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1. Introduction

An interesting achievement in nuclear physics would be #iewation of atomic nuclei and
nuclear matter properties from microscopic inter-nuclfemoes in a systematic and controlled way.
This is a non-perturbative problem involving the strongiattions. In the last decades, Effective
Field Theory (EFT) has proven to be an indispensable toaldoraplish such an ambitious goal. In
this work we employ Chiral Perturbation Theory (CHPT) toleac systems [2, 3, 4], with nucleons
and pions as the pertinent degrees of freedom. For the $ightelear systems with two, three and
four nucleons, it has been successfully applied [5]. Fowieeauclei one common procedure is
to employ the chiral nucleon-nucleon potential derived HRT combined with standard many-
body methods, sometimes supplied with renormalizatiomgtechniques [6]. In ref.[1] we have
recently derived a chiral power counting in nuclear matket takes into account local multi-
nucleon interactions simultaneously to the pion-nuclederactions. Many present applications of
CHPT to nuclei and nuclear matter only consider meson-lechiral Lagrangians (see e.qg. [5] for
a summary), without constraints from free nucleon-nuclscattering. Our novel power counting
is applied in ref.[1] to the problem of calculating the pi@ifsenergy in asymmetric nuclear matter
at next-to-leading order (NLO). This problem is tightly caeted with that of pionic atoms [7, 8]
due to the relation between the pion self-energy and the-mimteus optical potential. For recent
calculations of the former see [9, 10, 11, 12, 13].

2. Chiral Power Counting

Ref.[14] establishes the concept of a “in-medium genezdlizertex” (IGV). Such type of
vertices result because one can connect several bilineaiura vertices through the exchange
of baryon propagators with the flow through the loop of ond ohbaryon number, contributed
by the nucleon Fermi seas. At least one is needed becaussvisitheve would have a vacuum
closed nucleon loop that in a low energy effective field tiggsrburied in the chiral higher order
counterterms. It was also stressed in ref.[9] that withingear environment a nucleon propagator
could have a “standard” or “non-standard” chiral countifig.see this note that a soft momentum
Q ~ p, related to pions or external sources can be associated tof éime vertices. Denoting bly
the on-shell four-momenta associated with one Fermi seation in the IGV, the four-momentum
running through the'" nucleon propagator can be written @s=k+Q;. If Q(j’ =0(my) =0(p)
one has the standard counting so that the baryon propagatessas’(p—). However, ifQ(j) is
of the order of a kinetic nucleon energy in the nuclear mediven the nucleon propagator should
be counted ag'(p~2). This is referred as the “non-standard” case in ref.[9].rufeo to treat chiral
Lagrangians with an arbitrary number of baryon fields (k#in quartic, etc) ref.[1] considered
firstly bilinear vertices like in refs.[14, 9], but now theditional exchanges of heavy meson fields
of any type are allowed. The latter should be considered aslynauxiliary fields that allow one to
find a tractable representation of the multi-nucleon irtoas that result when the masses of the
heavy mesons tend to infinity. These heavy meson fields ameatkim the following byH, and a
heavy meson propagator is countedza$®) due to their large masses. On the other hand, ref.[1]
takes the non-standard counting case from the start andwtgam propagator is considered as
0(p~2). In this way, no diagram whose chiral order is actually lo#han expected if the nucleon
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propagators were counted assuming the standard ruleg.idrothe followingm; ~ kg ~ &'(p)
are taken of the same chiral order, and are considered mualesnhan a hadronic scaley of
several hundreds of MeV that results by integrating outthiéoparticle types, including nucleons
with larger three-momentum, heavy mesons and nucleonns@dla The final formula obtained in
ref.[1] for the chiral ordew of a given diagram is

v=4-— E+§(ni +4—4) +i(di +w—1) +_§(Vi -1 +.\§Vi : (2.1)

whereE is the number of external pion lines, is the number of pion lines attached to a vertex
without baryons,; is the chiral order of the latter with(;; its total number. In additiond; is
the chiral order of thé" vertex bilinear in the baryonic fields; is the number of mesonic lines
attached to ity that of only the heavy lined/ is the total number of bilinear verticeg, is the
number of IGVs andn is the total number of baryon propagators miMgsV =V, +m. It is
important to stress that given in eq.(2.1) is bounded from below as explicitly showmnef.[1].
Because of the lastterm in eq.(2.1) adding a new IGV to a adedaliagram increases the counting
at least by one unit because> 1. The numbew given in eq.(2.1) represents a lower bound for
the actual chiral power of a diagram, so thatu > v. The real chiral order of a diagram might be
different fromv because the nucleon propagators are counted alwag¢@s) in eq.(2.1), while
for some diagrams there could be propagators that follovstéuedard counting. Eq.(2.1) implies
the following conditions for augmenting the number of lines diagram without increasing the
chiral power by adding i) pionic lines attached to mesonicdiees, i = n; = 2, ii) pionic lines
attached to meson-baryon verticels= vi = 1 and iii) heavy mesonic lines attached to bilinear
vertices,d, =0, w = 1.

3. Meson-baryon contributionsto the pion self-energy

Here, we apply the chiral counting given in eq.(2.1) to clamithe pion self-energy in the
nuclear medium up to NLO of (p®), with the different contributions shown in fig.1. The nuaieo
propagator contains both the free and the in-medium piesk [1

6(&,—Ik)  B(K-&) 1
K_E(k)—ic  K—E(k)+ie K—E(K)tie

+i(2m6(&, — KD —E(K) .  (3.)

In this equation the subscript refers to the third component of isospin of the nucleon, s, th
i3 = +1/2 corresponds to the proton ardl/2 to the neutron, and the symbé#l, is the Fermi
momentum of the Fermi sea for the corresponding nucleon. d@avention for the pion self-
energy,, is such that the dressed pion propagators reag)) = i/(g°> — m>+ ). The leading
contribution to the pion self-energy corresponds to thgrdims 1 ;) and 24 3, %5, with [1]

0

_|q
2= WEiB(Pp —Pn),
igZ 2 ga (0°)?
22 = opzea®ia(Pe—Pn) ~ 45 mg %1(Pp+ P (3.2)
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Figure 1. Contributions to the in-medium pion self-energy up to NLO(ip°). The pions are indicated
by the dashed lines and the squares correspond to NLO picleeruvertices. A wiggly line is the nucleon-
nucleon interaction kernel, that it is iterated as meantieyelipsis.

wheref =924 MeV is the pion decay constant and the proton(neutron)ityaegjiven bypp(n) =
Eg(n>/3n2. Now, we move to the NLO contributions. The sum of the diagrahand 5 gives the
result [1]

A
23= W(Pp‘ﬂ%)éi : (3.3)
The diagram 6 of fig.1 is given by [1]
4=~ (20Mp—Go(C2+Ca— g ) +C30” | (Pp+pn) , (3.4)

where thec; are low-energy constants of the pion-nucleon Lagrangiﬁgﬁ) [16]. Next, let us
consider the contributions to the pion self-energy due ¢oniicleon self-energy from a one-pion
loop as depicted in the diagrams 7-9 of fig.1. The one-piop fatleon self-energy can be written
as,

_ 1+ T3ZT[—|— 1-13

ZIT
2 7P 2

z, (3.5)

with Z7 andZ the proton and nucleon self-energies due to the in-mediom-picleon loop. The

4
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contributions from the diagrams Z4) and 8+ 9 () are [1]

Cig® ok (OZF 93T
25 = 5roie | s (0% ~ 5 % o0

—igj g /d3k x5  93n
26= 12 013 | a3 \ w0 % ~ a0 h —

3
gqua/ d k (576, +3576;) - (3.6)

The last term inzg is a NNLO or &(p®) contribution because the pion-loop nucleon self-energy
is 0(p%) and we neglect it. The free pion-loop nucleon self-energsalsulated in heavy baryon
CHPT [16]. Its derivative ig7(p?) [1] so that when inserted iBs and 3 it gives rise to anv(p®)
contribution that we neglect in the present work. As showreit[1] the in-medium contribution

to the pion-loop nucleon self-energy is even further supgerd, being a contribution @f(p’) to

the pion self-energy. As a resuli; andZs are at least’(p®).

4. In-medium nucleon-nucleon scattering contributions

We now consider those NLO contributions to the pion selfrgyén the nuclear medium
that involve the nucleon-nucleon interactions. They angaed in the diagrams of the last two
rows of fig.1, where the ellipsis indicate the iteration af tlvo-nucleon reducible loops. For the
diagrams b) and d) of fig.1 the pion lines can leave or entedihgrams. It is remarkable that
these NLO contributions cancel between each other. On ther dtand, sinc&/, = 2 in these
contributions one needs only the nucleon-nucleon scagfeaimplitude at7(p°) to match with
our required precision at NLO. This amplitude is obtainediteyating in an infinite ladder of
two nucleon reducible loops, with full in-medium nucleoropagators, the tree level amplitudes
obtained from theZ(p°) Lagrangian with four nucleons [4] and from the one-pion exaie with
the lowest order pion-nucleon coupling. The sum of the lasi@epresented diagrammatically in
fig.1 by the exchange of a wiggly line. This procedure wouldespond in vacuum to the leading
nucleon-nucleon scattering amplitude according to r&fg].

The diagrams a) and c) of fig.1 involve the Weinberg-Tomozeergex (WT) while b) and d)
contain the pole terms of pion-nucleon scattering. At legdirder in the chiral counting the sum
of the latter two has the same structure as the WT term, withebulting vertex given by

iq° q* K
~5f2 (1—9,%(1—(2)) kT . (4.1)

We can then discuss simultaneously all the diagrams in gtewa rows of fig.1 employing the
latter vertex. Let us denote ¥, nn the proton (neutron) self-energy in the nuclear medium due
to the nucleon-nucleon interactions,

d3k
Zi, NN = Z/ 2 0(&a, — |k2|)a(k101i3, ko0202| Tnn|K1O1i3, K20202) A - (4.2)

az,02
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Figure 2: Contribution to the pion self-energy with a two-nucleonueithle loop. The pion scatters in-
side/outside the loop for the diagram a)/b).

The sum of the diagrams a) and b) of fig.1 can then be writteti]as [

iq° d3k1 d3k2
z7:ﬁ< ~0a 2)&]32/

01,02

7]
X 210 (9(5,) —|K1|)8(&p — k2|)a(k101p,K202p| Tun|K101p, K202 p) A

— (& — |k1|)B(&n \kz\)A(kloln,kzazn\TNN\kloln,kzozmA) (4.3)

K=E(ky)

Let us now consider the diagrams c) and d) of fig.1 whose dautioin is denoted b¥g. These
diagrams consist of the pion-nucleon scattering in a twdewn reducible loop which is corrected
by initial and final state interactions. The iterations ar@didated by the ellipsis on both sides of
the diagrams. In order to see that these diagrams cancebwifh.3) let us take first the diagram
of fig.2a with a twice iterated wiggly line vertex. It is givény

L_ b (1 29, / d*k ke
%87 21 (1 gAq%> %3 | 2np 2y

0
0k0 —[ka])8(&p — [k2|)Mp — B(&n— [Ka[)8(én — ‘kZDHH)kg:E(kl) ) (4.4)

where

4
M, :./(g '; VProfis, k — K)Pro(is, ke + K)V | (4.5)
Here, Pro(is, k) is an in-medium nucleon propagator, eq.(3.1), ®¥nid a shortcut notation to in-
dicate a wiggly line nucleon-nucleon vertex. There is al@dorresponding crossed contribution
with the final nucleons exchanged. The isovector natureefitbdified WT vertex of eq.(4.1) im-
plies that only the difference between the proton-prototh me&utron-neutron contributions arises.
The derivative with respect kj? arises in eq.(4.4) because the nucleon propagator to windiwvb
pions are attached appears squared [1]. We have in addigodiagram of fig.2b corresponding
to the once iterated wiggly line exchange contributiorTig in eq.(4.3). The latter is given by
—M;, and then, when inserted in eq.(4.3), it cancels \Eh Notice as well that the contribution
to Tyn given by the exchange of only one wiggly line vanishes wheeiited in eq.(4.3) because



CHPT in nuclear matter J. A. Oller

it is independent ok?. This process of mutual cancellation betweerandZg can be easily gen-
eralized to any number of two-nucleon reducible loops in.figk b) and 1c) and d), respectively.
An n+ 1 iterated wiggly line exchange in these figures impliéao-nucleon reducible loops. The
two pions can be attached fag to any of them, while fo; the derivative with respect &f can
also act on any of the loops. The iterative loops are the samiecth cases but a relative minus
sign results from the loop on which the two pions are attactifirespect to the one on which the
derivative is acting, as just discussed. Hence,

S, +3g=0. (4.6)

The basic simple reason for such cancellation is that wbil&f the presence of a nucleon propa-
gator squared gives rise t6d/dk?, for Zg it yields —id /K.

5. Conclusions and outlook

We have reviewed on the development in ref.[1] of a power tingrin the nuclear medium
that combines both short-range and pion-mediated inteleon interactions. The power counting
requires typically the resummation of infinite strings obtmucleon reducible diagrams with the
leading&(p®) two-nucleon CHPT amplitudes. As a result, the power cogrgiccounts for non-
perturbative effects to be resummed. The pion self-enar@symmetric nuclear matter has been
calculated up-to-and-including(p®). As a novelty, it is shown that the leading corrections to the
linear density approximation vanish. In particular, it eriged that the leading corrections from
nucleon-nucleon scattering mutually cancel.
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