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We review on a novel chiral power counting scheme for in-medium chiral perturbation theory

with nucleons and pions as degrees of freedom [1]. It allows for a systematic expansion taking

into account local as well as pion-mediated inter-nucleon interactions. Based on this power count-

ing, one can identify classes of non-perturbative diagramsthat require a resummation. We then

calculate the pion self-energy in asymmetric nuclear matter up-to-and-including next-to-leading

order (NLO). It is shown that the corrections involving in-medium nucleon-nucleon interactions

cancel between each other at NLO.
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1. Introduction

An interesting achievement in nuclear physics would be the calculation of atomic nuclei and
nuclear matter properties from microscopic inter-nucleonforces in a systematic and controlled way.
This is a non-perturbative problem involving the strong interactions. In the last decades, Effective
Field Theory (EFT) has proven to be an indispensable tool to accomplish such an ambitious goal. In
this work we employ Chiral Perturbation Theory (CHPT) to nuclear systems [2, 3, 4], with nucleons
and pions as the pertinent degrees of freedom. For the lightest nuclear systems with two, three and
four nucleons, it has been successfully applied [5]. For heavier nuclei one common procedure is
to employ the chiral nucleon-nucleon potential derived in CHPT combined with standard many-
body methods, sometimes supplied with renormalization group techniques [6]. In ref.[1] we have
recently derived a chiral power counting in nuclear matter that takes into account local multi-
nucleon interactions simultaneously to the pion-nucleon interactions. Many present applications of
CHPT to nuclei and nuclear matter only consider meson-baryon chiral Lagrangians (see e.g. [5] for
a summary), without constraints from free nucleon-nucleonscattering. Our novel power counting
is applied in ref.[1] to the problem of calculating the pion self-energy in asymmetric nuclear matter
at next-to-leading order (NLO). This problem is tightly connected with that of pionic atoms [7, 8]
due to the relation between the pion self-energy and the pion-nucleus optical potential. For recent
calculations of the former see [9, 10, 11, 12, 13].

2. Chiral Power Counting

Ref.[14] establishes the concept of a “in-medium generalized vertex” (IGV). Such type of
vertices result because one can connect several bilinear vacuum vertices through the exchange
of baryon propagators with the flow through the loop of one unit of baryon number, contributed
by the nucleon Fermi seas. At least one is needed because otherwise we would have a vacuum
closed nucleon loop that in a low energy effective field theory is buried in the chiral higher order
counterterms. It was also stressed in ref.[9] that within a nuclear environment a nucleon propagator
could have a “standard” or “non-standard” chiral counting.To see this note that a soft momentum
Q∼ p, related to pions or external sources can be associated to any of the vertices. Denoting byk
the on-shell four-momenta associated with one Fermi sea insertion in the IGV, the four-momentum
running through thejth nucleon propagator can be written asp j = k+Q j . If Q0

j = O(mπ) = O(p)

one has the standard counting so that the baryon propagator scales asO(p−1). However, ifQ0
j is

of the order of a kinetic nucleon energy in the nuclear mediumthen the nucleon propagator should
be counted asO(p−2). This is referred as the “non-standard” case in ref.[9]. In order to treat chiral
Lagrangians with an arbitrary number of baryon fields (bilinear, quartic, etc) ref.[1] considered
firstly bilinear vertices like in refs.[14, 9], but now the additional exchanges of heavy meson fields
of any type are allowed. The latter should be considered as merely auxiliary fields that allow one to
find a tractable representation of the multi-nucleon interactions that result when the masses of the
heavy mesons tend to infinity. These heavy meson fields are denoted in the following byH, and a
heavy meson propagator is counted asO(p0) due to their large masses. On the other hand, ref.[1]
takes the non-standard counting case from the start and any nucleon propagator is considered as
O(p−2). In this way, no diagram whose chiral order is actually lowerthan expected if the nucleon
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propagators were counted assuming the standard rules is lost. In the followingmπ ∼ kF ∼ O(p)

are taken of the same chiral order, and are considered much smaller than a hadronic scaleΛχ of
several hundreds of MeV that results by integrating out all other particle types, including nucleons
with larger three-momentum, heavy mesons and nucleon isobars [4]. The final formula obtained in
ref.[1] for the chiral orderν of a given diagram is

ν = 4−E+
Vπ

∑
i=1

(ni + ℓi −4)+
V

∑
i=1

(di + ωi −1)+
m

∑
i=1

(vi −1)+
Vρ

∑
i=1

vi . (2.1)

whereE is the number of external pion lines,ni is the number of pion lines attached to a vertex
without baryons,ℓi is the chiral order of the latter withVπ its total number. In addition,di is
the chiral order of theith vertex bilinear in the baryonic fields,νi is the number of mesonic lines
attached to it,ωi that of only the heavy lines,V is the total number of bilinear vertices,Vρ is the
number of IGVs andm is the total number of baryon propagators minusVρ , V = Vρ + m. It is
important to stress thatν given in eq.(2.1) is bounded from below as explicitly shown in ref.[1].
Because of the last term in eq.(2.1) adding a new IGV to a connected diagram increases the counting
at least by one unit becausevi ≥ 1. The numberν given in eq.(2.1) represents a lower bound for
the actual chiral power of a diagram,µ , so thatµ ≥ ν . The real chiral order of a diagram might be
different fromν because the nucleon propagators are counted always asO(p−2) in eq.(2.1), while
for some diagrams there could be propagators that follow thestandard counting. Eq.(2.1) implies
the following conditions for augmenting the number of linesin a diagram without increasing the
chiral power by adding i) pionic lines attached to mesonic vertices, ℓi = ni = 2, ii) pionic lines
attached to meson-baryon vertices,di = vi = 1 and iii) heavy mesonic lines attached to bilinear
vertices,di = 0, ωi = 1.

3. Meson-baryon contributions to the pion self-energy

Here, we apply the chiral counting given in eq.(2.1) to calculate the pion self-energy in the
nuclear medium up to NLO orO(p5), with the different contributions shown in fig.1. The nucleon
propagator contains both the free and the in-medium piece [15],

θ(ξi3 −|k|)
k0−E(k)− iε

+
θ(|k|−ξi3)

k0−E(k)+ iε
=

1
k0−E(k)+ iε

+ i(2π)θ(ξi3 −|k|)δ (k0−E(k)) . (3.1)

In this equation the subscripti3 refers to the third component of isospin of the nucleon, so that,
i3 = +1/2 corresponds to the proton and−1/2 to the neutron, and the symbolξi3 is the Fermi
momentum of the Fermi sea for the corresponding nucleon. Ourconvention for the pion self-
energy,Σ, is such that the dressed pion propagators readsi∆π(q) = i/(q2−m2

π + Σ). The leading
contribution to the pion self-energy corresponds to the diagrams 1 (Σ1) and 2+3, Σ2, with [1]

Σ1 =
−iq0

2 f 2 εi j3(ρp−ρn) ,

Σ2 =
ig2

A q2

2 f 2q0εi j3(ρp−ρn)−
g2

A

4 f 2

(q2)2

mq2
0

δi j (ρp + ρn) , (3.2)
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Figure 1: Contributions to the in-medium pion self-energy up to NLO orO(p5). The pions are indicated
by the dashed lines and the squares correspond to NLO pion-nucleon vertices. A wiggly line is the nucleon-
nucleon interaction kernel, that it is iterated as meant by the ellipsis.

where f = 92.4MeV is the pion decay constant and the proton(neutron) density is given byρp(n) =

ξ 3
p(n)/3π2. Now, we move to the NLO contributions. The sum of the diagrams 4 and 5 gives the

result [1]

Σ3 =
g2

Aq2

2m f2
(ρp + ρn)δi j . (3.3)

The diagram 6 of fig.1 is given by [1]

Σ4 =
−2δi j

f 2

(

2c1 m2
π −q2

0(c2 +c3−
g2

A

8m
)+c3q2

)

(ρp + ρn) , (3.4)

where theci are low-energy constants of the pion-nucleon LagrangianL
(2)

πN [16]. Next, let us
consider the contributions to the pion self-energy due to the nucleon self-energy from a one-pion
loop as depicted in the diagrams 7–9 of fig.1. The one-pion loop nucleon self-energy can be written
as,

Σπ =
1+ τ3

2
Σπ

p +
1− τ3

2
Σπ

n , (3.5)

with Σπ
p andΣπ

n the proton and nucleon self-energies due to the in-medium pion-nucleon loop. The
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contributions from the diagrams 7 (Σ5) and 8+9 (Σ6) are [1]

Σ5 =
iq0

f 2 εi j3

∫

d3k
(2π)3

(∂Σπ
p

∂k0 θ−
p −

∂Σπ
n

∂k0 θ−
n

)

k0=E(k)

,

Σ6 =
−ig2

A

f 2

q2

q0 εi j3

∫

d3k
(2π)3

(∂Σπ
p

∂k0 θ−
p −

∂Σπ
n

∂k0 θ−
n

)

k0=E(k)

−
g2

A

f 2

q2

q2
0

δi j

∫

d3k
(2π)3

(

Σπ
pθ−

p + Σπ
nθ−

n

)

. (3.6)

The last term inΣ6 is a NNLO orO(p6) contribution because the pion-loop nucleon self-energy
is O(p3) and we neglect it. The free pion-loop nucleon self-energy iscalculated in heavy baryon
CHPT [16]. Its derivative isO(p2) [1] so that when inserted inΣ5 andΣ6 it gives rise to anO(p6)

contribution that we neglect in the present work. As shown inref.[1] the in-medium contribution
to the pion-loop nucleon self-energy is even further suppressed, being a contribution ofO(p7) to
the pion self-energy. As a result,Σ5 andΣ6 are at leastO(p6).

4. In-medium nucleon-nucleon scattering contributions

We now consider those NLO contributions to the pion self-energy in the nuclear medium
that involve the nucleon-nucleon interactions. They are depicted in the diagrams of the last two
rows of fig.1, where the ellipsis indicate the iteration of the two-nucleon reducible loops. For the
diagrams b) and d) of fig.1 the pion lines can leave or enter thediagrams. It is remarkable that
these NLO contributions cancel between each other. On the other hand, sinceVρ = 2 in these
contributions one needs only the nucleon-nucleon scattering amplitude atO(p0) to match with
our required precision at NLO. This amplitude is obtained byiterating in an infinite ladder of
two nucleon reducible loops, with full in-medium nucleon propagators, the tree level amplitudes
obtained from theO(p0) Lagrangian with four nucleons [4] and from the one-pion exchange with
the lowest order pion-nucleon coupling. The sum of the latter is represented diagrammatically in
fig.1 by the exchange of a wiggly line. This procedure would correspond in vacuum to the leading
nucleon-nucleon scattering amplitude according to refs.[3, 4].

The diagrams a) and c) of fig.1 involve the Weinberg-Tomozawavertex (WT) while b) and d)
contain the pole terms of pion-nucleon scattering. At leading order in the chiral counting the sum
of the latter two has the same structure as the WT term, with the resulting vertex given by

−
iq0

2 f 2

(

1−g2
A

q2

q2
0

)

εi jkτk . (4.1)

We can then discuss simultaneously all the diagrams in the last two rows of fig.1 employing the
latter vertex. Let us denote byΣp(n),NN the proton (neutron) self-energy in the nuclear medium due
to the nucleon-nucleon interactions,

Σi3,NN = ∑
α2,σ2

∫

d3k2

(2π)3 θ(ξα2 −|k2|)A〈k1σ1i3,k2σ2α2|TNN|k1σ1i3,k2σ2α2〉A . (4.2)
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a) b)

k1 k1

k2k2

k1−kk1−k

k2 +kk2 +k

Figure 2: Contribution to the pion self-energy with a two-nucleon reducible loop. The pion scatters in-
side/outside the loop for the diagram a)/b).

The sum of the diagrams a) and b) of fig.1 can then be written as [1]

Σ7 =
iq0

2 f 2

(

1−g2
A

q2

q2
0

)

εi j3 ∑
σ1,σ2

∫

d3k1

(2π)3

d3k2

(2π)3

×
∂

∂k0
1

(

θ(ξp−|k1|)θ(ξp−|k2|)A〈k1σ1p,k2σ2p|TNN|k1σ1p,k2σ2p〉A

−θ(ξn−|k1|)θ(ξn−|k2|)A〈k1σ1n,k2σ2n|TNN|k1σ1n,k2σ2n〉A

)

k0
1=E(k1)

. (4.3)

Let us now consider the diagrams c) and d) of fig.1 whose contribution is denoted byΣ8. These
diagrams consist of the pion-nucleon scattering in a two-nucleon reducible loop which is corrected
by initial and final state interactions. The iterations are indicated by the ellipsis on both sides of
the diagrams. In order to see that these diagrams cancel witheq.(4.3) let us take first the diagram
of fig.2a with a twice iterated wiggly line vertex. It is givenby

ΣL
8 =

iq0

2 f 2

(

1−g2
A

q2

q2
0

)

εi j3

∫

d3k1

(2π)3

d3k2

(2π)3

×
∂

∂k0
1

(θ(ξp−|k1|)θ(ξp−|k2|)Πp−θ(ξn−|k1|)θ(ξn−|k2|)Πn)k0
1=E(k1)

, (4.4)

where

Πi3 = i
∫

d4k
(2π)4VPro(i3,k1−k)Pro(i3,k2 +k)V , (4.5)

Here,Pro(i3,k) is an in-medium nucleon propagator, eq.(3.1), andV is a shortcut notation to in-
dicate a wiggly line nucleon-nucleon vertex. There is also the corresponding crossed contribution
with the final nucleons exchanged. The isovector nature of the modified WT vertex of eq.(4.1) im-
plies that only the difference between the proton-proton and neutron-neutron contributions arises.
The derivative with respect tok0

1 arises in eq.(4.4) because the nucleon propagator to which the two
pions are attached appears squared [1]. We have in addition the diagram of fig.2b corresponding
to the once iterated wiggly line exchange contribution toTNN in eq.(4.3). The latter is given by
−Πi3 and then, when inserted in eq.(4.3), it cancels withΣL

8. Notice as well that the contribution
to TNN given by the exchange of only one wiggly line vanishes when inserted in eq.(4.3) because

6
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it is independent ofk0
1. This process of mutual cancellation betweenΣ7 andΣ8 can be easily gen-

eralized to any number of two-nucleon reducible loops in figs.1a), b) and 1c) and d), respectively.
An n+1 iterated wiggly line exchange in these figures impliesn two-nucleon reducible loops. The
two pions can be attached forΣ8 to any of them, while forΣ7 the derivative with respect tok0

1 can
also act on any of the loops. The iterative loops are the same for both cases but a relative minus
sign results from the loop on which the two pions are attachedwith respect to the one on which the
derivative is acting, as just discussed. Hence,

Σ7 + Σ8 = 0 . (4.6)

The basic simple reason for such cancellation is that while for Σ7 the presence of a nucleon propa-
gator squared gives rise to+i∂/∂k0

1, for Σ8 it yields−i∂/∂k0
1.

5. Conclusions and outlook

We have reviewed on the development in ref.[1] of a power counting in the nuclear medium
that combines both short-range and pion-mediated inter-nucleon interactions. The power counting
requires typically the resummation of infinite strings of two–nucleon reducible diagrams with the
leadingO(p0) two-nucleon CHPT amplitudes. As a result, the power counting accounts for non-
perturbative effects to be resummed. The pion self-energy in asymmetric nuclear matter has been
calculated up-to-and-includingO(p5). As a novelty, it is shown that the leading corrections to the
linear density approximation vanish. In particular, it is derived that the leading corrections from
nucleon-nucleon scattering mutually cancel.
Acknowledgments: J.A.Oller would like to thank FLAVIANET for support.
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