PROCEEDINGS

OF SCIENCE

Review on the weak chiral lagrangian

Giancarlo D’Ambrosio*
INFN — Sezione di Napoli Via Cintia, 80126 Napoli, Italy
E-mail: gdanbros@a. i nfn.it

We discuss the weak chiral lagrangian. After a discussigdh@hice cases, likks — yy, where
only the weako (p?) is needed, we address the issue to determine the coefficiktite weak
0(p*); we discuss also the related issue to reduce the number of I§Ttheoretical models
like VMD or factorization; the decayk* — " yy andK+ — mr iy are particulaly useful to
this purpose. We investigate also the issue of CP violatid€ i— ni°e"e~ and the background
process CP conservig — mPyy — nete . We mention other weak kaon decays close to
observation.

International Workshop on Effective Field Theories: frdm pion to the upsilon
February 2-6 2009
Valencia, Spain

*Speaker.
TThis work was supported in part by the EU Contract No. MRTN-ZDD6-035482, "FLAVIAnet".

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Weak chiral lagrangian Giancarlo D’Ambrosio

1. Theweak chiral lagrangian

Chiral Perturbation theory is the appropriate frameworttascribe QCD at low energies, since
relies completeley on QCD symmetries and that there is a tewgy expansion of the of physical
amplitudes: this was extensively discussed at the work§hoB] . As an example of precision
physics there are the measurements ofrifiescattering lenghts, determined with an accuracy of
1.5% [1, 3]. This also thanks to the theoretical understandimg experimental determination of
the Gasser-Leutwyler coefficients. | think it has been vauitfiil to explain theoretically the value
of the 0 (p*) Gasser-Leutwyler coefficients,: in fact the study of Vector Meson Dominance
(VMD) models has given a relevant breakthrough to this netehas been given [4]. An initial
problem that had to be overcome was that the traditional ditation of the vectorsVH" was
contributing only at7(p®); however phenomenology and a better matching of the pion factors
with known UV QCD behaviour was demanding fogdp?) contribution, which could be obtained
with the antisymmetric formulation of the vectord/"v". With the help of the KSFR relations
these remarkable successful predictions can be compangttgnmas
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This picture has been substantially confirmed by Large Niathuark model, Nambu Jona Lasinio
model [3] and even lately by ADS/CFT models [5]. Thus showdrspiring if we want to study
weak interactions . The baslkS = 1 chiral lagrangian up t@’(p*) can be written as#s_1 =
L1+ Lisa

GsF*(AeD,UTDHU) + GgFZZ NW | (1.2)

K—2rm/3m,yy KT —mtyy, K-y

Gg is fixed by theK — rmr amplitudes, while the second term represents the we@gk) [6, 7]
lagrangian: There are 37 coefficienty,s, and operatorsM’s. Unfortunately the\;’s are both
theoretically and phenomenologically very poorly knowh [Still predictions are available like the
same counterterm combination in TabléNL; — Nis— Nig— N17 for the electric E1 contributions to
Ks— mtmyandK* — it my. TheNy’s requires the evaluation of integrals of appropriate QCD
Green functions over all loop momenta. However we need edsamptions to have predictive
power: two interesting ideas are factorization and VMD. Balss larger than the QCD scale
is reasonable to assume a Fermi lagrangian; we can test thigng idea at low energies: the
currents,5S/8¢,, can be obtained from the general bosonized hadronic acjdmeing?,, the
left-handed hadronic current; then we can write the currentirrent structure as

oS 0S

Zrm = 4ke Gg(A 57‘(w>

+ h.c., (1.3)
Another hypothesis to test is VMD; there are two main reasonsst this hypothesis: first of
all it has been shown in the strong sector how relevant has theeQCD matching, secondly is
phenomenologically at work, as we shall see, in many ing&nEither there is evidence for poles
or VMD predictions for the local terms, either(p*) or (p®), are phenomenologically at work:
the weak VMD picture is just more complicated since the twd tmee point Green’s functions
require integrals of form factor over all momenta. Nevdghe, VMD MUST work to improve
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the matching with QCD in the UV region; indeed there are eXlamm,; — m,p -electroweak
contribution [8],K_ — uu [9] and as we shall see i — " y. An intriguing feature of weak
VMD is that most of the results, contrary to what it happenedhe strong sector, seem not to
depend of what kind of formulation one is using,*¥" or "VH", and not even the FM in eq. (1.3)
seem relevant [7] . However we are very far from a VMD relaiiothe weak sector. We mention
some cases where we can get some info on valipasoon:

Table1
Decay ZNs_, counterterms
Ks— 141~ |2NI,+ NI,
K* — myy N14 — Ni5—2Ng

Ks—mrmy N14— N15— Nig— Ni7
K* — mtnly N14 — N15—Ngg— Ni7

KL — nm ete N£4—|—2N{5— 3(N£6— N17)
K+ — " mPete |NI,+ 2Nj; — 3(Nig— Ni7)
Ks— mmete N£4— N:[S_ 3(N£6+ N17)

2. Ks— yy/ KL — mPyy

Ks — yy has vanishing short-distance contributions and starg(af'), A® in Fig. 1, but
with no counterterm structures. This implies that i) we hawmty a loop contribution and ii) this
contribution is scale-independent [10]. The predictioorsB{(Ks — yy) is unambigous, depending
only from ff&l in (1.2). This is thedeal xPT test (and in general of effective field theories) at
thequantum levelthe experimental and theoretical picture is

TH (p%) 21x10°©
AY 15w
<
NA48 (2.784+0.072) x10°6. ~ A® — 7

KLOE (2.26+0.13)x 10°©

The experimental results [11, 12] show a disagreement thiat be clarified, maybe by KLOEZ2,
and also that thig PT predictions works better than the naive dimensional aisalys® /A(4) ~
Mg / (470F )2,

A(K_ — mPyy) shares at’(p*) the same finiteness propertiesgf— yy and the same helicity
amplitude, A, proportional toF+'F,, and relative angular momentudy, = O for the diphoton
system [13] . AtZ(p®), a new helicity amplitudeB, where the diphoton system is ing =2 state,
adds to the\-type amplitude. Defining = p(gy — g2)/mg andz = (gu +2)?/mg, then the double
differential rate is given by

T
oyoz

~

2
£1A+B\2+<f—%> \BF] : (2.1)

As we see, foz — 0, we can disentangle the size Bitype amplitude and this is crucial to es-
tablish the CP conserving contribution Kp — 1°¢7¢~, due toK, — m®yy’ — n%¢*¢~ that is
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m-suppressed for tha-type amplitude and unsuppressed for Bag/pe amplitude. The situation
has been confused for some time since data, while they sh@easistentely witho'(p*), small or
negligible contributions at low diphoton invariant magshey strongly disagreed in the rate, by a
factor 2~ 3 larger. Then it was realized that larg& p®) unitarity contributions in Fig. 2 and VMD
contributions [14], parametrized lay, enhance the amplitud®and produce B—type amplitude.
An initial disagreement between NA48 and KTeV experimeatstie spectrum at low has been
solved lately: in fact KTeV [16] has reanalyzed the data figdhgreement in the width and in the
spectrum with NA48. Now the PDG average [18]

B(K_ — mlyy) = 1.273+0.034 PDG average (2.2)
ay = —-043+0.06 PDG average

The value ofay leads to suppressed CP conserving contributioB(€ — m°e*e~) and inciden-
tally it is exactely the sign and the size of FM in eq. ( 1.3)][1Actually experiments in eq.(2.2)
show that the localay, and non-local contributions{- unitarity loop) conspire to give a van-
ishing contribution for thé-type amplitude; and consequentely the CP conservingibatitn to
B(K. — mPe*e) is suppressed . Also as a result the recent PDG average [L8hthe ofay is
consistent with the theoretical prediction in Ref. [15] | this is good news for the search of CP
violation and New Physics in this channel.

=
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A
>
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Figurel: Ks— yy[10] Figure 2: Unitarity contributions tdk — myy

3. Kt —wmfyyand Kt — m“y'y — mtete y

These channels start &t(p*), with pion (and kaon) loops and a local teanthe external
charged particles allow a non-vanishiag p*) CT. Due to the presence of the pion pole, a new
amplitude,C, proportional toF“VIEW [20] ; in this case a®’(p®) the unitarity contributions in
Fig.2 enhance the amplitude30%-40% , along with the generation Bftype amplitude, while
the VMD term plays a minor role [21]

2 )2 2
2(|A+ B+ [C)2)+ (yz— (W—r%)) \512] 3.1)

&

dydz
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A precise determination of the rate and the spectrum woulthéxconstant, predicted to
have contributions from the axial spin-1 contributions

€= —5—[3(Lo+L10) +Nia—Nis—2Nig)] = 2.3 (1~ 2ki) ,

with k; is the factorization factor in the FM model of eq. (1.3 or theak axial vector coupling
of Ref. [7] . As shown in Fig. 3 a careful investigation of thiplibton spectrum and the rate will
allow thec determination [21].

Interference
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" o Figure 4: T —W-Dalitz plot. In this contour
plot of the interference Branching the red area
Figure3: K" — mtyy. €=0, full line, 6= —2.3 corresponds to more dense and thus larger con-
, dashed line, [7] tribution

Actually BNL 787 got 31 events leading ®K* — mryy) ~ (6+1.6)-10"7 [22] and a
value ofc= 1.8+ 0.6. Recentely NA48 has presented some preliminary results40% of their
statistics, leading to 1164 events and normalization oblaiin — 1" 1°; their result isB(K+ —
mtyy) = (1.07+0.04+0.08) - 10-% assuming: = 2 [23].

The same physics has been investigated by NA4Rin— m™“y’y — mrete y with the
theoretical evaluation in Ref. [24]: form this channel theue = 0.90+ 0.45 is found [25].
Rcentely also a caution warning on some sizable pole contgtian toC(z) have been arisen [26].

4, Kg— mo0te—

The CP-conserving decayst (Ks) — = (m°)¢+¢~ are dominated by the long-distance pro-
cessK — my* — m¢ ¢~ [27, 28]. The decay amplitudes can in general be writtenrimseof one
form factorW(2) (i = +,S) z= ¢?/MZ; Wi(2) , which can be decomposed as the sum of a polyno-
mial piece plus a non-analytic terM{™(z), generated by thart loop, is completely determined
in terms of the physicak — 3 amplitude [28]. Keeping the polynomial terms updgp®) we
can write

W(2) = GEMZ (& + biz) + W™ (2) (4.1)
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where the parametess andb; parametrize local contributions starting respectively’ap*) and
0(p®). The most accurate determination come from BNL-E865 [28] A48 [30]

E865a, = —0.587+£0.010, b, = —0.655+0.044 (4.2)
NA48 a, = —0.578+40.016 b, = —0.779+0.066 (4.3)

The experimental size of the ratig /a, exceeds the naive dimensional analysis estitafa, ~

OMZ /(4mF)?] ~ 0.2, but can be explained by a large VMD contribution. Chirahgyetry alone
does not allow us to determine the unknown coupliagendbs in terms ofa, andb, [27, 28];

then approximatelB(Ks — 1 +17)

B(Ks— me’e )~5x10°%aZ B(Ks— mutu)~12x10° a3 (4.4)
NA48, assuming a VMD form factor, finds respectively [31]]32
laglee= 106359+ 0.07  |ag|yy = 1.547539+0.06 (4.5)

KLOE hopefully may assess the value of this branching arabésh the amplification of the CP
violating branching

L ) OA, OA \ 2 1
B(K. — me*e )cpy = |15.3a3 — 68 —gas+28( ;) [x107%, (4.6)

The sign of the interference term is model-dependent but e good theoretical motivations
that predict it negative and good strategies to fix it expentally [17].

5. K-y / K — mirree

We can decomposié(p) — m(p1)71(p2)y(q) decays, according to gauge and Lorentz invari-
ance, in electric) and magneticNl) terms [33] In the electric transitions one generally sejeara
the bremsstrahlung amplitudig, firmly predicted theoretically by the Low theorem in ternfishee
non-radiative amplitude and enhanced by tjig,Ibehaviour, from the direct emission amplitudes
(DE). Summing over photon helicities, there is no intenfieeamong electric and magnetic terms:
d?l" /(dz1dz) ~ |E(z)[>+ |M(z)|?. At the lowest order, ), one obtains onlfg. Magnetic and
electric direct emission amplitudes, appearing’ap*), can be decomposed in a multipole expan-
sion [33]. In Table 2 we show the present experimental stttlee DE amplitudes and the leading
multipoles.

Table 2 DEeyp

Ks—mmy <9-10° El
K+ — "y (0.44+0.07)10° M1,E1
K. — mtmy (2924+0.07)10~° M1,VMD

Particularly interesting are the recent interesting NAd&degardindK ™ — mr* i°y decays [23].
Due to theAl = 3/2 suppression of the bremsstrahlung, interference bet&gandE1 and mag-

netic transitions can be measured. Defiripg p;-q/mg  z3 = p, -q/Mg andzz, = "nfz—r*WZ we
K
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can study of the Dalitz plot distribution in Figure 1

dzr azrlB m2 E m4 E 2 M 2
_ 1+ M ope( Epe \ w2 4+ M ‘ DE‘ ‘ DE‘ W
OT;OW? ch*dWZ[ T (eA) + m \| €A T eA ;

whereA = A(K* — mtni®); an accurate study of the Dalitz plot in Figure 1 has lead Nf#&e
preliminary results [23]

Table3

NA48 T, € 0,80 MeV
Frac(DE) = (3.3510.35+0.25)x 102
Frac(INT) = (—2.67+0.81+0.73)x 102

This is the first evidence of non-vanishing interferencq 281 gives a determination of the coun-
terterm coefficient in Table 1, contributing &1 [6, 7]. The magnetic contributions, is by now
well established; there are two contributions i) an indilntributions generated by a pion pole
mediating a Wess Zumino Witten (WZW) term and a vertex f%l from (1.2) and ii) genuine
0(p*) anomalous-like contributions fronﬁ?A"’&l in Table 1Npg,..,N3;. These last terms can be
obtained from factorization in eq. (1.3) [34], where we ddasalso theanomalous current (from
the WZW term)Then we generatéffscl in (1.2) with coefficients

a; = 87'[2N28 , = 327'!2N29,
a3:1§6712N30 , a4216712N31.
The g are positive parameters 6f(1). Once we have proven that these terms are there, several
dynamical mechanism can generate them. In fact theory [@data fromK, — " 1y [35, 36]

point towards a large VMD contributions in these decays.eihms of the counterterms we can
write

eGgme
MY = 27‘[2FK (a2 + 2a4), (5.1)
me
M@ — ef:ZFK 24 3(2a5 — a)]. (5.2)

It is interesting that the direct emission branching in thél& 3, can be obtained Mf) in (5.2)
neglecting the contributions of tleg's:

The interpretation oB(K™ — " m’y)pe dominated by WZW is challenged by the fact that
the observed B, — 7" 11" y)pe shows i)a ~ O(1) and ii) large VMD [18, 36]: this calls for a
more accurate theoretical investigation. In fact sinceptiesence of a form factor affects the Dalitz
plot distribution we think that a thorough analysis is regdito disentangle as much as possible
the interference from possible competing effects in thematg amplitudes [37].

Other interesting channels ake — mret e -decays: particularly appealing at KLOE, are
Ks— " e"e -decays , where we can perform the CHPT tests described Ie Tath\lso New
Physics and CP violation is principle interesting to inigede. Actually so far NA48, with 676
evts. has measurdd{Ks — m"mete”) = 4.69+ 0.30.
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