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1. Introduction

New physics signals at the LHC must be extracted from large QCD backgrounds that must be
known beyond leading order. While Feynman diagram techniques providean in principle method
of performing these NLO calculations, these techniques become increasingly unwieldy as the num-
ber of external particles increases due to a dramatic growth in the number ofdiagrams that must
be calculated. Unitarity methods provide an efficient alternative for calculating amplitudes with
large numbers of external particles. In this article we briefly review the underlying technique be-
fore discussing recent implementations. In particular we present the canonical basis approach [1]
which yields compact, manifestly rational expressions for one-loop amplitudes. We illustrate this
approach with reference to seven gluon scattering.

2. The Structure of One-Loop Amplitudes

Although we don’t actually use Feynman diagram techniques in our calculations, the fact that
these techniques exist does provide information about the form of one-loop amplitudes which we
can use to specify the structure of the amplitudes we are interested in. Several of the steps outlined
in this section are applicable to both the Unitarity and Feynman diagram approaches.

Colour Ordering

The full tree-level amplitudes forn external gluons,A tree
n , in aU(Nc) or SU(Nc) gauge theory

can be obtained by summing over a set of colour-ordered partial amplitudes,Atree
n (σ), multiplied by

an associated colour-trace (for a review see [2]),

A
tree

n ({ki ,λi ,ai}) = gn−2 ∑
σ∈Sn/Zn

Tr(Taσ(1) · · ·Taσ(n))×Atree
n (k

λσ(1)

σ(1) , . . . ,k
λσ(n)

σ(n) ) , (1.1)

whereki , λi , andai are respectively the momentum, helicity (±) and colour-index of thei-th exter-
nal gluon andg is the coupling constant.Sn/Zn is the set of non-cyclic permutations of{1, . . . ,n}
and theU(Nc) (SU(Nc)) generators,Ta, are normalized such that Tr(TaTb) = δ ab.

A similar decomposition is possible at one-loop [3]. In this case there are two traces over
colour matrices and one must also sum over the different spins,J, of the internal particles circulat-
ing in the loop.

All of the contributions to a one-loop amplitude can be obtained by summing permutations of
the leading in colouramplitudes [4], hence we focus on these.

Integral Reduction

In the Feynman diagram language, each contribution to the one-loop amplitudeis of the form,

In( f p(k)) =
∫

d4k
f p(k)

∏n
i=1

(

(k−Pi)2 + iε
) , (1.2)

where f p(k) is a polynomial of degreep in the loop momentum,k. Using propagator factors as
a basis for terms in the numerator allows a simultaneous reduction in the degree of the numerator
polynomial and the number of propagators,

In( f p(k)) → ∑
j

Cj I
j
n−1( f p−1(k)). (1.3)
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In general this process can be iterated to yield a sum of pentagon integrals[5]. Further reduction
is possible at the integral level [5, 6]. For massless theories reduction allows each amplitude to be
expressed in the form,

A1−loop
n = ∑

i

ci I
i
4(1)+∑

j

d j I
j
3(1)+∑

k

ekI
k
2(1)+R, (1.4)

whereI i
4(1),I j

3(1) andIk
2(1) are scalar box, triangle and bubble functions respectively andci , d j , ek

andR are rational functions of spinor products.

Supersymmetric Decomposition

In super-Yang-Mills theories the contributions to gluon scattering due to different supermulti-
plets circulating in the loop can be decomposed into single particle contributions,

AN =1 vector
n ≡ A[1]

n +A[1/2]
n , AN =1 chiral

n ≡ A[1/2]
n +A[0]

n , AN =4
n ≡ A[1]

n +4A[1/2]
n +3A[0]

n .

(1.5)
For spin-0 we always consider a complex scalar. Throughout we assume the use of a supersymme-
try preserving regulator. Inverting these relations we have,

A[1]
n = AN =4

n −4AN =1 chiral
n +A[0]

n , (1.6)

which expresses the amplitude of interest in terms of two supersymmetric amplitudes and one with
a complex scalar circulating in the loop [4].

For supersymmetric amplitudes (1.4) simplifies due to cancellations within the loop-momentum
integrals. ForN = 1 amplitudes the purely rational term,R, is absent [7], while forN = 4 am-
plitudes only boxes appear [4].

Spinor Helicity

For a massless momentum,ki , we can define two component commuting spinor variables via,

λ i
mλ̄ i

ṅ = ki
νσν

mṅ. (1.7)

For massless Weyl spinors|i±〉 with momentumki and chirality± we can define spinor inner-
products [8, 2],

〈i j 〉 ≡ 〈i−| j+〉 = εmnλ i
mλ j

n , [i j ] ≡ 〈i+| j−〉 = −εṁṅλ̃ i
ṁλ̃ j

ṅ . (1.8)

These spinor products are related to the momentum invariants by〈i j 〉 [ j i ] = 2ki ·k j ≡ si j .
Colour-ordered amplitudes for tree level gluon scattering are particularlysimple in this lan-

guage: amplitudes with less than two distinct helicity legs vanish and the maximally helicity vio-
lating (MHV) amplitudes are given by the Parke-Taylor formula [9],

Atree
n (1±,2+, . . . ,n+) = 0, Atree

n (1+, .., j−, ..,k−, ..,n+) = i
〈 j k〉4

〈12〉〈23〉 · · · 〈n1〉
. (1.9)

3. Unitarity Methods

The Unitarity method utilises the process ofcutting propagators [10]. To cut a propagator
((l −Q)2 + iε)−1 we insert a factor of((l −Q)2 + iε)δ ((l −Q)2) into the loop momentum integral
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and thus focus on the behaviour of the loop integral in the vicinity of the pole inthis propagator.
A pair of propagators,((l −Q)2 + iε)−1 and ((l −Q−P)2 + iε)−1, in the integrand of the full
loop integral will introduce (poly-)logarithms involvingP2 into the full integral. Cutting these
propagators reproduces the coefficients of these logarithms [7]. The coefficientsci , d j andek in
(1.4) can thus be determined by analysing all possible cuts of two propagators. The full amplitude,
including the rational pieces, can be computed if the cut legs are kept in 4−2ε dimensions [11] or
by using on-shell recursion [12].

Cutting two propagators in a Feynman diagram splits the integrand into a product of two on-
shell factors. Summing all the Feynman diagrams gives tree amplitudes on eitherside of the cut
(Fig.1) and the cut integral takes the form,

C =
∫

DLIPS Atree
left (−l1,1,2, ..,m, l2)×Atree

right(−l2, p, ..,s, l1). (1.10)

Atree
left Atree

right

l2

l1

m

1
2

m

s

p

Fig.1 A double cut forms two tree amplitudes

Evaluating/manipulating the cut integral allows us to identify the coefficients of those boxes, trian-
gles and bubbles on the right had side of (1.4) which contain these two propagators.

Cutting two propagators restricts the loop momentum to the surface of either a sphere or hy-
perboloid. Cutting more propagators further restricts the cut integration and the number of basis
functions involved. Cutting three propagators leaves a one dimensional integral which yields some
box and a specific triangle coefficient [13], while cutting four propagators replaces the integration
with a sum over one or two momenta and algebraically yields a specific box coefficient [14].

In recent years considerable advances have been made in systematisingthe process of extract-
ing the coefficients of the basis integral functions. Analytic implementations have used fermionic
integration [15], direct extraction [16] and integrand level reduction [17]. The last of these has been
implemented numerically [18] as has a variant that employs integer-dimension cuts to determine
complete amplitudes, i.e. including the rational pieces [19]. A further numerical implementation
uses on-shell recursion to compute complete amplitudes [20].

4. The Canonical Basis Approach

The approach we adopt recognises that there are a limited number of distinct structures that
appear in the cut integral. By determining the contribution of each structure tothe relevant coeffi-
cients we construct a canonical basis that can be used for any amplitude.This approach produces
compact, explicitly rational results. We use atop downstrategy, using quadruple cuts to determine
the box coefficients, triple cuts for the triangles and traditional double cuts for the bubbles. We
illustrate the process with some example bubble calculations.
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Simple Canonical Forms

Consider the following term that can arise in the cut integrand:

H1 =
〈al〉
〈bl〉

=
[b|l |a〉

(l +kb)2 . (1.11)

This is a linear triangle contribution which reduces to a scalar triangle plus a bubble contribution.
As discussed above, we choose to obtain the triangle contribution from a triple cut and extract
just the bubble contribution from (1.11).The particular method used to determine a given canonical
form is not important, explicit integration is straight forward in this case.

H1|bubble≡ H1 =
[b|P|a〉
[b|l |b〉

. (1.12)

The normalisation is such that an integrand of 1 contributes 1 to the bubble coefficient. Similarly,

G1 =
[Bl]〈lc〉〈ld〉
〈la〉(l +Q)2 , (1.13)

gives box, triangle and bubble contributions.

G1|bubble≡ G1 =

(

[B|P[Q,P]|a〉〈c|[Q,P]|d〉
8∆〈a|QP|a〉

−
[B|P|a〉(〈ca〉[a|P|d〉+ 〈da〉[a|P|c〉

2〈a|QP|a〉[a|P|a〉

)

, (1.14)

where,∆ = P.Q2−P2Q2.

The full basis requires forms with higher powers of loop momenta in the numerator. These
can be found athttp://pyweb.swan.ac.uk/˜dunbar/sevengluon.html.

A real calculation

As an example of a real calculation we take the amplitudeAN =1(1−,2+,3−,4+,5+,6+,7−)

and consider the(1,2) cut. To evaluate this cut we need two trees: one is 4-pt MHV and the other
is 7-pt NMHV. The latter is naturally expressed as a sum of six terms. We will analyse one of these
terms explicitly to illustrate the technique:

Atree
piece(l

−H
1 ,−lH

2,3
−,4+,5+,6+,7−) = i

[4|P56|7〉3

〈56〉〈67〉 [34]
[4|P56|7〉3〈7l2〉

2−H 〈7l1〉
1+H

〈l1 l2〉 [3|(l1−l2)|7〉〈7|P56P34|l2〉〈7|(l1−l2)P34|5〉
.

(1.15)

The corresponding cut integrand is then,

C =
[4|P56|7〉3

s12[12]〈56〉〈67〉 [34] [3|P12|7〉〈7|P12P34|5〉
∑
H

[2l1]
2+H [2l2]

1−H 〈7l2〉
2−H 〈7l1〉

1+H

[l11]〈7|P56P34|l2〉
. (1.16)

As we would expect for a supersymmetric theory, summing over the spins of the internal particles
reduces the degree of the numerator polynomial,

C →
[4|P56|7〉3〈17〉2

〈21〉〈56〉〈67〉 [34] [3|P12|7〉〈7|P12P34|5〉
〈1l2〉〈7l2〉

〈2l2〉〈7|P56P34|l2〉
. (1.17)
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Partial fractioning gives two terms of theH1 type which are readily evaluated using (1.12),

C=
[4|P56|7〉3〈17〉2

〈21〉〈56〉〈67〉 [34] [3|P12|7〉〈7|P12P34|5〉
×

1
〈7|P56P34|2〉

(

〈17〉−
〈1|P34P56|7〉[7|P56P34P12|7〉

[7|P56P34P12P34P56|7〉

)

.

(1.18)
The contributions from the other terms in this and the otherN = 1 7-pt amplitudes can be cal-
culated in a similar fashion and involve only theH1 andG1 forms. These results are available at
http://pyweb.swan.ac.uk/˜dunbar/sevengluon.html.
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