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1. Introduction

Much progress has been made in lattice gauge theory on the computatiodrof lspectra
[L—-7]. Such spectra can be extracted from a matrix of 2-point corraldtioctions built from
extended operators with suitable quantum numbers applied to the groun@ktetere we present
a new approach for the computation of spectra and wave functionssiugp® compute transition
matrix elements between states chosen from a stochastic basis with respagtj¢odggrees of
freedom. We consider transition amplitudes

Muv(T) = (Yv|exp—HT/R]|Yy,) , p,v=1,....N, (1.1)

wherelY),) denotes a time-independent Bargmann-link state, i.e., a configuration oflirdbles

U;; assigned to all of the linkg on thespatiallattice. It is crucial to choose statp§,) which are
physically relevant and important. We use as stochastic technique Morltev@tr importance
sampling to sample states from a large variety of possibilities. The stochastistzdss are closely
related to equilibrium path configurations in the Euclidean path integral. FsommatrixM , (T)

we extract a spectrum and wave functions of an effective Hamiltoniansafvalled Monte Carlo
Hamiltonian - being valid in a low energy, respectively low-temperature winddwe Monte Carlo
Hamiltonian has been suggested 1999 [9]. In field theory, the Monte Carialtdnian has been
applied to the % 1 Klein-Gordon model for the computation of the spectrum and thermodynbamica
functions [10—13], and likewise to the11 scalar model for the computation of the spectrum and
thermodynamical functions [14 — 16]. A first step towards the Monte Caalmionian in lattice
gauge theory has been made in [17] by computing transition amplituibdpfiauge theory. Here
we construct the Monte Carlo Hamiltonian fd(1), ; lattice gauge theory and apply it to compute
the energy spectrum of excited states, the corresponding wave funetimhthermodynamical
functions. Here we want to show the working of the method applied to an A&l non-trivial
model in lattice gauge theory. In the case of the electric Hamiltonian we corsgidéal lattice
volumes up to 18 while for the full Hamiltonan we present only preliminary results ona 2
lattice. Because of the smallness of the lattices we do not consider hereafigimucontinuum
limit (a — 0). Rather, we try to give a careful analysis of the origin and size @rgrwhich
determine the limitations of the method.

2. U(1)241 lattice gaugetheory

The lattice action is given by [18]

1a 1a
U =5— 1-ReUp)|+ = — 1-RgUp)] = SsiedVU] + SnagrVU] - (2.1
Su] gz%mtignke[ gUo)] gzamspg&”ke[ oUo)] = SetedU] + SnagnU] - (2.1)
The corresponding lattice Hamiltonian is given by [19]
F e, !

representing the electric term and a magnetic term, respectively. The elentrits built from the
operatoi;; which represents the electric flux strings. Its eigenstates are

ﬂj|/\ﬁ >=Aij|Aij > ,Aij =0,£1,£2,... . (2.3)
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Figure 1: Scaling of energy levels from the Monte Carlo Hamiltoniaontparison of electric Hamiltonian
(left) with full Hamiltonian (right). The bars represenasstical errors. 2spatial latticeas =a = 1,9 =1,
N = 80.

For each linkij, the state$A ) form a complete orthogonal basis,

AYA|=1, (A|A)y =03, . (2.4)
r—0£T 42,

The magnetic term is built from link operatdﬁﬁ. It has the eigenstates
Uij Vi) = Uij|U;j) - (2.5)
For each linkij, this basis is a complete orthogonal basis,

/dU UYU[=1, (U|U) = 6(U' —U) . (2.6)

The transition from the flux string basis to the link basis is determined by the comuniittl] =
—U and yields [17]

<AU>=U). (2.7)
We construct Euclidean transition matrix elements
R U, T
My,u, = (Urlflexp-HT)IU) = [(dUjexp-SUJl| . 28)
U;,0

where the operatdil (commuting with the Hamiltonian) denotes a projection operator states onto
gauge invariant states.

3. Stochastic basis

For a system with a given Hamiltoniat the physically motivated choice for the distribution
is given by the transition amplitude in imaginary time, involving the same Hamiltonian,

P(U) = (U]exp—HT /] |Uinit) , (3.1)
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Figure 2: Electric part of Hamiltonian. Comparison of exact resulihwhose from Monte Carlo Hamilto-
nian. Left: Low-lying spectrum. Rspatial latticeas = a; = 1,g= 1.5, T =4.2, N = 1000. Right: Specific
heatC(3), 22 spatial latticeas = a; = 1, g = 1, N = 500. Error bars indicate statistical errors.

whereUj,;; is some suitably chosen fixed spatial lattice configuration (Bargmann stais)uhc-
tion is suitable as probability distribution because it is a positive fund®@h) > 0. Physically
relevant configurations (Bargmann states) can be drawn from this disritby expressioR(U)
as path integral and doing the sampling via Monte Carlo. As alternative onecamsyder the
distribution given by the transition amplitude from the electric Hamiltonian,

P(U) = (U|exp—HeiecT /N]|Uinit) , (3.2)

which is an analytically computable function. Both of the above distributiongueuatime param-
eterT, which determines the "width" of the distribution. Such time parameter needsttméed.

As a general rule, we used to chodssuch that the energy spectrum falls into a scaling window
of eigenvalues (see below).

4. Transition amplitudesfrom electric Hamiltonian

Applying the Peter-Weyl theorem [20] to the gradpl) allows to expand link states in terms
of irreducible representation matrices. In the case of the gebup, the Peter-Weyl theorem is
equivalent to Fourier expansion [20]. The Peter-Weyl theorem huoloie generally for groups
SU(N) [21]. Applying the Peter-Weyl theorem for the groul{1) to the transition amplitude
between two single link states reads

n?]cogn(ain — asi)] .

o’hT
o (4.1)

n=0,£1+2...
In mathematical terms (running over 0+1,+2....) denotes the index of the irreducible represen-
tation. (U)" denotes the irreducible representation of group elerdewith representation index
(quantum numbenm). In physical termsn represents the number of electric flux lines. The Hamil-

tonianHgec is a Casimir, which is diagonal in the representation inaleXhe link variables have
been parametrized vla = explia].
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The Peter-Weyl theorem is also useful for the construction of gaugeiamt states. For
example, let us take a spatial lattice consisting of four links ordered to fplagaette and consider
the transition amplitude between initial and final Bargmann states. In order te timalamplitude
gauge invariant, we carry out the group integral over the gauge dreiich node. The group
integral generates Gauss’ law enforcing conservation of the numflexdines at each vertex. By
defining the plaquette angByaq = 012+ 023+ 034+ 041 andABpjaq = Ggliaq - g}aq, we obtain
the final expression of the gauge invariant amplitude,

L _ 2
(U "M exp[—HetecT /AIU™) = Z exp[—gzﬁT4n2] cos{nABmaq} . (4.2)
n—0£T+2,. . a

Heren denotes the number of closed plaquette loops. The result is built fromgitaguvhich are
closed loops of consecutive link variables forming the smallest non-lecajeinvariant objects on
the lattice. The eigenvalue of the electric fi&lé corresponds to the contribution franplaquette
loops (on top of each other). The result only depends on the numbédaaigite loops and the
difference between initial and final plaquette angles.

5. Test of Monte Carlo Hamiltonian

A. Electric Hamiltonian In order to test the Monte Carlo Hamiltonian, we first consider the
electric part of the Hamiltonian. This is a good test bed, because the speatrthe electric
Hamiltonian can be computed analytically. Fig.[1](left) shows the low-lying phtihe spectrum
as function of the time parametBr= T occuring in the matrix elements. The physical spectrum
should be independent of the time parameter. In the numerical results thiteidag by the
existence of scaling windows (region of flat line). The size of such sgalindow depends on the
particular energy-level and decreases with increasing energy. e that the size of the scaling
window S, can be described approximately by an exponentialSan exp—oE,|. Such behavior
of decreasing scaling windows can be understood from the propettyxpa-HT /h] projects
onto the ground state for large (Feynman-Kac theorem). Higher levels become exponentially
suppressed by the dominant ground state and can survive only fiartishes T. We looked also
for scaling windows in the corresponding wave functions. In particularhave studiede, |®Py),

i.e. the expansion coefficient of wave functidq in terms of the stochastic basis functign Such
expansion coefficients for the first energy levels expanded in term® dirg basis function also
display scaling windows (not shown). Like the size of the energy scalingow decreases with
increasing energ¥,, also the size of the wave function scaling window decreases with the level
indexn of energy.

For the case of low-lying spectrum using a lattice of sizé 4@omparison of results from
the Monte Carlo Hamiltonian with the exact spectrum is shown in Fig.[2](lefte Aigh degen-
eracy is due to 1- and 2-plaquette states located anywhere onihetid® (such degeneracy will
be lifted when taking the magnetic term into account). The figure shows, fitistliy the Monte
Carlo Hamiltonian captures almost all of the degenerate states and secepdbgluces the exact
energies with small error. The quality of the energy spectrum of the Moaiti® Elamiltonian can
be seen also from a look at thermodynamical functions. In the case ofettteie Hamiltonian,
the energy spectrury, E1, ... can be computed analytically. Thermodynamical functions can be
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expressed via those energies. We have computed average erez@ndrgy, entropy and specific
heat, and compared the results from the Monte Carlo Hamiltonian with the axacfTde result
for the specific heat is displayed in Fig.[2](right). In general, one nlesevery good agreement in
the regime of larggs, i.e., the low temperature regime. For small valueg slome disagreement
becomes visible, reflecting the fact that the precision of higher enegls lef/¢he Monte Carlo
Hamiltonian is limited (their scaling windows go to zero).

B. Including the magnetic term: full HamiltoniarFinally, we consider the gauge invariant
transition amplitude under the full Hamiltonian (Eqg.1.1). Although it can be esgekin terms
of a path integral with the lattice action (Wilson action), this is numerically not deitdtecause
Monte Carlo with importance sampling only allows to compute ratios of transition amgditud
Hence, we factorize the above amplitude into two terms, one being analyticallgutable and
the other one being given by the ratio of transition amplitudes computable viéeNGamlo,

(Uu|M exp—HT /AIUy)
(Uy M exp—HeiecT /N]|Uy) ‘

Taking into account the magnetic term allows to obtain the full Monte Carlo Hamiftorférst
results on scaling of its low-lying energy spectrum are shown in Fig.iffti. These results
correspond to a small lattice {Rand also a small number of basis functions. The results show
scaling windows for the lowest five energy levels. Compared to the scatihgvibr observed
in the electric Hamiltonian (Fig. [1] left) fewer levels show scaling, and théiregavindows are
smaller. This can be understood from the fact that the ratio of matrix elemeds (6.1) has been
determined via Monte Carlo from path integrals, which carries statisticalseimdhe order of a
few percent. From this observation we conclude that the numerical tiesoaf energy levels and
the size of scaling windows of the full Hamiltonian is essentially determined bytditist&cal error
occuring in the numerical calculation of the ratio of matrix elements. Results witbr ls¢atistics,
a larger stochastic basis and larger lattice volumes are under way.

Myev(T) = (Up |1 expl—HetecT /AT[Uy) x (5.1)
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