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We present a first study of the quark mass dependence of thev@idor form factor, particularly
its curvature (mean quartic radius). By employing the Omm§sesentation we can provide
a very clean estimate for a certain combination of the cureatnd the square radius, whose
quark mass dependence is being determined from lattice e@tipgns. This currently requires
an extrapolation to the physical point. The reach of validit this extrapolation is determined
by the appearance of the first non-analyticity in the formdaas function of the quark mass.
We also provide an improved value for the curvature at playsialues of the quark masses,
namely(r%) = 0.7340.09 fm* or equivalentlyo, = 4.00+ 0.50 GeV 4, for Unitarized Chiral
Perturbation Theory, ant*) = 0.68+ 0.06 fnf*, oy = 3.75+0.33 GeV 4, for a Breit-Wigner
parametrization of the pion scattering phase shifts uséiteifomnes representation.
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1. Introduction

A low-momentum expansion of the pion form factor definesdpsase and quartic radii,

F(t) =1+ % At + %(r4>t2 +0(t3) (1.1)
the latter also called curvature [1] with the redefinitajn= % (r*) . These quantities are now being
calculated in Lattice Gauge Theory for large values of thhtlquark masses (equivalently, pion
mass) that allow extrapolation to the physical point aidgdChiral Perturbation TheoryxPT).
While the square radius is NLO igPT, the curvature is itself NNLO in the expansion, and a
study of this with controlled uncertainty would require kriedge at NNNLO, which seems out of
today’s reach. We therefore adopt the Omneés representattithe form factor, that, for physical
pion mass, requires only a parametrization of the scageripnphase shift. Employing Unitarized
Chiral Perturbation Theory, also called inverse amplitodgthod (IAM), for this phase shift, we
can control the mass—dependence of the resulting formrfattte result being rigorous to first
order in the mass expansion. Alternatively we calculatesdmae quantity using a Breit—-Wigner
parametrization for the phase shifts accompanied by thekquass dependence of tlremass
as deduced from different sources [2] and the additionaliraption that thep it coupling is
independent of the quark mass. Our study has recently besamied in [3], to which we refer for
further detail and bibliography.

2. The Omnes representation

The Omnés equation encodes the analyticity propertieseopitn form factor-(s), that has
an elastic unitarity cut on the positieeaxis fors € (4m2, ), and is otherwise analytic. Further
superimposed cuts due to inelastic channels are neglacieziderivation, and the form factor is
assumed to have no zeroes (which, as we know today, is pheodgéecally correct). The starting
point is the well known relation Iiffr ) = tand;1Re(F ), which relates the discontinuity in the vector
form factor to the elastic scattering phase shift in the steésovector channel. From this relation
the Watson theorem follows straightforwardly. Since thigday’> asymptotic behavior of the form
factor is known from QCD counting rule,(g?) — ¢/g?, as a matter of principle one may write
an unsubtracted dispersion relation, which reads forrartyit

F(t)= %An%dstanil(S)% : (2.1)
We specified “as a matter of principle” since the QCD countinlgs apply only when elastic
scattering is irrelevant by the numerous inelastic chanopken. However, in this work we only
want to use low energy input up to 1.2 GeV and we will therefase a subtracted dispersion
relation below and cut the high energy contributions withug-off. The variation of the results
with this cut—off provides a systematic uncertainty in owrky which, as a consequence of the
subtraction, turns out to be moderate.

If there are no bound state poles, as is the cagemdcattering for physical quark masses, nor
the form factor vanishes anywhere in the complex plane, apregsume foiF (t), the celebrated
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solution family of this equation provides a representatibthe form-factor in terms of the scatter-
ing phase shifts, known as the Omnés representation. Tihdssthtreatment proceeds by deriving
an integral equation for Idg(t)/(2i) instead ofF(t) itself,

ogFl) _ 1 = ds (IOgF(S%'—iE)_mgF(S—iE)) :1/‘” 95109, 22

2 2m Jamz s—t 2i 2i 1T Jae, S—t

Instead of this relation we may use a subtracted versiors Whii allow us to effectively suppress
the high energy behavior of the phase shifts. In particulamill use a twice subtracted version
which reads after exponentiation

2 5
F(t) :exp<P1t+t7—_[Amz d%) . (2.3)

Note, the normalization condition of the form factor pratska constant term in the exponent. The
constant; can be identified with the square radius of the piens= (r2)/6 .
We may read off an expression fdf directly from Eq. (2.3):

17 4l
T J4me, s3

() 1

Cy = 120" 7—2< 2>2 (2.4)

which is quite a beautiful formula, since it allows a thirdl@pendent extraction of the curvature
c;; besides NNLOYPT or a fit to spacelike data beyond the linear fall inhere uncertainties get

large (more sophisticated dispersive analysis [4] showcti@inuous interest in this curvature).
Instead we employ only the elastic phase shifts. In addisorce the quantity

o 1
G =aj—5(r%)° (2.5)

is described solely in terms of thet p-wave phase shifts, its quark mass dependence is linked to
that of thep—meson properties.

3. Chiral perturbation theory and curvature computation

We start by recalling the chiral expansion of the vector féaator valid to NLO inxPT,

1 _ — 1
Fit)=1+ 6—f%(t —4m)J(t) + ﬁ(le— 3 (3.1)
Here
) = Kan [alog <g—j> + 2] (3.2)

with o = /1 —4mZ /t. A common strategy is to fix thig constant from the square charge radius

1 —
2 P — J—
which is correct up ta?(m2) in xPT. Higher orders in the chiral expansion cannot bring ingrsw

of t since, by definition, the charge squared radius is propwtito the coefficient of the term
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linear int in the form factor. However, they can bring additional canss$ to the right hand side
(each of a natural order suppressed by additional factofg (@ff,;)?), and, more important for
our purposes, a polynomial af2. To make sure we are not eschewing a crititgldependence,
we will compare the right-hand-side of eq.(3.3) with the Ntorrection in chiral perturbation
theory [6]. The NLO result eq. (3.3), that depends only Idbarically on the pion mass (see
eg. (3.6) below), is then extended to

1 me =\ ~ m2 13 181
2y = T _ T s =TT
(r?) = T KH 8n2f%|4> (lg—1)+ 16 f2 <l6n2192 48” (3.4)

me, 1 mz\ /19
IG_I6+6f2 [16712er( 2) 4 48n2Iog<u2> (12 |1+|2>}

wherery,; is a counterterm to be determined empirically, and we w# tiee simple VMD estimate
from the same work, at the scale,r{,l(mf,) ~ —0.25x 103 . Then I} = E —1.44 (the scale—
dependence of this number cancels).

Next we recall the pion mass dependence of heThel;, as coefficients of the expansion in
powers ofim? of the Lagrangian density, are by definition pion-mass iedepnt, and so are their
renormalized countertermiS However, the barred quantities absorb a chiral logarithm

"= 32"2 {l +|og<r:2>] (3.5)

that makes thé's scale—independent, but in exchangeg,—dependent. This dependence needs to
be kept track of in the calculation. This becomes cruciahm ¢hiral limit when the pion radius
diverges due to the virtual pion cloud becoming long—rarggthe pion mass vanishes.

We thus denote bj?hys the value that the low energy constants take by fitting to ichis
world data. Henceforth, when varyimy;, one needs to change the constant according to

— e rn72_(
li = |iphy —log <(m;7arhys)2> (3.6)

From xPT we also take the quark-mass dependencg?f— c.f. Eq. (2.3). Clearly, the
curvaturec] could also be determined igPT directly. Depending on the fit and systematics
chosen in Ref. [6], a two—flavaf(p®) xPT calculation, its value could vary between 8 GeV4,
although the authors quote a value around 2.25 Gew agreement with previous estimates. By
fitting to form factor data, they obtain@b GeV4).

With these mass—dependences, one can employ a Breit—\Wigreenetrization 0d;1,

Ima (S) prtot(s)
A11(s) = arctanm = arctanmz7_ 3.7)

2 (3 mR)%2 .
in terms of thep mass and total widtH, Gorn® _ — Gomld "M and studyF (t) for unphysical
m tot — 671TT]2 Gnmf, ) y:( ) p y

pion masses [3] using the input quoted above.

For the IAM one can estimate the quark mass dependence @ fineperties directly from
the xPT amplitudes evaluated up to a given order. It implement® NLYPT at low momentum,
satisfies elastic unitarity exactly, and fits the pion scetedata up to 1.2 GeV well. To derive the
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Figure 1. Left: Variation of the elastigrrr phased;; with my in the IAM. The resonance stays above the
it threshold, its mass having a slight dependencengnuntil rather highmy. Right: Square form factor
modulus for both spacelike and timeligg, fitted with the Omnés representation.

expression for the IAM one starts with the on—shwtt scattering amplitude in NLYPT that, for
I =1,is Au(st,u) =A(t,su)—A(ut,s), with

s—m% 1

ALY = 5"+ gra [33(s) (§2 — mfh) + (1) (t(t — u) — 2Pt + 4 — 2mik)
+ J(u) (u(u—t) — 2meu+4mét — 2mf})] + lef# {2 (I_l— g) (s— 2m,27)2
+ <|_2 - g) (4 (t—u)?) — 3miiz — 12m2s+ 15m;‘T] . (3.8)

The first term can be identified as the leading order, low-egrgreorem, but we express it in terms
of the physicalmy, instead of its leading order valid. Meanwhile, we keep thm,; independent
pion decay constarit. The quantities= andM are related to the physical ones via
m. - m. -
F=fr(l-antsla), MP=m? (14 2l3).
"( 16212 4) : m\* T 3oz
The latter expression introducksinto the last line of Eg. (3.8).

The projection to the spatigl-wave has the usual factor of A to avoid double—counting
guantum states by counting all angular configurations witthanged identical particles

1
a1(s) = %T% /_1dcose(cose)A1(s,t(s, cos0),u(s,cosh)) . (3.9)

One can organize the chiral expansionaag(s) = a:?(s)+all°(s) + ... but the series truncated at
any order only satisfies elastic unitarity perturbativaliis is solved, with the first two expansion
terms, by the IAM [7] that reads (suppressing the spin anshisosubindices)
2
IAM ao(s)
a™(s)= . 3.10

( ) aLO (S) _ aNLO (S) ( )
The first two terms of a Taylor expansion of this amplitudemes NLOxPT as usual for a Padé ap-
proximant. However elastic unitarity is now exact, and tbegibility of a zero of the denominator
allows for resonances.
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Figure 2: Left: m; dependence of the quartic radius for moderate pion masedt®gtogether with a new
lattice computation[5]. Righto,/; the Omnés integral over thiephase shift, directly accessible to the lattice
as a combination of quadratic and quartic spacelike radties: Breit-Wigner results. Band: IAM.

The associated phase shift

IAM Imaf™ (s)
o7 (s) = arctan<m>
may be directly employed for the time—like form factor thgbuthe Omnés representation.

The low energy constants necessary to complete the catoulate fit to the phase shift data
with fixed I_3 = 2.9, obtaining the value!s_l =01+15, I_2 =6+13 andlz =434+0.9. I?; =
16.6£ 0.4 is fit to the experimental value ¢f%). Note that with the phase shift data one can only
determine the differende — I; which is about 6. Using Eq. (2.4), the curvature is then

=4.00+0. eV, (") =0.73+0. mi .
cf =4.00£0.50 GeV'4, (r*) =0.73+0.09 fm* (3.11)

in good agreement with our cross-check Breit-Wigner vakues other studies. The quantity de-
pending solely on the phase shift is thes§f =2.13+0.42 GeV “. These values are to be consid-
ered as our results at the physical pion mass.

4. Varying the pion mass

In fig. 2 we show the dependence of the quartic radius@nas function of the pion mass,
as reported in [3]. We also plot the very recent lattice cotafien of [5] that shows excellent
agreement with our results, that can also be used for fuattied extrapolations in the quark
mass. Note that the lattice simulations came out after cediption. The excellent agreement is
nontrivial, and should be regarded as a strong support cdioalysis.

Two more comments are of interest for lattice practitiondre first is the observation that,
taking derivatives of eq.(2.3), one can easily obtain frtrelations analogous to eq.(2.4). This
family of equations allows, having at hand a computatiorhefgpacelike form factor, and having
extracted the coefficients of its Taylor expansion at low rantum (averages of higher powers of
radii), to access higher integral (inverse) moments of tiesp shift in pion-pion scattering, which
is technically more involved to extract.
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Figure 3: m; evolution of the pion form factor in the Omnés representetiith the IAM. Left: physical
pion massn, = m™S. Middle: just under twicerfi¥s. Right: just under three timeg™>. Thep becomes
narrower and taller as the decay threshaig,Zvertical bar) approachesiit.

Our second point concerns the reach of quark—mass exttepola the lattice. In fig.3 we
have plotted the evolution of the spacelike and timelikenféactors as function of the pion mass.
Since thep mass, controlled byAqcp grows only linearly with the quark mass, the threshold for
p — 11t (the vertical bar in the figure) increases faster than thenasce mass, eventually closing
the phase space for the decay. But the factog/g6— 4m2)3, that causes a non-analyticity $n
also produces one as a functionmaf. This propagates, through the Omnes representation, to the
form factor. Hence we conclude that the dependence of anyanbafi the form factor on the pion
mass is an analytic function around the physical mass, blitigh enoughmy, a kink is found that
spoils the usual polynomial or chiral extrapolation ofitatdata.

This phenomenon is generic and occurs whenever a resonaesaudder its decay threshold,
the intensity of the kink depending on the width of the resmasat the physical point (for couplings
that are weakly dependent on the pion mass). We are prepatiagher work with a complete
investigation [8].
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