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1. Introduction

The study of the heavy quark—antiquark system is an old t@eie [1] for earlier references).
Here we will concentrate on recent developments based ectigf field theories (EFTSs). For large
enough masses, these systems can be considered to beatosistiel (NR) and are then charac-
terized by, at least, three widely separated scales: hHaedhfassn, of the heavy quarks), soft (the
relative momentum of the heavy-quark—antiquark pair ircérger of mass frame| ~ my, v« 1),
and ultrasoft (the typical kinetic enerdy ~ mv? of the heavy quark in the bound state system).
In 1986, NRQED [2], an EFT for NR leptons, was presented. NR@Eobtained from QED by
integrating out the hard scate. NRQCD [3] was born soon afterwards. NRQCD has proved to
be extremely successful in studyi@d systems near threshold. The Lagrangian of NRQCD can
be organized in powers of/in, thus making explicit the NR nature of the physical systeyes,
its connection with a NR quantum mechanical formulationhaf problem was still obscure. For
instance, in QED, in a first approximation, the dynamics efllydrogen atom can be described by
the solution of the Schrédinger equation with a Coulomb e However, it is not always clear
how to derive this equation from the more fundamental quarfteld theory, QED, much less how
to get corrections in a systematic way. A similar problemaisefd in heavy quarkonium systems.
One efficient solution to this problem comes from the use f&fctifze field theories (EFTs) and in
particular of potential NRQCD (pPNRQCD) [4] This EFT takes full advantage of the hierarchy of
scales that appear in the system:

m>> mv> my- .- (1.1)

and makes systematic and natural the connection of the Qudfield Theory with the Schrédinger
equation. Roughly speaking the EFT turns out to be somettkieg

2
Q%-%-@mm>wm:o
+ corrections to the potential
—+interaction with other low- energy degrees of freedo

pPNRQCD

wherevs(o)(r) ~ —Cias/r in the perturbative case a{r) is theQ-Q wave-function.

The key point in the construction of the EFT is to determire kimematic situation we want
to describe. This fixes the (energy of the) degrees of freetthanappear as physical states (and
not only as loop fluctuations). In our case the degrees otifneein pNRQCD are kept to have
E ~ m\2. In order to derive pNRQCD we sequentially integrate outlisinger scales:

QCD

i Integrating out the hard scale (m)
NRQCD
l Integrating out the soft scale (mv)

pPNRQCD E ~mv

1For a comprehensive review of pNRQCD see [5].
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In order to be more specific in what follows we distinguishwan the situation witimv>>
Nacp (weak coupling) and witlmv~ Agcp (Strong coupling).

2. pPNRQCD AT WEAK COUPLING

In this section, we highlight the main techniques neededderoto efficiently perform high-
precision perturbative computations in weakly coupled NRirdl state systems. They can be
summarized in four points:

1. Matching QCD to NRQCD: Relativistic Feynman diagrams

N

. Matching NRQCD to pNRQCD (getting the potential): NR (HREke) Feynman diagrams

w

. Observable: Quantum mechanics perturbation theory
4. Observable: Ultrasoft loops

The first two points explain the technigues needed to obtAIR@CD from QCD, whereas the
last two explain the kind of computations faced in the EFT evbemputing observables. All the
computations can be performed in dimensional reguladmatind only one scale appears in each
type of integral, which becomes homogeneous. This is a wespg simplification of the problem.
In practice this is implemented in the following way:

Point 1). One analytically expands over the three-momentum anduakenergy in the inte-
grand before the integration is made in both the full and ffextve theory [6, 7].

E
oo [datamiple) = [datiamoo+o (5B~ (ke levellunges

NRQCD [ d*af(a,lpl,E) = [ dat(a,0,0) 0! (2.1)

Therefore, the computation of loops in the effective thgast giveszeroandone matches loops
in QCD with only one scale (the mass) to tree level diagram$RQCD which we schematically
draw in the following figure:

= C(m/p) + O(m"2)
' ! m?
\/ = C(m/p) \/ +
I m I
OCD NROCD
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Point 2) works analogously [8]. One expands in the scales that aranldie effective theory.
We integrate out the scale(transfer momentum between the quark and antiquark) oroitsiér
transform variable. Again loops in the EFT are zero and only tree-level diagriage to be
computed in the EFT:
E |p|

NRQCD /d4qf(q,k,|p|,E) . /d“qf(q, k.0,0)+ ¢ (E’?) ~ Shg(potentia) (2.2)

PNRQCD [ d“qf(q,|pl.E) = [ d‘af(@,0,0) =0 (2.3)

We illustrate the matching in the figure below. Formally time-doop diagram is equal to the QCD
diagram shown above. The difference is that it has to be ctadmith the HQET quark propagator
(1/(q® +i€)) and the vertices are also different.

p o
'k=p—p ~ 9 = 6/)
l k 2
1 |
m: ! 2
| | a
! ! /' ——(Ink+c) = @)
1: | m 2
m\ |
NRQCD pNRQCD

Once we have obtained the potentials we have all the ingresdaf the pNRQCD Lagrangian.
In order to write it in a more compact form, with gauge invada and the multipole expansion
explicit, is convenient to project to the quark-antiquaekter and to express the quark-antiquark
state in terms of a single bilinear field, which, by means dtifredefinitions, is decomposed in
SandO, two fields that transform as a singlet and octet under wftaguge transformations.
Finally,

if:s(mo—hgﬁ—5m)S+oUD°—mgo+4m9.Eo+~~ (2.4)

wherehéo) ~ p—ni +Vs(0>(r) anddhs schematically represents the corrections to the potential

Observables. Once the Lagrangian of pPNRQCD has been obtained one canuterapserv-
ables. A key quantity in this respect is the Green functiororter to go beyond the leading order
description of the bound state one has to compute correctmmthe Green FunctiorH( ~ x - E
schematically represents the interaction with ultrashfogs of the singlet and octet field):

1 1
=G +8Gs  GY(E)=

Go(E) = .
° hO + 5he—H —E hO _E

These corrections can be organized as an expansiofmnds and the multipole expansion. Two
type of integrals appear then, which correspond to poingd)4) above.
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Point 3). For example, if we were interested in computing the spacatO(ma$) (for QED
see [9]), one should consider the iteration of subleadingmniials hs) in the propagator:

t 3hs dhs  ohs
OGH% = = + = g .-
1 1 1 1 1
~ 3h + ah ah o
- h-e - h-g h-E

At some point, these corrections produce divergences. ¥@mple, a correction of the type:
5(r)G§o> (Ct ors/r)Gg))é(r), would produce the following divergence

1 Qs 1
7 —Ct— 2
—p°/m r E—p°/m

dp s dp m ATt m mas (1 mE
~ C ~—C —+2In(—)+---|.
| | G e e O ey (¢t )
Nevertheless, the existence of divergences in the efettigory is not a problem, since they get
absorbed in the potentialdifs).
Paint 4). The same happens with ultrasoft gluons, [10, 11, 12]:

{r=0| = Ir =0) (2.5)

Q@@FW\ >
s Q N (0) ddk k 0)
0G¢° = ® Gs (E)/ (zn)dr K+ hO_EFGs (&)
1/(E—ho)
Neéo)(E)r(ho—E)3{%+v+ Inm%f)z+c} G (E), (2.6)

which also produces divergences that get absorbég i@verall, we get a consistent EFT.

By obtaining the poles of the Green function one obtains fleetsoscopy of the bound state.
From the normalization of the Green function one can obtadlusive electromagnetic decays,
NR sum rules, and, in general, describe heavy quarkoniumuptmn near threshold. All these
observables can be obtained from the vacuum polarization

(0 — G )(P) =1 [ dxe™(vadT {3,(93 (0)Hvao).

which in the NR limit ¢; has been computed up ®@(a?) in Ref. [13] for QED and in Refs.
[14, 15] for QCD, there are also some partial resultg &tr3) [16])

H=QyQ=cilox+---, ci=1+aas+aai+-,
schematically reads
M(a?) ~ ¢i(r = 0|Gs(E)|r = 0)

00 E Z |(R)m )|2 1/00 /! |(R)E/(0)|2
oEom— E+ig—ily 0 Eger —E+ie—ily’

00
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For instance, for inclusive electromagnetic decays we wbale

MV —ete) ~ o) @7
3(0)2= 6”0 (1+ 64n) = ResG(0,0.E). 28)

Note that],(0)|? is scheme andscale dependent.
For heavy quarkonium production we would have

G_i(S) ~ ¢1(v)2ImG¢(0,0,/8) + - -- (2.9)

and for NR sum rules

_12m?€ / d \" o dE E
Mp = o <W> n(q2)|q2_0:48ne§Nc/mW(ﬁ—cld1ﬁ>lm6s(0,0,E)
(2.10)

There is and has been an ongoing effort in obtaining the Gi@etions (including the po-
tentials) and the mathing coefficierts with higher degree of accuracy (either at finite order or
with renormalization group improvement). For the Greercfioms/potential one aim is obtaining
expressions with NNNLO precision, for which there are soradigl results [17, 18, 19, 20, 21,
22, 23, 24]. Note as well that it is possible to perform theunaation of large logarithms by us-
ing renormalization group equations in pPNRQCD, see forainst [25, 26]. These results were
confirmed in Ref. [27] within the vNRQCD framework.

3. pPNRQCD AT STRONG COUPLING

So far we have restricted our considerations to the sitnatgcp < m\2. It is doubtful
whether we can consider most of the charmonium and bottamospectrum to be in this sit-
uation but rather in the (generic) non-perturbative cash mv~ Agcp. Then, it is not clear, a
priori, what is the power counting that should be used fos¢hgystems. In particular, it is less
clear how to obtain a rigorous connection between NRQCD aneintial models (if it exists), al-
though naively one would expect that, to some extent, theegamosophy as used previously to
obtain pNRQCD could also be followed here. Heavy quarkon(brﬁ, c-C) systems have been
traditionally described by potential models in the pasindpeheir inverse size assumed to be of
O(Aqcp) (and thatA\gcp < m). Potential models are characterized by the introducticm aore
or less, phenomenological potential in a SchroedingertaquaBy assuming some functionality
in r and by fitting the free parameters of the potential, a redftigood description of the heavy
quarkonium spectrum was obtained. Nevertheless, there twerissues: 1) under which circum-
stances, and how, a pure Schroedinger formulation will ggnéom QCD in the non-perturbative
regime and, if so, 2) how to obtain the potentials from QCD abteast, how to relate them with
objects eventually computable in QCD (then any potentiati@hghould, at least, be consistent
with points 1) and 2)). The use of EFTs has helped to clarifemvpoint 1) is satisfied and how it
can be derived from QCD (see [28, 29]). The procedure is aiml the one at weak coupling:
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1. Matching QCD to NRQCD: Relativistic Feynman diagrams
2. Matching NRQCD to pNRQCD (getting the potential): PotriVilson loops
3. Observable: Quantum mechanics perturbation theory

4. Observable: Ultrasoft loops
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Figure1: rp ~ 0.5 fm. From SESAM [30].

Point 2. The matching scale igys < Agcp. Therefore, coloured-like degrees of freedom
decouple, since the mass gap of hybrids and glueballs@GAHcp ~ mv) > mV (see fig. 1). This
means that at strong coupling the octet and (soft) gluorgsfigdn be integrated out. Since we also
assume that there are not ultrasoft gluons, our interpmidield is justS (we restrict ourselves to
pure QCD with not light fermions) and the pPNRQCD Lagrangieads

Znrocp=S' <i50 - hs> S (3.1)

wherehg is the Hamiltonian of the singlet, i.e. of the heavy quarkomi Schematically is only
a function ofr = x; — xo andp = —ily. It is analytic inp but contains non-analyticities in h can
be written as an expansion inrh:
2 D (2)
p © Vs Vs
hs=— + V.
ST T T
Now the whole issue is to obtain the potential in terms of Wilsoops. The first attempts
to answer this question started more than twenty five years @ge expression for the leading

g (3.2)

2The procedure is similar to the one of the previous sectioneswill not consider it further.
3In this case it refers to effects due to light particles (sjomvhich we will not consider here.
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spin-independent potential, &f(1/mP), corresponds to the static Wilson loop and was derived by
Wilson and Susskind [31]:

VO (r) :TIian%In(W@ - —Cf%+ﬁ(a§). 3.3)

Some expressions for the leading spin-dependent poteititide 3/ mexpansion, 00(1/n?),
were given in Refs. [32]. The procedure followed in theseksgiroved to be very difficult to
extend beyond these leading-order potentials. In Ref, EBBgw method to calculate the potentials
was proposed, where new spin-independent (some of them miomalependent) potentials at
O(1/m?) were obtained. In [34], expressions for the spin-depengetentials were obtained in
terms of eigenstates of the static limit of the NRQCD Hamilém in the Coulomb gauge. In
these works, the potentials did not correctly reproduceuttraviolet behaviour expected from
perturbative QCD (the hard logs logm). This was the first signal that a controlled derivation of
the potentials from QCD was needed. The solution to thislpromeeds of NRQCD, where the
ultraviolet behavior is encoded in the matching coeffigenitthe NRQCD operators. It is then
possible to incorporate them to the potentials as done ind8p At that point, the obtained set of
potentials aD(1/m?) seemed to be complete. Nevertheless, this view was chatigngRefs. [28,
29], where a systematic study of the potential has been dahawan EFT framework: pNRQCD.
The main improvements achieved in Refs. [28, 29] with respiese previous computations can
be summarized as follows:

A) A general procedure to compute the potential by equatiegmg functions in NRQCD and
PNRQCD order by order in/I has been developed [28]. For illustration, within this feem
work, the leading order potential corresponds to Eq. (Zn8)ia obtained by computing

(0/Q} (%2) (%2, X1) Q1 (1) QL (Y1) @(y1, Y2) Q2(¥2)[0),

both in NRQCD
8%(x1 — 1) (x2 — y2) (Wk),
and in pNRQCD
Zs(r)53(xl - Y1)53(x2 — yz)e—iTsz)(r) .

B) The general method has been developed, and formal reewguations have been provided,
to obtain the potential at any order irirh in terms of matrix elements and energies of the
states solution of the static limit [28, 29]. These expm@ssican then be rewritten in terms
of Wilson loops.

Points A) and B) solve, in alternative ways, question 2) ahds, finally settle this issue,
opened since more than twenty five years ago. Once the famlas been developed, tbem-
plete potential (up to field redefinitions) in pure gluedynamicstag(1/m) in [28] and up to
O(1/m?) in [29] have been obtained for the first time.

Let us stress that, to date, A) and B) are the only availabkhods in the literature to compute
the potential in terms of Wilson loops withirsgstemati@xpansion in Im. The attempts to imple-
ment the method of Eichten and Feinberg beyond their leaalidgr results were not able to obtain
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finite expressions [37]. Indeed, in a way, the procedure A)lmseen as the generalization of the
Eichten and Feinberg method. In order to obtain this geizatan it was crucial to understand
the computation within an EFT ideology where equalitiesrMeein Green functions were imposed
and interpolating fields with arbitrary normalizations diselThe method advocated in Ref. [33]
does not appear to be correct, at least in its current fotmunlasince, for instance, it is not able to
obtain the ¥m potential. The computations in Ref. [34] essentially pdevihe correct expressions
for the spin-dependent potentials (once one takes the NR@@&Mhing coefficients to tree level
and neglects the tree-level annihilation contributionhia €qual mass case). Nevertheless, their
methodology needs to be generalized (along the lines o2 to take into account the fact that
one is dealing with operators instead that with numbersesedhype of computations.

Point 3. Oncehg has been obtained, we can obtain the energies of the boued atawe did
in the weak coupling case by looking at the poles of the Graantfon. At the order of interest,
one can take the energies from the real part of the Schroedétuation

(Rehs) (r[n,1,s, j) = Enjis (r[n.1,s, J), (3.4)

with quantum numbers, j, | ands.
From the imaginary piece df;, one can obtain the inclusive decay widths (to light hadrons
leptons or photons) by using the relation

r=-2(nl,s, jlimhgn,l,s,j). (3.5)

This has been done in Refs. [38, 39] at strong coupling. Algtnate that Egs. (2.8,2.9,2.10) are
valid in the strong coupling limit as well, with the qualiftaan that one has to compute the Green
function with the nonperturbative potentials. For ins@recnice example between the matching of
a potential model (with the right short distance structure kence consistent with pPNRQCD) and
QCD within dimensional regularization can be found in RdD][for the inclusive electromagnetic
decay ratio of the charmonium ground state.

4. PHENOMENOLOGICAL ANALYSIS

pNRQCD should allow for the phenomenological descriptibthe heavy quarkonium states
(except, maybe, those very close to threshold). Then thenfitaral question is to determiméhich
states belong to the weak/strong coupling regime. The cleanest place to address this question is
the static potential, by checking up to which scale it candsrdbed by a convergent perturbative
series. The outcome is that, once the renormalon cancellatiachieved, the convergence of the
perturbative series greatly improves and, in the cases Wieogomparison is possible, it agrees
with lattice simulations (at least up to around 1 GeV) [41,413). See Fig. 2 for illustration.

Spectroscopy at weak coupling
These results encourage the use of the weak coupling vessipNRQCD for spectroscopy. Its
use for theMy;;g has lead to competitive determinations of the bottom mags,) ~ 4.2 with
relative good convergence [45, 46, 47, 48]. See Fig. 3 fostithtion.

If the bottomonium ground state can be described with the&kweapling version of pPNRQCD
it should also be possible to describe its pseudoscalangrathen,. Nevertheless the predicted
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Figure 2: Static potential in the RS scheme at different orders inypkation theory plus its comparison
with lattice simulations [44] in the quenched approximatidaken from Ref. [42].
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Figure3: My(;g at different orders in perturbation theory in the RS scheTag&en from Ref. [46].

value~ 40 Mev [49, 50] does not agree very well with the recent experital determination- 70
MeV [51].

With respect to other quarkonium states, Baél'S) system has been studied in Refs. [52, 53,
47] obtaining reasonable resultdi_(1S) = 6307+ 17 MeV. Actually, this figure was a prediction
of the theory prior that the experimental number was obthie@87+ 4.8+ 1.1 MeV [54, 55].

For higher excitations of bottomonium and charmonium theasion is not conclusive. There
are different claims, whereas in Refs. [21, 56, 57] it isrokadl that it is not possible to describe
bottomonium higher excitations in perturbation theorypaposite stand is taken in Refs. [53, 47,
58, 49]. At this respect we can not avoid mention that Ref] p46duced a number for the.(2S)
mass before, and consistent with, the last experimentatefsghy Babar [59] and Cleo 11l [60]
(before there were two excluding experimental numbers éetvBell [61] and Crystal Ball [62]).

Spectroscopy at strong coupling

10
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The situation at strong coupling is not as developed as ak weapling. The main reason, ob-
viously, is that the potentials have to be computed nondpeatively, which, nowadays means
using lattice simulations. Once they have been obtaineccanglug them into the Schroedinger
equation and obtain the spectrum. This program has alreaely performed in Ref. [36]. Unfor-
tunately, these early computations were performed in tiemclued approximation, also the whole
set of relativistic potentials were not included (some afnthwere not known at that time). Quite
remarkable the Am potential was not known at that time. This has changed nowhbydttice
evaluation of Ref. [63], They have also provided with newdations for some of the /i? po-
tentials [64], yet those simulations are still quenchedvduld be interesting to try to obtain some
of those potentials with dynamical fermions. At presenisthare only existing for the static po-
tential. Another point is that some of those potentials draviolet divergent. Therefore, they are
scale and scheme dependent. This produces some errors thddsard matching coefficients are
included and computed in the very same scheme. This is mi fisince the matching coefficients
are typically computed in dimensional regularization véaer the potentials are computed in the
lattice scheme. Therefore, some theoretical effort it stieded before using the full power of
those nonperturbative lattice simulations.

s= 40— 80 GeV

Eps=VS-2 mps

Figure 4: Threshold scan fott. The upper figure shows the fixed order results, LO, NLO and ®NL
whereas the figure belows the RGI results LL, NLL and NNLL asplhyed. The soft scale is varied from
Us=40 GeV tous=80 GeV. From Ref. [65].

Coupling with hard photons
One can study the decays for the bottomonium ground stateariicular the inclusive electro-
magnetic ones, which are the cleanest theoretically. Bxdhse the convergence is not very good

11
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N
N
5L \. NNLO mgs=4.370 GeV

\ ~
LL/LO ]

(102"
(98]

NNLL

Mo
(i8]

Figure5: The moment b} as a function ofus at LO/LL, NLO, NLL, NNLO and NNLL for gas(2 GeV) =
4.370 GeV in the RS scheme. The experimental moment witloitésealso shown (grey band). From Ref.
[68].

[65]. Those objects are specially sensitive to the shapleesiviave function and its behavior at the
origin (the hyperfine splitting is also quite sensitive te thiave function). It may well be that the
present precision of finite order calculations is not enaiagphroperly reproduce the shape of the
wave function (in the same way that one has to go to high olidgysrturbation theory in order to
properly reproduce the static potential). This problemiddae solved by performing even higher
order computations or numerical analysis that includeglinégher order effects, preliminary com-
putations suggest that this is indeed the case [66]. Agtuti$ claimed in Ref. [21] that numerical
solutions of the Schroedinger equation with the exact Gublpotential may lead to more con-
vergent and stable results with respect the renormalizatoale variation. This indeed happens
with the implementation of the renormalization group, dsai$ been shown it production near
threshold [67, 65] (see Fig. 4) or sum rules [68] (see Fig.Ib}his last case it has also lead to a
more accurate determination of the bottom mass:

Mpps(2GeV) = 4.52+0.06 GeV

M(My) = 4.19+ 0.06 GeV,
My rs(2GeV) = 4.37+0.07 Gev} = My(My) !

where the perturbative series is sign-alternating. Thikasopposite than for electromagnetic de-
cays. The convergence of the perturbative series in sura isbEso better than in electromagnetic
decays. This should be compared with finite order determoingbf the bottom mass from NR sum
rules, which suffer from very huge theoretical uncertaistiwhich are not always incorporated in
the errors): bad scale dependence and bad convergencepsrthebative series. Therefore, they
can not provide with precise determinations of the bottorssna

Finally, we would like to mention semi-inclusive radiatidecays of ther(1S), which have
been studied in Ref. [69], where relative good agreemerit @dperiment has been obtained. See
Fig. 6. Related with this work there has been a determinatfan, [71] using

rY(1S) — yX]

_ A = YA _ 0.005
R, = S as(Mz) = 0.120"50¢

with claimed accuracy of orde? (as, V).

12
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Figure 6: Photon spectrum from CLEO data. The solid lines are the NL@ying plus the fragmentation
contributions: the red and blue line are obtained usingckfit estimates fofY(1S)|0g(3S;)|Y(1S)). The
grey shaded region is obtained by varyiagby v2+1p.. The green shaded region shows the zone where
the calculation of the shape functions is not reliable. Tim& dashed line is the result from Fleming et al.
[70], where only color singlet contributions were includ&dom Ref. [69].

5. CONCLUSIONS

We have at our disposal of an EFT from QCD that describes H8aarkonium: pNRQCD.
It provides with an smooth connection with potential moddike problem can be formulated in
a NR gquantum mechanical fashion in terms of Schroedingeait&ms. Every computation can be
performed in dimensional regularization. We have two wasiof this effective theory depending
on whether the potentials can be computed within pertuwbdtieory:

e Weak coupling regime (more predictive).
e Strong coupling regime (less predictive).

Obviously one of the major issues is to distinguish whichrabstates (i.e. range of energies)
belong to which regime. This may provide with a much bettefaratanding of the QCD dynamics.

In any case the study of heavy quarkonium provides with gost@rchinations of some of the

parameters of the standard model. For instance:

b-b NR sum rules and/oY(1S) mass— m, mass.

t-t production near threshole> m mass.

Semiinclusive radiative decays ¥t1S) — as(M,).
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