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QCD phase diagram is studied at finite temperature (T ) and chemical potential (µ) in the strong
coupling lattice QCD including finite coupling (1/g2) effects for color SU(Nc). We find that there
appears a phase, where the chiral symmetry is weakly but spontaneously broken and the baryon
density is high, at Nc = 3 with one species of staggered fermions (N f = 4). This phase may
correspond to the quarkyonic (QY) phase suggested at large Nc. The phase transition is found to
be the first and second order for the hadron (Nambu-Goldstone) to QY and QY to Wigner phase,
respectively. The QY phase appears as a result of interplay of two order parameters, the chiral
condensate and the repulsive vector field for quarks, the latter of which is found to appear from
the temporal plaquette and leads to the suppression of the effective chemical potential at high
densities.
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1. Introduction

What is the next to the hadronic Nambu-Goldstone (NG) phase in the larger µ direction ?
Baryon rich QGP, Color SuperConductor, or other form of matter ? This is one of the central
questions in dense QCD, and is relevant to dense matter in nature, which would be realized, for
example, in neutron star core or during during black hole formation. Since Monte-Carlo (MC)
simulations are not yet reliable in the region µ/T > 1, then it is necessary to invoke some approx-
imations in QCD or effective models of QCD.

Recently, McLerran and Pisarski have shown that the next phase at large Nc should be the so
called quarkyonic (QY) phase, in which the colors are confined and the baryon density is high [1].
Very recently, QY is also discussed at Nc = 3 in effective models of QCD [2, 3]. MC results
also show the transition to high density phase [4], but its nature is not yet known. It is now very
important and urgently required to discuss the possibility of QY in QCD for Nc = 3.

In this proceedings, we investigate the phase diagram in the strong coupling lattice QCD (SC-
LQCD) [5, 6, 7, 8, 9], which is another powerful tool in studying dense matter. We take account of
the finite coupling effects in the order of 1/g2 [8, 9], and introduce an auxiliary field representing
the quark number density ρq as an order parameter in addition to the chiral condensate [10]. This
multi-order parameter treatment is essential in understanding QY.

2. Effective potential in strong coupling lattice QCD

We start from the lattice action with one species of staggered fermions,

SLQCD =
1
2 ∑

x,ν

[
ην ,xχ̄xUν ,xχx+ν̂ −η−1

ν ,x χ̄x+ν̂U†
ν ,xχx

]
− 1

g2 ∑
¤

tr
[
U¤ +U†

¤

]
+m0 ∑

x
χ̄xχx , (2.1)

where ην ,x represents the staggered factor combined with the lattice chemical potential, (η0,x,η j,x)=
(eµ ,(−1)x0+···+x j−1), and the partition function is given as, Z =

∫
D [U,χ, χ̄]exp [−SLQCD]. We

consider the leading (SSCL) [5, 6, 7] and the next-to-leading order terms [8, 9] in the strong cou-
pling (1/g2) expansion, S = SSCL + ∆S(τ)

β + ∆S(s)
β + O(1/

√
d,1/g4), where d = 3 is the spatial

dimension. NLO terms (∆S(τ,s)
β ) are generated from spatial link integrals of plaquettes multiplied

by the corresponding fermion terms. For example, temporal plaquette contribution is given as,

∆S(τ)
β =

1
4N2

c g2 ∑
x, j>0

(V +
x V−

x+ ĵ
+V +

x V−
x− ĵ

) , (2.2)

V +
x = eµ χ̄xU0(x)χx+0̂ , V−

x = e−µ χ̄x+0̂U†
0 (x)χx . (2.3)

In the standard SCL prescriptions, we next introduce auxiliary fields in order to reduce the
power of fermion fields down to bilinear terms. Since we have products of different types of com-
posites (V + and V−) in Eq. (2.2), the standard Hubbard-Stratonovich transformation is insufficient.
Here we propose an extended Hubbard-Stratonovich (EHS) transformation where two auxiliary
fields are introduced [10],

eαAB =
∫

dϕ dφ e−α{ϕ2−(A+B)ϕ+φ 2−i(A−B)φ} (2.4)

=
∫

dψ dψ̄ e−α{ψ̄ψ−Aψ−ψ̄B} ≈ e−α{ψ̄ψ−Aψ−ψ̄B}
∣∣∣
stationary

, (2.5)
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where ψ = ϕ + iφ and ψ̄ = ϕ − iφ . This EHS transformation has a merit that we can keep the
invariance under the transformation, A → λA and B → λ−1B, even after the stationary condition
approximation by assuming ψ and ψ̄ transform independently, ψ → λ−1ψ and ψ̄ → λψ̄ . Since
stationary values of ϕ and φ can be complex, stationary values of ψ and ψ̄ are not necessarily
complex conjugate. Specifically when both 〈A〉 and 〈B〉 are real, the stationary value of φ is pure
imaginary, and we obtain the following relation,

eαAB ≈ e−α{ϕ2−(A+B)ϕ−φ 2+(A−B)φ} . (2.6)

This corresponds to the mean field and saddle point approximation for ϕ and φ , respectively in
Eq. (2.4). provided that the stationary value of φ is pure imaginary, φ → iφ . It also corresponds to
substituting ψ = ϕ +φ and ψ̄ = ϕ −φ in Eq. (2.5).

For the temporal plaquette action ∆S(τ)
β , we substitute (α,A,B) = (1/4N2

c g2,−V +
x ,V−

x+ ĵ
), and

obtain,

∆S(τ)
β ≈ 1

4N2
c g2 ∑

x, j>0

[
ϕ2

τ +(V +
x −V−

x+ ĵ
)ϕτ −φ 2

τ − (V +
x +V−

x+ ĵ
)φτ

]
+( j ↔− j) . (2.7)

Combined with the temporal hopping term in the QCD lattice action Eq. (2.1), we obtain

1
2 ∑

x
(V +

x −V−
x )+∆S(τ)

β =
1
2
(1+βτϕτ)∑

x

(
eµ−βτ φτ χ̄xU0(x)χx+0̂ − e−µ+βτ φτ χ̄x+0̂U†

0 (x)χx

)
+NτLd βτ

2
(ϕ2

τ −φ 2
τ ) , (2.8)

where Nτ and L denote the temporal and spatial lattice sizes, respectively, βτ = d/N2
c g2, and we

have assumed that the auxiliary fields ϕτ and φτ are constant. We find that the saddle point field φτ

modifies the chemical potential effectively, µ̃ = µ −βτφτ . As discussed later, φτ corresponds to the
quark number density, and plays the role of another order parameter characterizing dense matter.

We also obtain the effective action for the spatial plaquette contribution ∆S(s)
β in a similar way,

except that the saddle point field φs is found to give no effects. In the same procedure as that in
SCL, we introduce the auxiliary field σ for the chiral condensate, and perform the temporal link
integral of the quark determinant, resulting in the effective potential, Feff(σ ,ϕτ ,φτ ,ϕs; µ,T ). By
substituting equilibrium values of ϕτ and ϕs, the effective potential Feff(σ ,φτ ; µ,T ) is found to
be [10],

Feff = FX(σ ,φτ)+Vq(mq(σ), µ̃(φτ),T ) , (2.9)

FX =
1
2

bσ σ2 +
βτ

2
σ 2(mSCL

q )2 +
3dβs

2
σ 4 − βτ

2
φ 2

τ , (2.10)

Vq = −T log [XNc(Eq/T )+2cosh(Ncµ̃/T )] , (2.11)

mq = mSCL
q (1−Ncβτ)+βτσ(mSCL

q )2 +2dβsσ 3 , (2.12)

where βs = (d − 1)/8N4
c g2, bσ = d/2Nc, mSCL

q = bσ σ + m0, XN(x) = sinh[(N + 1)x]/sinhx, and
Eq = arcsinh(mq). We have omitted higher order terms of O(1/g4) in FX, mq and µ̃ . We search
for σ which minimizes Feff under the saddle point constraint for φτ , ∂Feff/∂φτ = 0, which reads,
φτ = −∂Vq/∂ µ̃ = −∂Feff/∂ µ = ρq. Since ρq contains φτ via µ̃ , we need to solve this constraint

3
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Figure 1: Coupling dependence of critical temperature and chemical potential. Results with Nc = 3 in the
chiral limit are shown in the lattice unit.

in a self-consistent manner. This is one of the main differences of the present treatment from those
in previous works [8], where Vq is also expanded in 1/g2 via the dependence in mq and µ̃ .

The auxiliary field φτ may be interpreted as a repulsive vector field for quarks. In relativistic
mean field (RMF) models of nuclei [11], the isoscalar-vector field ω contributes to the energy
density as, εV = −m2

ωω2/2 + gωρB(µ̃B)ω + . . ., where ω is the temporal component of the omega
meson field ων . The negative coefficient of ω2 results in the repulsive interaction in nuclei, and
the coupling to ρB leads to the shift of µB as, E +gωω −µB = E − (µB −gωω) = E − µ̃ . The saddle
point constraint gives ω ∝ ρB. All of these characters apply to the auxiliary field φτ in SC-LQCD.

3. Results

At finite coupling, the hadron phase is known to be compressed in the temperature direc-
tion [9, 12]. The decrease of the second order critical temperature is mainly caused by the temporal
scale factor (1+βτϕτ) in Eq. (2.8), which has a similar effect to the temporal lattice spacing mod-
ification. The suppression of Tc would be a natural consequence of finite coupling, since hadrons
are less bound than in SCL. The high T transition becomes the first order in the region 6/g2 > 1.40.
This change is caused by the higher order terms of σ in FX and mq. These terms give rise to a large
energy gain in Feff and generate a local minimum at large σ . The calculated critical temperature
seems to be in agreement with the MC results with Nτ = 2 at strong coupling [13]. The critical
coupling with Nτ = 2 is βc = 6/g2

c = 5.097(1) [14] in a quenched calculation (m0 = ∞), and it
decreases to βc = 3.81(2)(m0 = 0.05) and βc = 3.67(2)(m0 = 0.025) [13] on a 83 ×2 lattice with
one species of staggered fermions (N f = 4). Thus MC results with smaller quark masses become
close to the present result βc = 3.61 at Tc = 1/Nτ = 1/2 in the chiral limit.

Finite coupling effects also modifies the critical chemical potential. From the condition ∂ 2Feff/∂σ 2 =
0 at σ = 0, the second order critical chemical potential is obtained as,

µ(2nd)
c = µ̃(2nd)

c +βτρq(σ = 0; µ̃(2nd)
c ,T ) , µ̃(2nd)

c =
T
Nc

arccosh
[
1+(Nc +3)(T (2nd)

c −T )/2T
]

.

(3.1)
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Figure 2: Upper panel: Effective potential Feff as a function of σ at µ = 0, µ2 (the smallest µ at which two
local minima appear), µ(1st)

c , (µ(1st)
c + µ(2nd)

c )/2 and µ(2nd)
c . Lower panel: The quark number density ρq and

chemical potential µ effects on the interaction term Vq. We show the results in the case of Nc = 3,6/g2 =
4.5,T = 0.01 in the lattice unit.
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Figure 3: Chiral condensate 〈χ̄χ〉 = −σ (left), quark number density ρq (middle), and Polyakov loop P
(right) as functions of (µ,T ) with Nc = 3,6/g2 = 4.5 in the chiral limit.

In SCL, we do not have the second term in Eq. (3.1) and µ(2nd)
c approaches zero at small T . As a

result, we do not see the second order phase transition in cold matter in SCL. At finite coupling, the
second term in Eq. (3.1) increases as the coupling decreases, and we have the region µ(1st)

c < µ <

µ(2nd)
c at low T at 6/g2 > 3.53. In this region, the chiral symmetry is weakly but spontaneously

broken, and the baryon density is finite. In the left panel of Fig. 2, we show the effective potential
as a function of σ at T = 0.01. (Coupling constant is chosen to be 6/g2 = 4.5 as a typical example
with µ(1st)

c < µ(2nd)
c .) From the Nambu-Goldstone phase (σ ≈ σvac) at µ = 0, σ jumps to a smaller

value at µ = µ(1st)
c , and reaches zero at µ = µ(2nd)

c , where the chiral restored (Wigner) phase is
realized. In terms of the effective potential, two local minimum structure in σ > 0 region comes
from the suppression of effective chemical potential µ̃ by the density (ρq) effects. In another word,
it comes from the repulsive effect of φτ at small σ . While the interaction term Vq in SCL stays
almost constant in the region Eq(σ) < µ at low T , Vq with ρq effects is more repulsive at small σ
as shown in the right panel of Fig. 2.

In Fig. 3, we show the chiral condensate 〈χ̄χ〉=−σ and the quark number density ρq as func-
tions of (µ,T ). The phase diagram in SC-LQCD at finite coupling is shown in Fig. 4. In addition

5
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Figure 4: Phase diagram in SC-LQCD with Nc = 3,6/g2 = 4.5

to the chiral broken Nambu-Goldstone (NG) phase (σ ≈ σ0) and the chiral restored Wigner phase
(σ = 0), a weakly chiral broken high density phase (σ ¿ σ0,ρq > 0), is found in a moderate chem-
ical potential region at low T , which sits next to the hadronic NG phase in the larger µ direction.
Similar results are also found in the PNJL model [3].

In the right panel of Fig. 3, we show the Polyakov loop P, which is evaluated by using the
determinant technique [6] as,

P ≡ 1
2Nc

〈
tr

[
∏

τ
U0 +∏

τ
U†

0

]〉
=

XNc−1 cosh [µ̃/T ]+X1 cosh [(Nc −1)µ̃/T ]
Nc (XNc +2cosh [Ncµ̃/T ])

. (3.2)

The Polyakov loop shown here is not large, e.g. P(σ = µ = 0) = (Nc +2)/[Nc(Nc +3)], since it is
not generated by the gluon dynamics, but driven by the quark determinant. The Polyakov loop is
further suppressed in the weakly chiral broken high density phase compared to the chiral restored
Wigner phase. Specifically, we find P → 1/2Nc at large Nc and T = 0, which is half of that in the
Wigner phase at µ = 0. It should be noted that the vanishing P at µ > Ncβτ is the lattice artifact
since it comes from the saturation, ρq = Nc.

The weakly chiral broken high density phase found in SC-LQCD can be regarded as the
quarkyonic phase (QY) suggested at large Nc; it sits next to the hadronic NG phase in the µ direc-
tion, the density is high as O(Nc), and the Polyakov loop disappears at large Nc. Namely, it would
evolve to a confined high density phase next to the hadronic phase at large Nc.

4. Summary

We have investigated the QCD phase diagram in the strong coupling lattice QCD including
the finite coupling (1/g2) effects, and found a weakly but spontaneously chiral broken high density
phase to appear in the higher density region next to the hadronic Nambu-Goldstone phase in the
strong coupling lattice QCD with finite coupling corrections at 6/g2 > 3.53 [10]. This phase can be
regarded as the quarkyonic phase suggested at large Nc [1], since the density is high (O(Nc)) and
the color is confined at large Nc in the sense that the Polyakov loop disappears. The transition from
the hadronic NG to the quarkyonic phase is the first order, and that from the quarkyonic to the chiral

6
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restored Wigner phase is the second order. The quarkyonic phase appears as a result of interplay
of two order parameters, the chiral condensate and the repulsive vector field for quarks, the latter
of which is found to appear from the temporal plaquette in the extended Hubbard-Stratonovich
transformation and leads to the suppression of the effective chemical potential at high densities.

There are several points to be improved in the present analysis; it has been carried out with
one species of staggered fermions, which corresponds to N f = 4, in the next to leading order of
the strong coupling expansion, O(1/g2), and in the leading order of the 1/d expansion, O(d0),
where the baryonic composite effects [7, 15] are not included. Competition with the color super-
conducting (CSC) phase and comparison with the MC results at finite baryon density [4] are other
interesting subjects to be investigated.
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