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1. Introduction

New physics signals at the LHC must be extracted from large QCD baakdsahat must be
known beyond leading order. While Feynman diagram techniques prawigeprinciple method
of performing these NLO calculations, these techniques become incriyasingeldy as the num-
ber of external particles increases due to a dramatic growth in the numbdegoéms that must
be calculated. Unitarity methods provide an efficient alternative for cdinglamplitudes with
large numbers of external particles. In this article we briefly review theuyidg technique be-
fore discussing recent implementations. In particular we present thaicahbasis approach [1]
which yields compact, manifestly rational expressions for one-loop ampditudle illustrate this
approach with reference to seven gluon scattering.

2. The Structure of One-Loop Amplitudes

Although we don’t actually use Feynman diagram techniques in our calausatize fact that
these techniques exist does provide information about the form of @peaimplitudes which we
can use to specify the structure of the amplitudes we are interested inaSevdie steps outlined
in this section are applicable to both the Unitarity and Feynman diagram apeoac

Colour Ordering

The full tree-level amplitudes far external gluonsg™®, in aU (N¢) or SU(N) gauge theory
can be obtained by summing over a set of colour-ordered partial amplié8&s), multiplied by
an associated colour-trace (for a review see [2]),

- Ao Ao
Ay *({ki, Ai,ai}) =g"? z/ Tr(Tow ... Tom) x ATK Y, Kin ), (L.D)
0eS\/Zn

wherek;, Aj, anda; are respectively the momentum, helicitiy)(and colour-index of theth exter-
nal gluon andj is the coupling constang,/Z, is the set of non-cyclic permutations £f, ..., n}
and theU (N;) (SU(N.)) generatorsT 2, are normalized such that (TF2T?) = 52"

A similar decomposition is possible at one-loop [3]. In this case there are agedrover
colour matrices and one must also sum over the different spiné the internal particles circulat-
ing in the loop.

All of the contributions to a one-loop amplitude can be obtained by summing peiomgaf
theleading in colouramplitudes [4], hence we focus on these.

Integral Reduction

In the Feynman diagram language, each contribution to the one-loop amjiditoiciae form,
fP(k)

Miti((k—R)?+ie)’

where fP(k) is a polynomial of degree in the loop momentumk. Using propagator factors as
a basis for terms in the numerator allows a simultaneous reduction in the dégneenomerator
polynomial and the number of propagators,

In(fP(K)) — 5 Cily 4 (FP1(K). (1.3)
J

(1.2)

In(fP(K)) = /d“k
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In general this process can be iterated to yield a sum of pentagon intggraigrther reduction
is possible at the integral level [5, 6]. For massless theories reductiovsadiach amplitude to be
expressed in the form,

Af:lrloop: zCiLi;(l)+zdi|§(l>+ze‘<|5(1)+R’ (1.4)
1 J

WhereIL(l),Ié(l) andlX(1) are scalar box, triangle and bubble functions respectivelycant, e
andR are rational functions of spinor products.

Super symmetric Decomposition

In super-Yang-Mills theories the contributions to gluon scattering due terdift supermulti-
plets circulating in the loop can be decomposed into single particle contributions,

(4

A’n/V:l vector _ A5

FAYE pr=rchial A2 O pr=a AL 412 3A0)

(1.5)
For spin-0 we always consider a complex scalar. Throughout wenesthe use of a supersymme-
try preserving regulator. Inverting these relations we have,

1

An] — A4 ap chiral +ALO], (1.6)

which expresses the amplitude of interest in terms of two supersymmetric ampldndene with
a complex scalar circulating in the loop [4].

For supersymmetric amplitudes (1.4) simplifies due to cancellations within the loopenmom
integrals. For4” = 1 amplitudes the purely rational terf, is absent [7], while fot4/” = 4 am-
plitudes only boxes appear [4].

Spinor Helicity
For a massless momentukh, we can define two component commuting spinor variables via,
AAl =K gv 1.7)
For massless Weyl spinots®) with momentumk; and chirality+ we can define spinor inner-
products [8, 2],
()=l =™, 1= 307107) = —e™ARAL. (1.8)

These spinor products are related to the momentum invariarig byji| = 2k; - kj = s;.
Colour-ordered amplitudes for tree level gluon scattering are particigarlgle in this lan-
guage: amplitudes with less than two distinct helicity legs vanish and the maximallitheii
lating (MHV) amplitudes are given by the Parke-Taylor formula [9],
(ik)*
(12)(23)---(n1)

Ale(1* 27 ... nT) =0, A1 i k) = (1.9)

3. Unitarity Methods

The Unitarity method utilises the processaiftting propagators [10]. To cut a propagator
(1 — Q)2 +ig)~1 we insert a factor of(I — Q)2 +i€)5((I — Q)?) into the loop momentum integral
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and thus focus on the behaviour of the loop integral in the vicinity of the pdieisnpropagator.
A pair of propagators((l — Q)% +ig)~! and ((I - Q—P)?+ig)~%, in the integrand of the full
loop integral will introduce (poly-)logarithms involving? into the full integral. Cutting these
propagators reproduces the coefficients of these logarithms [7]. déféotentsci, dj ande in
(1.4) can thus be determined by analysing all possible cuts of two propagate full amplitude,
including the rational pieces, can be computed if the cut legs are kept Re4limensions [11] or
by using on-shell recursion [12].

Cutting two propagators in a Feynman diagram splits the integrand into a prafdwo on-
shell factors. Summing all the Feynman diagrams gives tree amplitudes onsiitbasf the cut
(Fig.1) and the cut integral takes the form,

C= /DLIPS Aert(—11,1,2,..,m Ip) x AiEs(—l2,p,...S,11). (1.10)
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Fig.1 A double cut forms two tree amplitudes

Evaluating/manipulating the cut integral allows us to identify the coefficientsoskthhoxes, trian-
gles and bubbles on the right had side of (1.4) which contain these twagmts.

Cutting two propagators restricts the loop momentum to the surface of eithbeeespr hy-
perboloid. Cutting more propagators further restricts the cut integrationtennumber of basis
functions involved. Cutting three propagators leaves a one dimensiorgiahtehich yields some
box and a specific triangle coefficient [13], while cutting four propagateplaces the integration
with a sum over one or two momenta and algebraically yields a specific boficoemf[14].

In recent years considerable advances have been made in systenthégingcess of extract-
ing the coefficients of the basis integral functions. Analytic implementations hsed fermionic
integration [15], direct extraction [16] and integrand level reductiaf}.[The last of these has been
implemented numerically [18] as has a variant that employs integer-dimeng®tocdetermine
complete amplitudes, i.e. including the rational pieces [19]. A further numenigdementation
uses on-shell recursion to compute complete amplitudes [20].

4. The Canonical Basis Approach

The approach we adopt recognises that there are a limited number of déstuatures that
appear in the cut integral. By determining the contribution of each structuhe t@levant coeffi-
cients we construct a canonical basis that can be used for any ampilitbideapproach produces
compact, explicitly rational results. We uséop downstrategy, using quadruple cuts to determine
the box coefficients, triple cuts for the triangles and traditional double outhé bubbles. We
illustrate the process with some example bubble calculations.
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Simple Canonical Forms
Consider the following term that can arise in the cut integrand:

(@) _ [bfifa)
YTl (k)2

This is a linear triangle contribution which reduces to a scalar triangle plublaidaontribution.
As discussed above, we choose to obtain the triangle contribution fromle dtip and extract
just the bubble contribution from (1.11).The particular method used to deteagiven canonical
form is not important, explicit integration is straight forward in this case.

(1.11)

(1.12)

_ [Bl{Ic)(ld)
G = @ +Q)2 (2.13)
gives box, triangle and bubble contributions.
_ . _ ((BIPIQ,P]ja){c|[Q,P]|d)  [B|P|a)({ca)[a|P|d) + (da)[a|P|c)
“|bubble= G1 = < 8A(aQP[a) - 2(alQPa) [alPla) >, (1.14)

where A = P.Q? — P2Q?.
The full basis requires forms with higher powers of loop momenta in the ndonerghese
can be found dhttp://pyweb.swan.ac.uk/"dunbar/sevengluon.html

A real calculation

As an example of a real calculation we take the amplitddet(1~,2*,3~,4%,57,6+,77)
and consider th€l,2) cut. To evaluate this cut we need two trees: one is 4-pt MHV and the other
is 7-pt NMHV. The latter is naturally expressed as a sum of six terms. Wenéli/ae one of these
terms explicitly to illustrate the technique:

[4]Psg| 7)° [4Psg|7)% (712)° 7 (71
(56) (67) [34] (I112) [3|(11—12)[7) (7|Ps6P4|l2) (7| (|1—|2)P3(11\5%é)

ree (17H 1513747 5767%77) =i

iec
The corresponding cut integrand is then,

[4]Psg|7)° [212)7 7 [215) 7 (71)7 M (71)

S50 (67 BB TP & LU TRl O

As we would expect for a supersymmetric theory, summing over the sping aitdrnal particles
reduces the degree of the numerator polynomial,

[4|Ps6|7)2 (17)° (1l2) (712)

. (21) (56) (67) [34] [3|P12| 7) (7|P12P34/5) (212) (7|PsePaall2) -

(1.17)
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Partial fractioning gives two terms of th& type which are readily evaluated using (1.12),

[4Ps6|7)%(17)° 1 <<17>_ (1/PaaPss|7) [7|P56P34P12\7>> ‘

= (21)(56) (67) [34][3|P127) (7|PaPsal5)  (7|PsePsal2) [7|P56P34P12P34P56\7(>1 Y,

The contributions from the other terms in this and the othér= 1 7-pt amplitudes can be cal-
culated in a similar fashion and involve only thie andG; forms. These results are available at
http://pyweb.swan.ac.uk/"dunbar/sevengluon.html
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