dimension exponent andν is the
universal critical exponent defined by the divergence of the correlation length. The scaling form
in Eq. (3.1) implies (and is implied by)3 the existence of ascaling plotin which all the curves for
different system sizes collapse into a single curve, as illustrated in Figure 5.

Therefore, a systematic procedure to search for a CEP is to obtain an ensemble of data with
nontrivial size dependence for a given correlation functionX and look forTc, γx andν such that
the size dependence disappears in the appropriate scaling plot. The same values ofTc andν should
then generate collapsed curves for all observables directly connectedto any correlation function

3One can consider the case in which the system is exactlyon the CEP (cf. the talk by W. Yuanfang in this conference
and Ref. [23]), thent = 0 and the scaling relation Eq. (3.1) reduces toX ∝ Lγs/ν . This is a necessarybut not sufficient
condition for the presence of FSS in a given data set and, therefore, itdoes not imply the presence of a CEP.
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Figure 5: On the left, the normalized correlation function is shown asa function of external parameterT,
with different curves corresponding to different system sizes. The plot on the right illustrates the collapsing
of curves in the appropriate scaling plot.

X; the only free parameter in this second stage being the dimension exponentγx. If the scaling is
found, then one not only concludes that thereexistsa CEP in the vicinity of the external parameter
domain of the analyzed data, but also determines, in the process, the locationof the genuine CEP
(in the thermodynamic limit) and its critical exponents.

Another interesting feature of the FSS as a tool for searching the CEP is that one can test for the
FSS hypothesis even if the data set is restricted to regions only above (or below) the CEP, provided
the system is in the vicinity of the criticality. In a realistic case, the collapsing of curves should be
realized within experimental errors and a careful statistical treatment should be implemented.

The data generated in HICs indeed correspond to measurements from an ensemble of systems
of different sizes, so that in principle one can implement a FSS analysis in thiscase. In order to
apply FSS as a tool for searching the CEP in HICs, it is necessary to translate the scaling relation in
Eq. (3.1) to the physics scenario encountered in HICs. Since the scaling relation will hold for any
variablest ′ andL′ directly proportional to the real dimensionless distancet to the CEP and sizeL of
the system, respectively, we need to determine experimental observables only up to normalization
constants.There also exist scaling relations for variables proportional topowers oft andL; the only
difference in this case is that the parametersγx andν obtained in the FSS analysis will not be the
genuine critical exponents of the theory.

Let us now translate the scaling relation, Eq. (3.1), to the HICs scenario. Firstly, the observ-
ables that satisfy FSS relations are those directly connected to the different correlation functions
of the chiral order parameter, that should be related to fluctuations in the final spectra at HICs via
mesonic decays. The size of the systemL is taken to be proportional to the root of the number
of participants, due to the approximately two-dimensional initial condition. Finally, describing
the distance to the CEP in HICs is a more subtle issue, because there are two important external
parameters4: the temperatureT and the chemical potentialµ. Determining (or even defining, in
the case of a dynamics far from equilibrium) the direction in which the system created in a HIC

4Actually, there are also two different critical exponentsνT andνµ , since the divergence of the correlation length
will be different in these two directions, as it happens for the Ising modelwith temperature and external magnetic field.
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approches a given point in the phase diagram is an extremely difficult task. Fortunately, the imple-
mentation of a FSS investigation does not require this information, but rather areasonable measure
of the distance between the CEP and the external parameters that characterize the data to be ana-
lyzed. As suggested by the success of thermal statistical models, the final measured particle spectra
should reflect thefreeze-outvalues ofT andµ, that are constrained to the freeze-out curve in the
T − µ plane and, therefore, do not represent totally independent parameters. Since the freeze-out
curve is naturally parameterized by the center-of-mass energy

√
s of the collision, one simple and

reasonable prescription is to define the distance, in the external parameterspace, to the CEP via
δs≡ (

√
s−√

sc)/
√

sc, where
√

sc is the center-of-mass energy corresponding to the genuine CEP.
Finally, we arrive at the scaling relation for the case of HICs:

X N−γx/2ν
part = fx

(√
s−√

sc√
sc

N1/2ν
part

)

. (3.2)

In practice, the search for FSS in HIC data is equivalent to verifying if thescaling relation in Eq.
(3.2) is compatible with the measured observables. This can be implemented via conveniently
constructedχ2 methods (as the one proposed in Ref. [11]), aiming at the minimization of the
distances in the scaling plot in such a way that the curves collapse into a singleone.

Of course, there are many caveats to be overcome and kept in mind in applying this technique
to HIC data. As most of the proposed signatures for the CEP in HICs, the applicability of a FSS
analysis to the measurements relies on the fact that the critical correlations are not completely
washed out by the evolution in the hadronic phase nor hidden within errorsdue to the large thermal
background. Nevertheless, it represents a complementary and independent tool for the search of
the CEP that may help constructing a robust and consistent interpretation ofthe critical behavior of
the strongly interacting matter generated in current and in future heavy-ioncollider experiments.

Finally, as stated above, we have completely disregarded dynamical phenomena in the discus-
sion of finite-size effects. In an out-of-equilibrium approach, one hasto consider the fact that it
takes a finite time for the correlation length to grow, even on the CEP. If the lifetimeof the system
is a more constraining bound than its actual size, the correlated domains will not grow as large as
the system and this original formulation of the FSS analysis would not be applicable. However, in
heavy-ion collisions the lifetime of the system is also an energy- and centrality-dependent quantity
and, in this case, one alternative idea would be to try to simply extend this analysis using a “hori-
zon” size (defined via the lifetime and the sound velocity, or ultimately the speed of light) instead
of the size of the system.

4. Final remarks

In these proceedings, we have complemented the discussion (originally addressed in Ref. [11])
on different aspects of finite-size effects that render crucial features in various proposed signatures
of the QCD critical endpoint in HICs. We have discussed how the phase structure and the critical
behavior of the strongly interacting matter created in HICs should differ from the usual picture
in the thermodynamic limit. Using two different approaches, we argue that the finiteness of the
system created in HICs may play an important role in the search for the CEP, especially at the
Beam Energy Scan program [24] to start soon at RHIC-BNL.
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In particular, we have estimated the amplitude of the shifts of the critical line and the position
of the CEP in the chiral phase diagram at HIC size scales and shown that the modifications can
be large and generate sizable effects in different signature scenariosfor the CEP. We have further
discussed the implementation of FSS analysis as a complementary tool for the search of the CEP,
taking advantage of the fact that HIC data are actually measurements from an ensemble of systems
of different sizes.

Finally, we believe that the results above strongly suggest that, in the context of HICs, the
finiteness of the system is a crucial feature whose consequences should be thoroughly investigated
in the different phenomena characterizing the new state of matter probably created in these experi-
ments.
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