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A purely numerical method, Direct Computation Method is applied to evaluate Feynman integrals.
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results such as one-loop 5-point and two-loop 3-point integrals.
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1. Introduction

This paper describes a computational method
for the loop integrals. This method is named as
Direct Computation Method and its advantage
is handling singularities in a purely numerical
way which appear in the denominator of the in-
tegrand . We have already computed several
diagrams with one-loop and two-loop such as

e One-loop vertex and box diagrams with/
without infrared divergence[l, 2, 3, 4],

e Two-loop planar and non-planar vertex
diagram[5].

In this paper, we present the brief description
of this method and show another examples of
loop integrals.

2. Direct Computation Method

This method is based on a numerical multi-
dimensional integration to get the sequence of
the integration approximations of the loop inte-
gral, {I(g)},[=0,1,2,...,and an extrapolation
technique for the convergence of the sequence.
Here, the sequence of {g},/=0,1,2,...is given
as & = & x a~! and g and a are real constants
such as 256 and 2 respectively[1]. When we
take the limit of € — 0, we get the result of the
loop integral.

In Direct Computation Method, the inte-
gration routine plays a central role. We have
been using two different integration routines,
DQAGE and DE. The former, DQAGE, is an adap-
tive algorithm routine in QUADPACK [6]. We
call the combination of DQAGE and the extrap-
olation technique DQ-Direct Computation Method
in this paper. The latter, Double Exponential
formulas[7], shortly DE, uses ranh(m /2 x sinh(t))
transformation for numerical integration. We
call the combination of DE and the extrapola-
tion technique DE-Direct Computation Method
in this paper.

For both integration routines, we are com-
bining Wynn’s € algorithm [1, 8] or Aitken ex-
trapolation to accelerate the convergence.

3. Examples of the Computation

3.1 One-loop box contributing to gg — bbH

The first example is the the one-loop box
diagram with complex masses contributing to

gg¢ — bbH in Fig. 1. In the computation we

Figure 1: Box diagram contributing to gg — bbH

Graph 42

produced by GRACEFIG

take\/s = 353 GeV as an example and we fix
V31 = 1/2(m?+M3,) ~ 271.06 GeV. As for
the mass parameters, m, = 174 GeV, My = 80.3766
GeV and My = 165 GeV. We introduce the com-
plex masses as m? — m? — im,I'; and Mg, —
M%, —iMyTy with T, = 1.5 GeV and Ty =2.1
GeV. The results of the numerical computation
agree perfectly to the analytic results reported
by L. D. Ninh et al. [9] as in Fig. 2 and Fig. 3.
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The second example is the one-loop pen-
tagon diagram in Fig. 4. The loop integral is

1
ﬁ.
3.1

1 5
1= / dxydxydx3dxsdxsd (1 — in)
0 i=1

Here, D(x) is given as

D(x) ;

m

o
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Figure 2: Integration result of the real part with
complex masses as a function of /s>. Our results
agree to the 5- or 6-digit accuracy of Ninh’s.
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Figure 3: Integration result of the imaginary part
with complex masses as a function of ,/s3. Our
results agree to the 4-, 5- or 6-digit accuracy of
Ninh’s.
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— X1X281 — X2X382 — X3X483 — X4X554
— X5X185 —X1X3812 — X2X48523 — X3X5534

— X4X18545 — X5X2851, (3.2)

where m; = m3 = mq = 0.5 x 107> GeV and
my =ms = 91.00 GeV. As an example, one nu-
merical result is shown in Table 1 with a set of
parameters corresponding to one phase space
point (Table 2). These agree to the results by
T. Ueda et al. [10]. The elapsed time for the
computation is about 9.3 hours for the real part
using AMD Opteron 2.2 GHz CPU.

3.3 Two-Loop Self-energy

The third example is the two-loop self-energy

Figure 4: Diagram of ete™ — ZZ — ete™Z

Graph 2725

produced by GRACEFIG

Table 1: Numerical result of one-loop pentagon.

Result Error
real 04118519 x 1013 0.410 x 10717
imag. —0.2336871 x 1072 0.619 x 10~16

Table 2: A set of parameters corresponding to one
phase space point

Parameter | value

S12 100000.00000

Sis -14146.0960752976
S»3 -30471.3126018059
S34 32384.1496580698
S5 37833.5682283554

diagram in Fig. 5.

The formulae of the loop integral is [11]

) 1 5 1
167°)° 1= | dxidxodx3dxsdxsd(1— )=
(1677) /0 x1dxpdxsdxadxs S ( ZXZ)CD

i=1

3.3)
Here, D(x) is given as
D(x) = —p*(xs(x; +x3) (x2 +x4)
+ (x142x2)x3x4 + (X3 +X4)x1X2)
+ O, (3.4)

C = (x1+x2 +x3 +x4)x5 + (X1 +x2) (X3 +2x4),
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Figure 5: Diagram of the two-loop self-energy

5
M =Y xim;. (3.5)
i=1
We show the numerical results with two
sets of the mass assignment shown in Table 3.
The results with the first set are compared with
ones by Kreimer [12] and by Kurihara ef al.
[13] in Fig. 6. The results with the second set
are compared with ones by Kurihara et al. [13],
by Bauberger et al. [14] and by Passarino et al.
[15] in Fig. 7. In this computation, the elapsed
time for the computation becomes longer around
the singularities.

Table 3: Set of mass assignment in GeV

Set#  my my ms niy ms

1 150.0 150.0 150.0 150.0 91.17
2 V1.0 V2.0 V40 V5.0 V3.0

Figure 6: Numerical results of the loop inte-
gral with Set#1 mass assignment as a function of
p2/150.02. The results of [12, 13] are divided by
the value of p?.
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Figure 7: Numerical results of the loop integral
with Set#2 mass assignment as a function of p?.
The sign of our numerical results is conformed to
[13, 14, 15].
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4. Parallel Computation

As we have described, the elapsed time for
the computation becomes longer to get the se-
quence {I(g)} in a good accuracy when the
singularity becomes steeper. To reduce the com-
putation time, parallel computing technique is
often used. We have developed the parallel code
of Direct Computation Method. We used MP T '
library which is widely used in the parallel com-
puting environment. We evaluated the speedup
of the parallel code of DQ - and DE- Compu-
tation Method taking the integrals of two-loop
vertex and one-loop box diagram as examples.
The results of the speedup are shown in Ta-
ble 4, Fig. 8 and Fig. 9. Both parallel codes
show a good speedup behavior.

S. Summary

In this paper, we presented several numer-
ical results of the loop integrals by Direct Com-
putation Method. This method is based on the
combination of the numerical integration and
an extrapolation technique. To reduce the com-
putation time we developed the parallel code

"Message Passing Interface
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Table 4: Speedup of the parallel code of DQ-Direct
Computation Method for the two-loop vertex dia-
gram with singularities. We use PPC 970 and PC
farm for the measurement. PPC 970 is IBM Blade
CenterJS20 with PowerPC 970 2.2 GHz CPUs. PC
farm consists of 16 Intel Xeon 3.06 GHz CPUs.

# of CPUs | PPC 970 | PC farm
1 1.00 1.00

2 1.53 1.50

4 2.99 2.54

8 5.50 4.54

16 13.31

Figure 8: Speedup of the parallel code of DE-
Direct Computation Method for the one-loop box
integral with (DE-xdl-s-positive) and with-
out (DE-xdl-s-negative) singularities. We
use CRAY XD1 for the measurement.
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Figure 9: Speedup of the parallel code of DE-
Direct Computation Method for the one-loop box
integral with (DE-bg-s-positive) and with-
out (DE-bg-s—negative) singularities. We use
IBM BlueGene/L at KEK for the measurement.
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and the results of the speedup measurement are
also shown.
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