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We suggest a new method to compute the spectrum and wave functions of excited states. We

construct a stochastic basis of Bargmann link states, drawnfrom a physical probability density

distribution and compute transition amplitudes between stochastic basis states. From such transi-

tion matrix we extract wave functions and the energy spectrum. We apply this method toU(1)2+1

lattice gauge theory. As a test we compute the energy spectrum, wave functions and thermo-

dynamical functions of the electric Hamiltonian and compare it with analytical results. We find

excellent agreement. We observe scaling of energies and wave functions in the variable of time.

We also present first results on a small lattice for the full Hamiltonian including the magnetic

term.
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1. Introduction

Much progress has been made in lattice gauge theory on the computation of hadron spectra
[1 – 7]. Such spectra can be extracted from a matrix of 2-point correlation functions built from
extended operators with suitable quantum numbers applied to the ground state[8]. Here we present
a new approach for the computation of spectra and wave functions suggesting to compute transition
matrix elements between states chosen from a stochastic basis with respect to gauge degrees of
freedom. We consider transition amplitudes

Mµ,ν(T) = 〈ϒν |exp[−HT/h̄]|ϒµ〉 , µ,ν = 1, . . . ,N , (1.1)

where|ϒν〉 denotes a time-independent Bargmann-link state, i.e., a configuration of link variables
Ui j assigned to all of the linksi j on thespatial lattice. It is crucial to choose states|ϒν〉 which are
physically relevant and important. We use as stochastic technique Monte Carlo with importance
sampling to sample states from a large variety of possibilities. The stochastic basis states are closely
related to equilibrium path configurations in the Euclidean path integral. From such matrixMµ,ν(T)

we extract a spectrum and wave functions of an effective Hamiltonian - theso called Monte Carlo
Hamiltonian - being valid in a low energy, respectively low-temperature window. The Monte Carlo
Hamiltonian has been suggested 1999 [9]. In field theory, the Monte Carlo Hamiltonian has been
applied to the 1+1 Klein-Gordon model for the computation of the spectrum and thermodynamical
functions [10 – 13], and likewise to the 1+1 scalar model for the computation of the spectrum and
thermodynamical functions [14 – 16]. A first step towards the Monte Carlo Hamiltonian in lattice
gauge theory has been made in [17] by computing transition amplitudes ofU(1) gauge theory. Here
we construct the Monte Carlo Hamiltonian forU(1)2+1 lattice gauge theory and apply it to compute
the energy spectrum of excited states, the corresponding wave functions and thermodynamical
functions. Here we want to show the working of the method applied to an Abelian, but non-trivial
model in lattice gauge theory. In the case of the electric Hamiltonian we considerspatial lattice
volumes up to 102, while for the full Hamiltonan we present only preliminary results on a 22

lattice. Because of the smallness of the lattices we do not consider here the quantum continuum
limit (a → 0). Rather, we try to give a careful analysis of the origin and size of errors, which
determine the limitations of the method.

2. U(1)2+1 lattice gauge theory

The lattice action is given by [18]

S[U ] =
1
g2

a
a0

∑
�time−like

[1−Re(U�)]+
1
g2

a0

a ∑
�space−like

[1−Re(U�)] ≡ Selec[U ]+Smagn[U ] . (2.1)

The corresponding lattice Hamiltonian is given by [19]

H =
g2

2a ∑
<i j>

l̂2
i j +

1
g2a ∑

�space−like

[1−Re(U�)] ≡ Helec+Hmagn , (2.2)

representing the electric term and a magnetic term, respectively. The electricterm is built from the
operatorl̂ i j which represents the electric flux strings. Its eigenstates are

l̂ i j |λi j >= λi j |λi j > ,λi j = 0,±1,±2, . . . . (2.3)
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Figure 1: Scaling of energy levels from the Monte Carlo Hamiltonian. Comparison of electric Hamiltonian
(left) with full Hamiltonian (right). The bars represent statistical errors. 22 spatial lattice,as = at = 1, g= 1,
N = 80.

For each linki j , the states|λ 〉 form a complete orthogonal basis,

∑
λ=0,±1,±2,...

|λ 〉〈λ | = 1 , 〈λ ′|λ 〉 = δλ ′,λ . (2.4)

The magnetic term is built from link operatorsÛi j . It has the eigenstates

Ûi j |Ui j 〉 = Ui j |Ui j 〉 . (2.5)

For each linki j , this basis is a complete orthogonal basis,
∫

dU |U〉〈U | = 1 , 〈U ′|U〉 = δ (U ′−U) . (2.6)

The transition from the flux string basis to the link basis is determined by the commutator [l̂ ,Û ] =

−Û and yields [17]
< λ |U >= (U)λ . (2.7)

We construct Euclidean transition matrix elements

MU f ,Ui = 〈U f |Π̂exp[−HT]|Ui〉 =
∫

[dU]exp[−S[U ]]

∣

∣

∣

∣

U f ,T

Ui ,0
, (2.8)

where the operator̂Π (commuting with the Hamiltonian) denotes a projection operator states onto
gauge invariant states.

3. Stochastic basis

For a system with a given HamiltonianH the physically motivated choice for the distribution
is given by the transition amplitude in imaginary time, involving the same Hamiltonian,

P(U) = 〈U |exp[−HT/h̄]|Uinit 〉 , (3.1)
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Figure 2: Electric part of Hamiltonian. Comparison of exact results with those from Monte Carlo Hamilto-
nian. Left: Low-lying spectrum. 102 spatial lattice,as = at = 1, g= 1.5, T = 4.2, N = 1000. Right: Specific
heatC(β ), 22 spatial lattice,as = at = 1, g = 1, N = 500. Error bars indicate statistical errors.

whereUinit is some suitably chosen fixed spatial lattice configuration (Bargmann state). This func-
tion is suitable as probability distribution because it is a positive functionP(U) ≥ 0. Physically
relevant configurations (Bargmann states) can be drawn from this distribution by expressionP(U)

as path integral and doing the sampling via Monte Carlo. As alternative one mayconsider the
distribution given by the transition amplitude from the electric Hamiltonian,

P(U) = 〈U |exp[−HelecT/h̄]|Uinit 〉 , (3.2)

which is an analytically computable function. Both of the above distributions involve a time param-
eterT, which determines the "width" of the distribution. Such time parameter needs to betuned.
As a general rule, we used to chooseT such that the energy spectrum falls into a scaling window
of eigenvalues (see below).

4. Transition amplitudes from electric Hamiltonian

Applying the Peter-Weyl theorem [20] to the groupU(1) allows to expand link states in terms
of irreducible representation matrices. In the case of the groupU(1), the Peter-Weyl theorem is
equivalent to Fourier expansion [20]. The Peter-Weyl theorem holdsmore generally for groups
SU(N) [21]. Applying the Peter-Weyl theorem for the groupU(1) to the transition amplitude
between two single link states reads

< U f i |exp[−HelecT/h̄]|Uin >= ∑
n=0,±1,±2,...

exp[−
g2h̄T
2a

n2]cos[n(αin −α f i)] . (4.1)

In mathematical termsn (running over 0,±1,±2, . . .) denotes the index of the irreducible represen-
tation. (U)n denotes the irreducible representation of group elementU with representation index
(quantum number)n. In physical terms,n represents the number of electric flux lines. The Hamil-
tonianHelec is a Casimir, which is diagonal in the representation indexn. The link variables have
been parametrized viaU = exp[iα ].
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The Peter-Weyl theorem is also useful for the construction of gauge invariant states. For
example, let us take a spatial lattice consisting of four links ordered to form aplaquette and consider
the transition amplitude between initial and final Bargmann states. In order to make the amplitude
gauge invariant, we carry out the group integral over the gauge orbit at each node. The group
integral generates Gauss’ law enforcing conservation of the number offlux lines at each vertex. By
defining the plaquette angleθplaq = α12+ α23+ α34+ α41 and∆θplaq = θ f i

plaq− θ in
plaq, we obtain

the final expression of the gauge invariant amplitude,

〈U f i |Π̂exp[−HelecT/h̄]|U in〉 = ∑
n=0,±1,±2,...

exp

[

−
g2h̄T
2a

4n2
]

cos
[

n∆θplaq

]

. (4.2)

Heren denotes the number of closed plaquette loops. The result is built from plaquettes which are
closed loops of consecutive link variables forming the smallest non-local gauge invariant objects on
the lattice. The eigenvalue of the electric field~E2 corresponds to the contribution fromn plaquette
loops (on top of each other). The result only depends on the number of plaquette loops and the
difference between initial and final plaquette angles.

5. Test of Monte Carlo Hamiltonian

A. Electric Hamiltonian. In order to test the Monte Carlo Hamiltonian, we first consider the
electric part of the Hamiltonian. This is a good test bed, because the spectrum of the electric
Hamiltonian can be computed analytically. Fig.[1](left) shows the low-lying partof the spectrum
as function of the time parameterβ = T occuring in the matrix elements. The physical spectrum
should be independent of the time parameter. In the numerical results this is reflected by the
existence of scaling windows (region of flat line). The size of such scaling window depends on the
particular energy-level and decreases with increasing energy. We found that the size of the scaling
windowSn can be described approximately by an exponential lawSn ∝ exp[−σEn]. Such behavior
of decreasing scaling windows can be understood from the property that exp[−HT/h̄] projects
onto the ground state for largeT (Feynman-Kac theorem). Higher levels become exponentially
suppressed by the dominant ground state and can survive only for short timesT. We looked also
for scaling windows in the corresponding wave functions. In particular,we have studied〈eµ |Φn〉,
i.e. the expansion coefficient of wave functionΦn in terms of the stochastic basis functioneµ . Such
expansion coefficients for the first energy levels expanded in terms of the first basis function also
display scaling windows (not shown). Like the size of the energy scaling window decreases with
increasing energyEn, also the size of the wave function scaling window decreases with the level
indexn of energy.

For the case of low-lying spectrum using a lattice of size 102 a comparison of results from
the Monte Carlo Hamiltonian with the exact spectrum is shown in Fig.[2](left). The high degen-
eracy is due to 1- and 2-plaquette states located anywhere on the 102 lattice (such degeneracy will
be lifted when taking the magnetic term into account). The figure shows, firstly, that the Monte
Carlo Hamiltonian captures almost all of the degenerate states and secondly,reproduces the exact
energies with small error. The quality of the energy spectrum of the Monte Carlo Hamiltonian can
be seen also from a look at thermodynamical functions. In the case of the electric Hamiltonian,
the energy spectrumE0,E1, . . . can be computed analytically. Thermodynamical functions can be
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expressed via those energies. We have computed average energy, free energy, entropy and specific
heat, and compared the results from the Monte Carlo Hamiltonian with the exact one. The result
for the specific heat is displayed in Fig.[2](right). In general, one observes very good agreement in
the regime of largeβ , i.e., the low temperature regime. For small values ofβ some disagreement
becomes visible, reflecting the fact that the precision of higher enegy levels of the Monte Carlo
Hamiltonian is limited (their scaling windows go to zero).

B. Including the magnetic term: full Hamiltonian. Finally, we consider the gauge invariant
transition amplitude under the full Hamiltonian (Eq.1.1). Although it can be expressed in terms
of a path integral with the lattice action (Wilson action), this is numerically not suitable, because
Monte Carlo with importance sampling only allows to compute ratios of transition amplitudes.
Hence, we factorize the above amplitude into two terms, one being analytically computable and
the other one being given by the ratio of transition amplitudes computable via Monte Carlo,

Mµ,ν(T) = 〈Uµ |Π̂ exp[−HelecT/h̄]|Uν〉×
〈Uµ |Π̂ exp[−HT/h̄]|Uν〉

〈Uµ |Π̂ exp[−HelecT/h̄]|Uν〉
. (5.1)

Taking into account the magnetic term allows to obtain the full Monte Carlo Hamiltonian. First
results on scaling of its low-lying energy spectrum are shown in Fig. [1](right). These results
correspond to a small lattice (22) and also a small number of basis functions. The results show
scaling windows for the lowest five energy levels. Compared to the scaling behavior observed
in the electric Hamiltonian (Fig. [1] left) fewer levels show scaling, and the scaling windows are
smaller. This can be understood from the fact that the ratio of matrix elements inEq. (5.1) has been
determined via Monte Carlo from path integrals, which carries statistical errors in the order of a
few percent. From this observation we conclude that the numerical resolution of energy levels and
the size of scaling windows of the full Hamiltonian is essentially determined by the statistical error
occuring in the numerical calculation of the ratio of matrix elements. Results with better statistics,
a larger stochastic basis and larger lattice volumes are under way.

Acknowledgement. H. Kröger has been supported by NSERC Canada. This paper is dedicated to
the memory of Prof. X.Q. Luo.
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