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1. Introduction

Quark masses are fundamental parameters in QCD. Recent lattice computaitdait possi-
ble to calculate light quark masses up to strange consistently taking into adcelight sea quark
effects. The 2+ 1 flavor domain wall fermion (DWF) calculation reportédl [1],

Mg (2GeV) = 3.71(0.16)staf0.18)sys(0.33)renMeV, (1.1)

m{'S(2GeV) = 107.3(4.4)staf4.9)sys(9.7)rerMeV. (1.2)

The first error is statistical. The second error is the systematic uncertaititg ohetermination of
the bare quark mass in the lattice theory. It is dominated by the discretizatmmagiat will be
significantly reduced when the ensemble on a finer lattice is analyzed: wearaeatly generating
these configurations which will enable us to perform a continuum extraqpoldn this paper we
discuss the reduction of the third error which arises in the renormalizatitineofnass. There
are two dominant contributions to the error: (i) The non-perturbativerrealization of the mass
in the RI/MOM scheme. We estimate the corresponding uncertainty to be at#odu@ to the
contamination by chiral symmetry breaking effects as explained below. @nTatching from the
RI/MOM to the MS scheme. The perturbative series for this matching is known to 3-1pbg§ [2
but converges very poorly. The uncertainty is estimated to be about 6%.

As was demonstrated in Ref] [4], the unwanted non-perturbative coratioris in RI/MOM
scheme due to spontaneous chiral symmetry breaking could be reduchadryying the scheme
to one in which no exceptional momenta are present. The argument stemth&diveinberg’s
theorem [] on the behavior of the vertex function for large external memevhere a set of
external momenta which has zero partial sum is called exceptional.

In this article after the construction of an RI/MOM scheme with non-excegtimmmenenta
for the quark bilinears is summarized, the method is applied to a data set useccontlentional
RI/MOM renormalization with 2+ 1 flavor DWFs [#]. The new results are compared with the
conventional RI/MOM results.

2. RI/SMOM scheme for quark mass

2.1 Conventional RI/MOM scheme

We start briefly summarize the original RI/MOM scheme. A mass renormalizaictorfis
completely fixed by introducing the two renormalization conditions on the quaniagator. For
the conventional RI/MOM scheme, the conditions on the Landau-gaugeagator read

0

1 .
5V [—Idpgl(p)} o =1, (2.1)
rr&LrEO lZmRTr[gl(p)]pZ:uz =1, (2.2)

which are imposed at the mass-less point. The renormalized quark ptopagd mass are related
to the bare ones through

KR(p) = Zg(H)Se(p), MR = Zm(4)mg. (2.3)
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Eq. (2-1) determine&'°M(u) which is needed for the EQ.(R.2), which in turn fix@$°M(u). In
the continuum theory, RI/MOM scheme wave function renormalization condiipr{2.1) can be
rewritten in terms of the renormalization condition on the bare amputated Gneetiofull of the
vector current through the Ward-Takahashi identity as

1

Z}oM @Tr[Vu My, (p)] =1 (2.4)

p2=p?2

with Zy = 1. A similar relation applies for the axial vector vertex function, but with aanation
of a non-perturbative effect with/b? suppressior{[6],

=1, (2.5)

1 1 C
ZNIOM <48TV[V'5Vu|_|A“(pﬂ + g +- >
q p2=p2

with Za = 1. The momentum configuration must be stated to fix the renormalization conditon.
these to give equivalent renormalization condition as Eq] (2.1), when theemtamp comes in
through one fermion line the sanpanust go out via the other fermion line. This is an exceptional
momentum configurationpq + p2 = p— p = 0). It is shown from the Weinberg’s theorefi [5] that
the difference of the vector and axial vector vertex amplitude 15 p? []. This is consistent with
the existence of the/p? contamination term in Eq[ (2.5), which Martinedi al. derived through
operator product expansion in Ref. [6].

On the lattice with DWFs, the use of vector or axial vector vertex functiors (§4,[2.5))
has an advantage over the quark propagator (Ed. (2.1)) in calculangudrk wave function
renormalization. The derivative with respect to momentum is not practicéthemattice as the
momenta are quantized on the finite volume lattice. A similar scheme sometimes callédias Rl
which Eq. [2.1L) is replaced with

1 e
g TSP =1 (2.6)
is free from the derivative. But, naive implementations of Eq.] (2.6) on thiedaintroduce the

tree revel(pa)? error, which is sizable at the momentum range we {fse [7]. DWFs can utilize the
conserved axial vector current and provide a precise estimaigef2, ) [f] of the local currents,
which in turn allows one to use Eq$. (2.4), {2.5) with a correction2f factor to geZ'°M.

By similar reasons, the mass renormalization should be calculated througlabiiperator
renormalization using the relatiofy, = 1/Zs = 1/Zp. In principle, the scalar and pseudoscalar
renormalization factors can be determined at large momenta by imposing thgamnd

Z’szr[ns(p)] -1 Z’fzmysnp(p)] 1@
pP= pP=p?
At finite momenta howeve#s may differ fromZp due to spontaneous chiral symmetry breaking.
In particular, for the exceptional momentum case, one needs to subteagioth pole (forP) or
double pole (forSwith quenching) to remove the divergenceZpf (andZs quench) in the chiral
limit.
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2.2 RI/SMOM scheme

Non-exceptional momenta do not have zero partial sum, which suppréssée Feynman
diagram, the small momentum flow leading to non-perturbative contamination. @\netous
choices of non-exceptional momenta, we adopt the symmetri¢iére p? = p3 = g whereq =
p1— p2. This choice is convenient because only one invariant is involvpg (& is alsou?). Here
we briefly review the SMOM (symmetric MOM) scheme mass renormalization whidesnase
of the symmetric momentum configuration. The SMOM scheme is discussed iniddRai. [§].

We will demonstrate in the next section how the use of this renormalization saleeiuees the
unwanted non-perturbative contaminations compared to the conventi@isll ¢heme.

Other than changing the momentum configuration the SMOM scheme followsrtieestaps
as MOM scheme. The renormalization conditions are defined using tradéions with speci-
fied projectors on the vertex functiof¥. For the scalar and pseudoscalar operators, the same
projection operators as MOM scherfgél, %2y5 as shown in Eq[(27) are used. The vector and ax-
ialvector operator will be used to calculatg Original MOM scheme use%y“, 4i8ygyp, by which
one can relate the traced vertex functiorzgﬂ)o"" Eqg. (2.1). If we used these projection operators
for the symmetric (non-exceptional) momenta, the resulfing/ould completely differ from that
of MOM scheme (or RI' scheme). Instead, we ad%gqjq“, T%qzygq%. One can show that the

use of these projection operators gE@" through the vector and axial vector Ward-Takahashi
identities. The matching d, of RI’ and MS has been calculated to three loois[]2, 3], which one
can just use or can use for the check against the calculation with the femt#ions of vector and
axialvector in the SMOM scheme. It is worth mentioning that RI’ and RI/M@jVare same up to
one loop. Thus, the resulting, from the vector and axialvector current of SMOM scheme should
be close to that of original MOM scheme. The perturbative matching okquass from SMOM

to MS, mMS () = Cn(smom — W) - mSMOM( 1) has been calculated to one logp [8] as

Cin(SMOM — WS) = 1 — %S‘TC,: x (0.484— 0.1728) + O(a2), (2.8)

whereé is the gauge parameter. The same quantity for the original RI/MOMSohas much
larger correction (both constant and linear coefficien§ Jof

Con(MOM — S) = 1 — Z—;CF ¥ (4— &) +0(a?). (2.9)

The one loop correction for the Landau gauge<0) is 1.5% for SMOM and 12% for MOM at
U =2 GeV. The three loop correction is still large: 6% for MOM, which was tekea conservative
estimate of systematic error of perturbative matchfhg [4]. The small correatiSMOM scheme

is realized through cancellation of finite terms depending on the momentum séuéte have not

understood if this is an universal property with SMOM scheme, which wpeltdists beyond one
loop.

3. Numerical test of the RI/SMOM scheme

We test the RI/SMOM scheme using tNe = 2+ 1 DWF data seff]4] aa ! ~ 1.7 GeV on
16° x 32 lattice withLs = 16, Ms = 1.8. The quark propagators have been calculated with the point
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Figure 1. Aap— /v in the chiral limit as function obz for MOM and SMOM scheme, where results with
linear and quadratic chiral extrapolations in quark masshown.

sourcet.
Let us first look at the difference of the vector and axial vector veataglitude,

1 1
NOM = 28T, AXOM = 25 TrYuMA ] (3.1)

for the exceptional momentum and for the symmetric (non-exceptional) momeritam w

AN — Tl | AN = Tl @2)
Fig. I shows the differences in the chiral limit as functionspéf(= g?). The original MOM
scheme has non-zero difference due to the spontaneous chiral syrbneatking. The decrease of
the difference as momentum increases is due to the recovery of the symmethessize is up to
1% of the averagé\a +/\v)/2 in the region of the momentum we ugea)? > 1.3. The difference
is much suppressed for the SMOM scheme. The linear chiral extrapolafiesrgsults consistent
with zero. The quadratic extrapolation gives non-zero value, but ater of magnitude smaller
than MOM.

The scalar and pseudoscalar vertex amplitudes with MOM and SMOM schense@vn in
Fig. 2. A large difference betwedhandSis observed for the MOM scheme. Singg diverges
as~ 1/min the chiral limit due to the existence of pion pdi@y)/m? andAs stays finite, the
difference becomes infinite. One should note that these quantities are al¢atil order in
perturbation theory. The symmetry is badly broken for the non-pertuebegnormalization. On
the other hand)\p andAs are consistent with each other for the SMOM case at larger momentum
(pa)? 2 1.

As our gauge ensembles have been sampled at single value of neaiilyapbyrange mass,
we have a systematic error fromy £ O even after the two-flavor unitary chiral extrapolation. This
error in the MOM scheme, which turned out to be 7%, was estimated fromgpense of thé\s
to theu, d quark mass in Ref[][4]. This error may represent the tolerance of thisydar quantity

IThe statistical error could be much improved if the volume source was[Hsd.[Z1].
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Figure 2. AsandAp for MOM and SMOM schememn; refers to the average d mass. Points connected
with the solid lines show the values in the two-flavor unitelmral limit (ms 4+ mes— 0).
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Figure 3: Preliminary results oZ5MOM(p) as a function of renormalization sca;beandZ,",TS(u = 2GeV)
as a function of SMOM- MS matching scal@. The extrapolatiorf pa)? — 0 is shown with statistical error
only, which is consistent with th&MS(u = 2GeV) through MOM scheme with the large systematic error.

to the emergence of the low energy scale/Aqcp). So even if thans — 0 limit was performed,
error of similar size would remain due to the non-perturbative effect eleogrgy scale is about
the same. Now, in the SMOM case, as shown in the figure, mass depersigreatly reduced. If
we adopt the same method, the systematic error of SMOM is about 3% foralae scnegligible
(comparable to the statistical error) for the pseudoscalar.

Black symbols in Fig[]3 show preliminary results &f, = (As+Ap)/{Za(Aa+Av)} with
SMOM scheme (in the chiral limit) as a function of renormalization sqalevhere theZa [fl]
estimated form hadronic two point functions is used. Matchingi®with Eq. (2.8) and running
to u = 2 GeV with the two-loop anomalous dimension, one obtains the blue symbols astiaifu
of matching scalg. The extrapolatiorfpa)> — 0 using the point$pa)? 2 1.2 gives a consistent
result with the same quantity but through original MOM schefiie [4] with 3-loofchilag and
4-loop running.
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4. Conclusion

The RI/SMOM scheme, constructed in the framework of the conventiodt®V scheme
with the use of non-exceptional momenta, works very well for reducimgperturbative contam-
ination for the quark mass renormalization. The systematic error is redu@d tevel forZ,
while it was 7% for the original MOM scheme. This shows the success of M@Ns scheme
which was designed to reduce the unwanted non-perturbative contaminAtiother systematic
error is from truncation in the perturbative matchingM8. If we estimate the systematic error for
the SMOM scheme from the size @ as) at our typical momentum size = 2 GeV, itis 1.5 %,
which is much smaller than 6 % &x(a?) for the MOM scheme. Further discussions are needed
for the better understanding of the systematic error of the perturbativénimgutc

The first non-trivial test of the SMOM scheme was successful. Applicaticther bilinear
operators such as tensors would be straightforward. Similar schemes Gamstructed for four-
quark operators foK® — KO mixing in the standard model and beyond, andkor> 1T decays.

We thank Christian Sturm for collaborating on the RI/SMOM renormalizatioreséhted
numerical data are obtained through reanalyzing the published data camguthe QCDOC
machines at RIKEN BNL Research Center, Columbia University and Wsityeof Edinburgh.
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