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1. Introduction

Certain QCD-like theories can be useful for studying comfiaat and chiral symmetry break-
ing. One of these is adjoint QCD [QCD(Adj)] [1, 2] which 8J(N) gauge theory with adjoint
representation fermiohsnstead of fundamental. For a theory which approximatesi@dQCD
our lattice results in [3] indicated that the confined phamgidtbe accessed perturbativelyt was
shown that this result is well supported by perturbatiorothén the high temperature regime. In
this paper we show that f@U(N) gauge theories with fermions in various representationgng
the fermion mass gives rise to non-trivial phase structuremconsidering PBC on fermions.

In our earlier work [3] simulations were performed using ateasion to Yang-Mills theory
of an adjoint Polyakov loop term, which is like adding a headjoint quark. Using one-loop per-
turbation theory we consider two new extensions to YandsMiileory: 1) multiply wound adjoint
Polyakov loops (center-stabilized Yang-Mills theory)f@mions in the adjoint representation with
nonzero mass.

We considered various andN; as well as other representations of fermions: fundameRjal (
antisymmetric (AS), and symmetric (S), and refer the re&l 5] for details of all our results.

2. Center-stabilized Yang-Mills theory

Perturbative accessibility of the confined phase foNal possible for certain types &f(N)-
invariant extensions to Yang-Mills theory. In [6] we inttomed an extension in terms of powers of
the Polyakov loogP = diag{e"1,€"2, ..., e},

[N/2] 1 IN/2] N
Vext(P) :_ Z a, Tre Pn)TrF(an) E Z an Z cos[n(v; —v;j)] (2.1)
n=1 i,j=1

where|N/2] is the integer part oN /2. This is the minimum number of terms required to obtain
the confined phase for some value of thgparameters.
Including the boson contribution [8] from pure Yang-Millsstory

1 IN/2]
Veym(P) = 7_[2[34 Z n4 [Tra( Pn _|__ Z anTre P”)Tn:(PTn) (2.2)

This potential has recently been studied more extenswe[y]l and we have therefore adopted
their notation (a,") and nomenclature ("center-stabilized Yang-Mills thédiin this paper. We
minimizedVcy m With respect to the Polaykov loop eigenvaligso determine the phase diagram
for a range of values of tha,.

3. One-loop effective potential with massive fermions in e R

The one-loop effective potential fdis Majorana fermionsNs pirac = %Nf) of massmand in
representatiofR in a background Polyakov lodpis [9]:

Lin this paper we further define adjoint QCD with periodic bdary conditions (PBC,+) on fermions rather than the
usual antiperiodic boundary conditions (ABC,-). This flesin additional phases and allows for comparison of lattic
results with analytic calculations.

2For a related theory the lattice results in [4] also suggesessibility of the confined phase aboNgyauge
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where we haveé+1)" for PBC and(—l)” for ABC applied to fermions. To obtain the preferred
phases for a range af3 we numerically minimize/;_o0p With respect to the eigenvalue anglgs
of the Polyakov loop.

4. Results

4.1 Phases of adjoint QCD, PBC on fermionsN; > 1 Majorana flavour

The phase diagram &U(N) gauge theories with adjoint fermions is quite rich when quid
boundary conditions are applied to at least two Majoranaifem flavours. Figures 1 - 4 show the
observed phases fdf = 3— 6. In all cases the confined phase is observed. The confineg [ha
conventiently defined in terms of tiPolyakov loop eigenvalue angles

21 47'[ 2r(N —1)

confined: v={0,— NN T} N odd @)
v={Z sm 7(2N—1)n} N even
NI N N
The deconfined phases are also observed:
deconfined: v={0,0,...,0} and allN — 1 nontrivial Z(N) rotations 4.2)

In SU(3) there are additiongbU(2) x U (1) (or "skewed") phases:

SU(2) xU (1) : v = {0, m, i} andZ(3) rotations (4.3)
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Figure 3: N =5 phases of QCD(Ad])) Figure 4: N = 6 phases of QCD(Ad]))

For SU(4) the new phase is a partially-confin&d2)-invariant phase:

m o 3m 3
22272 2
In Figures 2 and 4 the use of a shape other than a circle irditaat the vacua occur together only.
For example, in Figure 2 for th8U(2) confined phase the two vacua on the real axis (represented
by squares) only occur together such thatFTe= 0, however, TgP? # 0. The same is true of the
vacua on the imaginary axis (represented by triangles).

WhenN = 5 the new phases are ti88J(2) x SU(3) phase, and a8U(2) x SU(2) x U (1)
phase:

SU(2) conf:v = {0,0, T, i1} and{ = (4.4)

SU(2) x SU(3) : v=1{0,0,0, i, 1} andZ(5) rotations

SU(2) x SU(2) xU (1) : v={0,—@,—@, ¢, @} andZ(5) rotations (4-5)

The SU(2) x SU(2) x U (1) phase is unique in that the Polyakov loop eigenvalues areamstant
asmf as varied, but rathep decreases asf increases causing the Polyakov loop eigenvalues to
be attracted together.

WhenN = 6 the new phases are both partially confined: $t2)-confined phase, and an
SU(3)-confined phase:

t 3rrom 3rom 3, 5 11m 5 11m S5mr 1lm, m i im m In T
Su@contv=1{3.532% 2}{_’T’€’T’F’ 5 {65666 6
2T 4 2T 4 5 5
SU(3) conf:v = {0, — T o O nn i

3’ 3’0’3 3}{ 33”3}'
(4.6)

4.2 Results for Adjoint QCD, PBC on fermions,N; = 2 Majorana flavours

Figures 5(L), 6(L), 7(L), and 8(L) show the phase diagram djbmt QCD with PBC on
fermions and\; = 2 Majorana flavours as a function w3 for N = 3— 6. The black dots indicate
the result of numerical minimization &f_jo0p in €q. (3.1) with respect to the eigenvalue angles
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vi. The coloured lines result from plugging into eq. (3.1) tiekn eigenvalue angles from egs.
(4.1 - 4.6). The coloured line on which the dots lie tells ws pheferred phase for a valuerof3.

In the case oN = 5, Figure 7(L) shows that thBU(2) x SU(2) x U (1) phase does not have
a corresponding theory curve because the Polyakov loopna@iee angles = {0, — @, — @, @, @}
change with withm.

As mp is increased, Figures 5(L), 6(L), 7(L), and 8(L) indicatattthe phases in Figures 1
- 4 are traversed in order of increasififg P| (considering only one of the vacua in the case of
the partially confined phases). With each transition thg&av loop eigenvalues are increasingly
repelled going from the confined phase, through the new gh&séhe deconfined phase.

Another important observation is that the confined phasesis dccessible perturbativelyMs
increases. FAX = 3, Figure 5(L) indicates that the confined phase is acces&bmg < 1.6. For
N = 6, Figure 8(L) shows that it is only accessible fo < 0.6. Considering the larghl limit
Figure 9 show$mf)crit, the maximum value afh (with uncertainty+0.1) for which the confined
phase is accessible, fof from 2 to 18. It indicates that the range mf3 for which the confined
phase is accessible shrinks rapidly at first, then levelfoofargeN.

The decrease in the rangeraf for which the confined phase is perturbatively accessible as
N — oo can be patrtially offset by increasing the number of fermiandlrsN¢. Figures 8(L) and
8(R) give the case dfl = 6; asN; is increased from 2 to 3, the rangerof for which the confined
phase is accessible increases as well. However, there imhnimit in that N < 5 Majorana
fermion flavours are required to preserve asymptotic freedo

Figures 5(R), 6(R), and 7(R) show the results of minimi2iagw of eq. (2.2) with respect to
a; for N = 3, and with respect ta; anda, in the case oN = 4 and 5. As shown from side-by-
side comparison with Figures 5(L), 6(L), and 7(L), the cesstabilized model always includes the
phases QCD(Ad]), as well as additional phases in the cade-of and 5. But, the additional phases
can always be circumnavigated by choosing an appropriatetheough thea, space, allowing
traversal of the phases in the same order as they appear iffA)Dor increasingmg.

5. Conclusions

Extending Yang-Mills theory with adjoint fermions (with BB or using the center-stabilzing
potential results in exotic phase structure. The centdilsted theory and adjoint QCD with
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Figure 9: Range ofm for which the confined phase is accessible in QCD(Ad)) Wth= 2

N; > 2 Majorana flavours leads to perturbative access to the @mhphase for alN. For adjoint
QCD with at least two Majorana fermion flavours,disncreases the range o for which the
confined phase is accessible decreases. Howewsy, iasncreased within the limits allowed by
asymptotic freedom, the confined phase becomes accessiladarger range ahf. The
center-stabilized theory contains all the phases of adi®D and these can be traversed in the
a, parameter space in the same order as they appear when ingne#sin adjoint QCD,

avoiding extraneous phases. Considering also the real$ ifor QCD(AS/S) with PBC on
fermions & -breaking phase is favoured for ati3.
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