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1. Introduction

In recent years, we observe that higher energy, higher luminosityehjgecision, more mas-
sive particles at LHC and ILC, but also at low energy meson factgrlead to completely new
demands on the efficient evaluation of Feynman diagrams, including:

e need of some 3-point 4-point two-loop diagrams, including double boxes,
e need of many-point one-loop diagrams,

with massive and massless particles participating, leading to complicated naeypsmblems.

A few of the approaches to answer the requests will be shortly introdeoedentrating on
our own activities and on publicly available packages. They are devottg:tevaluation ot -
loop n-point Feynman integrals of tensor raRkwith loop momentd;, with E external legs with
momentape, and withN internal lines with masses and propagators/D;:

I{a} . eLEME .ddkl...ddkL NalmaR
(in/2)t ) DI*...D{"...D{V 7

Di = (of —n¥) = [Zc!midﬁpe] -, (1.2)

where we caltl = 4 — 2¢ the generic dimension anglthe index of the propagator. The numerator
may contain a tensor structure, e.g.:

(1.1)

N =1, KiK. k@, (1.3)

There exists no general algorithm for the calculation of arbitrary Feynimagrals, but there
exists a rising number of tools, and some of them are publicly available. Ireftiesections, | will
comment on recent developments around three of them.

The Feynman integrals may be evaluated in quite different ways. One misg flmrthem
(systems of coupled) difference or differential equations, or one reak a (minimal) basis of
(scalar) master integrals, and solve only the latter ones, etc. Often thenkeywarameter rep-
resentation is useful, which replaces thdimensional momentum integrations by an appropriate
number of parameter integrals. Feynman parameters are introduced kptégsantation:

1 F(v1+ +vN X o (X — )
- d d 1.4
DVDY..DYN ~ T(v / a / w x1D1+...+xND ) - (14)

with Ny = v1+...vy. The denominator dfi®} contains, after introduction of Feynman parameters
X, the momentum dependent functiod with index-exponenh, :

(n.|2)—(vl+...+VN) — (X1D1+---+XNDN)_NV — (k|MIJkJ —ZQJkJ+J)_NV (15)

1For LHC and ILC, the statement is evident. At meson factories, we hamerid e.g. luminosity determination
with Bhabha scattering at two-loop accuracy. For details on prospedutgatuminosity®- andB-factories, see e.g. the
recent mini-reviewml] and references quoted therein.
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HereM is an(LxL)-matrix, Q = Q(X;, pe) anL-vector and) = J(x;, ", Pe;Pg ). TheM,Q,J are
linear inx;. The momentum integration is now simple. Shift the momérgach thatr? has no
linear term ink, k = k+( 1HQ, andn? = kMK — QM~1Q+J. For a scalar Feynman integral e.g.
one gets:

D

r D N U (X)Nva(L+1)/2
| = (_petee TN 3b) 2 (/ []d XI5 =t 1.6

with

UL(x) = (detM), a.7)
FL(X) = (detM) u? = —(detM)J+QM Q. (1.8)

For one-loop functions itidJ; (x) = detM = 1= x; and sdJ; ‘disappears’. Further, the construct
F1(X) = —J + Q? may be made bilinear imXj: Fi(x) = —=J(Ix) +Q% = S Aijxixj. For tensor
Feynman integrals the expressions are a little more involved, but they hagartre structure:
sums of rationals in the combined with non-integer powers df(x) andF (x [E B, 4.

2. AMBRE.m

There is an elegant approach to thimtegrations. In thé (x)-function (1.B) one may change
sums of monomials ix into products (as often as necessary), by Mellin-Barnes transforrsation

e.g.:

1
A9 +B(1)§Hx]

2mr' L/da )39 [B(t) ]3O T (at o)l (~0). (2.1)

—|oo

After this, one may perform theintegrations:

1N - 1 - T(an)
./o de] X ( le.> O!1+ Tran) (2.2)

Let us look at an example, the integké8l 4mi, see Figurg]12 In a loop-by-loop approach, after
the first momentum integration one gets hdre- 1 and a first-function ), which depends yet
on one internal momentukq:

f1 = m2 [X[2] +X[3]+X[4]]172 - s X[2]X[4] - PR k1+pl,ni X[ 1]X 2]
- PR k1+pl+p2,0] X[2] X[3] - PR k1-p2, m X[ 1] X[ 4]
- PR k1,0] X[3]X 4] ,

leading to a 7-dimensional MB-representation; after the second momentigraint@, one has:

f2 = mh2 [X[2] +X[3]172 - s X[2]X[3] - s X[1]1X[4] - 2s X[ 3] X[ 4],

2The naming convention foIIowH[S].
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leading to another 4-dimensional integral. After several applications ofeBafirst lemma, an
8-dimensional integral has to be treated.

The packagAVMBRE. mis designed for a semi-automatic derivation of Mellin-Barnes (MB)
representations for Feynman diagrams; for details and examples ofaiieeserebpagét t p:

/I prac. us. edu. pl / ~gl uza/ anbr e/ . The package is also available framht p: / / pr o-

j ects. hepf orge. or g/ nbt ool s/ . Version 1.0 is described ifl[4], the last released version is
1.2. We are releasing now version 2.0, which allows to construct MBesgmtations for two-loop
tensor integrals. The package is yet restricted to the so-called loop-by-loagpagip which yields
compact representations, but is known to potentially fail for non-plarologies with several
scales. An instructive example has been discussédl in [5].

For one-scale problems, one may safely appBRE. mto non-planar diagrams. For our
exampleVel 4L, one gets e.g. with the 8-dimensional MB-representation scetched almve th
following numerical output after running aldaB. m[E] (see also the webpade t p: / / pr o-

j ects. hepforge. org/ nbt ool s/), ats= —11.

1
V614m (—s)% = —0.0522082_ —0.17002+ 0.25606¢ + 4.67 2+ 0(e%). (2.3)

In simpler problems, MB-representations are a good starting point fdytana solutions,
typically by summing multiple sums of residua. Let us take as an example the di&&iagm
appearing in the one-loop NLO procegs— qgg, shown in Figur¢]1, leading to (factorizing) two-
fold infinite sums. The steps of evaluation follow cIosd][yI]I?, 8], and weadpce here the result
for the IR-divergent part in the infrared limit =t = ty, 4+ 1, with m= 1 andt = (p; + p2)2, in
closed form:

F512m(IR) = J—22+J +Jo, (2.4)
Jq= (_t;;an llog(—s) + log(V2/s) +log(va/s)], (2.6)
I e I

Whereever necessagihas to be replaced ks#-i€. The termJy develops infrared endpoint singu-
larities from the phase space integrations, due to the proportionahpy-efp, p3 andv, = psaps to
the gluon momentunps.
Similarly, one gets for the QED pentagbbl 3m
J_
v./s o — t"

J1 = Z 25 Vi (=5) ZenZO<2r:])(2r1—|—].)7

F513m(IR)

(2.9)

3We made no attempt here to simplify the situation by any of the numerous #ritkeeformulations etc. known to
experts.
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Figure 1: The master integralg6! 4mL andF5| 2mandF51 3m

v./s e & )"

0= Z s v Y zgn;’<2n>(2”+1)
n

[—3sl(n) +25,(1+2n)] . (2.10)

The answer is less singular &) but more complicated. The inverse binomial sums \8itfn) and
Si(2n+1) in J are performed in[{8]. The expression quoted thereJfarontained instead of the
factor (vi /s)~%¢ its expansion ire, thus developing terms depending on powers ¥ }fs). This
was a disadvantage notations for the subsequent regularization ofabe gpace integrals, so the
present result is more appropriate.

3. CSectors.m

For Euclidean kinematics, the integrand for the multi-dimensiariategrations is positive
semi-definite. In numerical integrations, one has to separate the pales4nand in doing so one
has to avoid overlapping singularities. A method for that is sector decompusifibe intention
is to separate singular regions in different variables from each othés,racely demonstrated by
an example borrowed fronh [lL1]:

1 1 1
= /o dx/o Ve 1wy

_/1 dx /1 dt +/1 dy /1 dt (3.1)
T Jo xit(atbe Jo the[14 (1—x)t] ' Jo ylt(atbe Jo tlrae[14 (1—y)t]’ '

At several occasions, we used the packaget or _deconposi ti on [[Ld] (built on the
C++ library GINAC [23]) for cross checks and felt a lack of simple treattwd Feynman integrals
with numerators. For that reason, the interf@Sect or s was written; it will be made publicly
available soon. The syntax is similar to that™dfBRE. The program input for the evaluation of the
integralV6! 4ml is simple; we again choose= 1,s= —11, and the topology may be read from
the arguments of propagator functideix:

4There are quite a few recent papers on that, ﬂgﬂ @ 2, 10], andaviesvs are given irm]D.Z].
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<< CSectors.m

Opt i ons[ DoSect or s]
Set Opti ons[ DoSectors, TenpFileDelete -> False, SetStrategy -> (C

nl =n2=n3 =n4 =n5 =n6 =n7 = 1;
m=1, s = -11;
invariants = {pl*2 -> m2, p2"2 -> m2, pl p2 -> (s - 2 mM2)/2},

DoSect ors[ {1},
{PR[ k1, 0, n1] PR[ k2, 0, n2] PR k1+pl, m n3]
PR[ k1+k2+p1l, m n5] PR kl1+k2-p2, m n6] PR k2-p2, mn7]},
{k2, k1}, invariants][-4, 2]

Here, the numerator is 1 (see the first argun{drtof DoSect or s), and the output contains
the functiondJ, andF:

Using strategy C
U = x3 x4+x3 X5+x4 x5+x3 x6+x5 Xx6+x2 (x3+x4+x6) +x1 (Xx2+x4+x5+x6)

F = x1 x4"2+13 x1 x4 x5+x4"2 x5+x1 x5"2+x4 x572+13 x1 x4 x6

+2 X1 x5 x6+13 x4 X5 Xx6+x5"2 Xx6+x1 X6"2+x5 x6"2+x3"2 (x4+x5+x6)
+X2(X3"2+x4"2+13 x4 x6+x6"2+x3 (2 x4+13 x6)) +x3 (x4"2+( x5+x6) "2
+x4 (2x5+13 x6))

Notice the presence ofla-function and the complexity of the-function (compared t&) = 1 and

f 1 andf 2 in the loop-by-loop MB-approach) due to the non-sequential, dire@eance of both
momentum integrals at once. BdthandF are evidently positive semi-definite. The numerical
result for the Feynman integral is:

1
V614m1(—s)% = ~0.052210_ — 0.17004+ 0.24634¢ + 4.8773e%+ 0(&3). (3.2)

The numbers may be compared fo2.3). We obtained a third numerical rdsaltyyasector
decomposition, with the Mathematica pack&ESTA [[L4]:

1
V614m1(—9)% = ~0.052208_ — 0.17002+ 0.24622¢ + 4.8746€%+ 0(&3). (3.3)

The most accurate result can be obtained with an analytical represerttaged on harmonic
polylogarithmic functions[[1q, 16] obtained by solving a system of difféadequations([[17]:

1
V614m1(—9)%* = —0.0522082g —0.170013+ 0.246253¢ +4.87500e% 4+ 0(£%).  (3.4)

All displayed digits are accurate here.
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4. hexagon.m

The Mathematica packadexagon v. 1.0 (19 Sep 2008) was released quite recently [30
Sep 2008] aht t p: / / ww zeut hen. desy. de/ t heory/ resear ch/ CAS. ht m . It may
be used for the reduction of one-loop tensor 5- and 6-point Feynmagratgesp to rank® =4 and
R = 3, respectively, to scalar 3- and 4-point Feynman integrals. The lattertbde evaluated by
some other package likeopTool s [[Lg,[19] (case of only massive internal lines)@D! oops
[Bd] (general case); both these packages make also W [ffl]. The formalism underlying this
reduction and a short decsription as well as numerical examples may e étsewhere[[24, 23,
Z,] so that we may hold this write-up short here. We only mention thaé# dot use Feynman
parameters, but is based on recurrence relations with dimensional &iftsip this approach,
we have shown quite recently how to cancel explicitely and completely theseymwers of the
leading Gram determinarftexagon was the first publicly available tensor reduction program for
5- and 6-point Feynman integrals with arbitrary internal masses. NowGalsBMVD5 [R7] became
public, but in the released version it handles so far only massless inpemtiales.

5. Summary

We described new features of the packa@eBRE andhexagon and of the interface
CSect ors.
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