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Dynamics of two bodies, which interact by magnetic forcessdnsidered. The model of inter-
action is built on quasi-stationary approach for electrgnadic field, and symmetric tops with
different moments of inertia of the bodies are considerede deneral form of the interaction
energy is discovered for the case of coincidence of mass aghetic symmetries. Since the
energy of interaction depends only on the relative positbthe bodies, then the considera-
tion is too much simplified in the c.m. system, notwithstaugdihat force is non-central. The
task requires the development of the classic Hamilton fismafor the systems of magnetically
interactive bodies, including the systems of magnets arstfoerconductive magnets (mixed sys-
tems). Hamilton motion equations are obtained on the bd$igson structure in the dynamic
variables area. Such an approach allows the equations tpbesented in the galilei-invariant
vector form in contrast to default definition in Euler’s agg)l Conservation laws following from
the system symmetry are considered. This variant of Hamilbomalism easily spreads in the
case of arbitrary number of magnetically interactive syrniméops. All equations with Poisson
brackets are tested with symbolic features of the MapleegsystFor the numeral modelling of
magnetic rigid bodies dynamics Maple and MATLAB packagesused. The obtained mathe-
matical model allows the possibility of orbital motion iretlsystem of magnetically interactive
bodies to be investigated.
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1. Introduction

This article describes the new results of investigating the dynamics of the tiwigteraction
of rigid bodies and continues the cycle of papers devoted to the investigétiontact-free equilib-
rium of rigid bodies in magnetostatics. These papers show that the magneticiite for a wide
class of magnetic bodies such as permanent magnets, inductance calsdsadjpictive and with
direct current) and their different combinations ("mixed" type systems)oeadescribed through
potential energy of their interaction received from the Lagrangian flismaof electromechanical
analogy. It was also shown, that there are such magnetic configurafioiggd bodies, including
superconductive elements, that the potential energy has the minimum. Stemsywith stable
magnetic equilibrium are called "Magnetic Potential Well"[1].

To investigate not only quasistatic models but also dynamic stable configura®nell as
to consider a larger number of tasks (confinement, scattering, orbital maticedequate mathe-
matical apparatus for investigating the dynamics of such systems is req8inetl. mathematical
apparatus is the Hamilton formalism, presented below.

It should be noted that the Poisson structures were used when tryingsgicaléy describe
the magnetic interaction of spins [2,3]. These papers do not considél spation of bodies, i.e.
spatial variables are absent. The energy of interaction given in thesespeannot be used even
for describing classic magnetic dipoles.

A more realistic description of magnetic interaction of two magnets was givert\bKuzoriz
based on the Lagrangian formalism [4]. But the mathematical apparatiseha&aes not give any
description of "mixed type" systems. Moreover, it is well known that theegaized coordinates
used (Euler’s angles) cannot correctly map all orientations of a rigigh mduich becomes apparent
in the peculiarities of the coefficients of the differential motion equations.

We developed a formalism which results in the coordinate-free, i.e. vemtior 6f motion
equations for the system of magnetically interactive bodies (including "miyes! gystems).

2. Hamiltonian formalism for two magnetic-inter acting bodies

As it is shown in [5,6] Poisson structures are a suitable basis for Hamiltaripgsn of
rigid body dynamics. The properties of Poisson brackets are fully detedhitith the structural
functions{x',x¥} and the structural tensdk.
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wherex',i = 1..dim(M) is a coordinate (generally speaking, local) system on the Poisson manifold
For a classical phase space wdtlebal coordinatesy, p',i = 1..n the structural tensor has the
form of (block) matrix, which results the known expression for a classiogsson bracket.

0
(2) Jap) = [_1 é]

We suppose that we consider only symmetric tops, i.e. the cases when two nmaénta@f
inertiaareequaly =1l,=1,.
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Such a restriction decreases the theoretic and practical value of thespcbmodel to a very
small degree only, but the benefits are so great that this case is wortieynof considered inde-
pendently.

Components of the moment with respect to a body are normally used, sincelttieti@nsor is
not time-dependent in the system related to the body. However, when a syotoeis concerned
it is more suitable to use the components of the montesnd the axis of symmetny with respect
to a stationary coordinate system. It is particularly important for the desaripfiseveral rotating
bodies interacting with each other, as the invariant (vector) descriptidynafimic variables can be
possible in this case.

If a system consists of such two bodies and the potential energy depelydsn the mutual
position of the bodies, we normally proceed to the c.m. system.

Therefore, the Poisson structure for a system of 2 magnetically intexdutigies has the
generatrices, p, V,m, V' ,m , whereF, p are orbital coordinates and impulsés;m andv’,m’
are axes of symmetry and moments of impulses of the 1st and 2nd bodytiesipe

Each of the 3 groups describes independent degrees of freedoeiptlkdhe structural tensor
is of a block form of the following kind

(3) J=| 0 Jyu O

and the kinetic energy of the system is as follows

(LH M 2
2

I n l a/ I
4 T(p?,Mm2,m?) = —p?+ —m?

wherea’ = Ii a’ = Ii m= i is the reduced mass of the system.
L 1

The following dynamic variables are Casimir functions for this Poisson stictu

!

(5) V?2=10"72=1;V M) =Mg=const;, (V' ,mM ) =Mz = const,

Proposition 1. Asit will be shown below the potential energy of thetype U (r,c,c ,c") describes
interaction for a rather wide class of magnetic bodies, where r = [F|;& = F/r;c = (&,V);c =
(@9 = (7.V").

There are many physical models for which it is known that the potentiabgraatequately
describes interaction and has a reduced form in the axisymmetric casearmit magnets - in
classical courses; superconductive elements - in the monograph drolechanics by White-
Woodson (within quasistationary approximation for electromaghetic fieldfesys consisting of
superconductive elements and constant magnets - in my Ph.D. thesis (alsoquikistationary

approximation for electromagnetic field).

Proposition 2. In the case of a permanent magnet having axisymmatric form, when the scalar
magnetic potential outside the body can be written as = ()(r,z) = @(r,rc), the potential energy
of its interaction both with a magnetic dipole and a "dumbbell" has theformU (r,c,c ,c"). Here
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Z is a dipole coordinate in the coordinate system, the axis Z of which coincides with the axis of
the magnetic symmetry of the body; r is the distance to the magnetic dipole from the datum point
located on the axis Z.

Specifically, we can consider a case with two «magnetic charges» sepaithiedfixed dis-
tance. Such a system, we will call it a dumbbell, modulates the field of a long thindey. The
potential energy for this system will have the form:

ron
EE
417 y SZ::H- \/r2+|/2+|//2+2r(8//|//d/_g/lrc/)_zglg//l/lucm’

wherek = /I, al, u,k are the length, magnetic moment of the dumbbell and the corresponding
«magnetic charge».

It is this system that we used to check the capability of the orbital motion in thensyaf two
magnets. The potential energy of the magnetic interaction of 2 bodies haantleefarm for the
cases: two "dumbbells"; two superconductive loops of a ring form; magtigole - superconduc-
tive loop of a ring form.

Hamiltonian of the system is given in the following expression

(7) H=T(p?,m2m?)+U(rc,c,c)

The motion equations for this Hamiltonian have the form

r=ah

Pp=—0U8— (9 UPS(V') +d UPS(V"));
@ ?’:a’(m’xv’);

m' =d,U@xv’)—daUu@ xv");

v =o' (M xv");

m" =0,U@xV")+d,U1 xv");

where the operatdP} is the projector on the plane perpendicular to the veétare. Pj(ﬁ') =
vV —ce
The components of the total momentum of the system are integrals of motion.

(9) j=

This is the result of symmetry considerations, but, besides, this can bkechleg direct calcula-
tion. Thus, the system of equations (8) should be supplemented with thensl@jaand (9).

These relations can be used to reduce the order of the system diffeegtidions. In partic-
ular, it is very easy to exclude for example the dynamic variablesing (9). Using relations (5)
and (9) it is possible to exclude#3 = 7 dynamic variables and have, in essence, a system of the
11th order.
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3. Application of Maple and MatL ab systems

Presently, the analytical possibilities of the computer algebra system (iasaitds the Maple
system) allow the complete symbolic modelling of our task to be realized, namely: tceled
structural tensor and check up the implementation of all properties, firali,ofacobi identity;
to conduct computation of the Poisson brackets between all dynamic variatéeesting for us
(see below); to deduce the Hamilton equations of motion; to check up the impldinerhthe
conservation laws in our model.

As an example of proposed Hamilton formalism application we checked anstiteydout
little known prediction of V.V. Kozoriz [8] about the possibility of stable orbitabtions in the
systems of cramped magnetically interacted bodies.

There is the Bertrand’s theorem in classical mechanics (sec.2,82t[fatés that all restricted
orbits in the central field are closed in two cases obly:= ar?,a> 0 andU = —k/r,k > 0.

Based on the given calculations and results [4] the uncritical generatizttbis theorem for
the case of non-centric forces is not correct. For example, gengiatigaf this kind were used as
a case against the «magnetic theory of matter»[8].

Orbital motion was modeled in the system of two dumbbells with the following parasaeter
For long cylindrical magnets d=0.0025 [m], h=0.02 [m] are the diameter agtHpm=0.0003828816
[kg]. Other parameters are = 3.87228183489 10’ [kg~*m2]; u = 0.15546875 pn¥]. Or-
bit radius and impulse were found from equality of centrifugal and magfetce. Choosing
Rorb=0.01[m] we gePyp=0.0006491INs]; Torp=0.037062129 [s].

For increasing the efficiency of computational modelling the motion equations gozled
in MatLab. Computational modelling showed stability of the orbital motion. The sysigcom-
plished 1000 turns for 11 minutes of modelling on a PC with the processomtiiReM 2.0 GHz
with RAM of 512 Mb. Thus there was no noticeable change of the orbitrpaters. In accordance
with predictions of V.V. Kozoriz the system of two magnetic dipoles does noiotstrate stable
orbital motion.

During the computation process the constancy of Casimir functions and thentwtzent of
momentum conservation laws of the system were checked.

4. Summary

The Hamilton formalism has been developed which results in a coordinaekke vector
form of motion equations for a system of magnetically interactive bodiesqedwthat the axial
symmetry of distribution of the mass of a body and its magnetic properties is the same

In the Maple system of symbolic computation the procedure of calculatingdPolsackets
has been programmed for a system of 2 magnetically interactive symmetric tops.

Using symbolic methods the following has been checked: the Jacobi identiystouctural
tensor of the Poisson structure; Poisson brackets between all dynataigesa which are of inter-
est for our problem; system motion equations; conservation of the comizoofehe total moment
of momentum.

The orbital motion of two magnets ("dumbbells" model) has been modeled numehoétly
in Maple and MatLab. During computational modeling the uniformity of Casimir tions and
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integrals of motions have been checked. The example demonstrates the stdliltiégyorbital
motion of magnets with certain relations between their parameters.
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