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We investigate the phase diagram and the baryon mass (MB) in the color SU(Nc = 3) strong

coupling lattice QCD with one species of staggered fermions at finite quark chemical potential

(µ) and/or finite temperature(T). In particular, their evolution with the finite coupling (1/g2) is

studied in the next to leading order of the strong coupling expansion. We formulate the treatment

of the temporal plaquette effects by introducing some new kinds of mean fields, which lead to the

suppression ofµ and the constituent quark mass (mq). These energy scale modifications cause

the following phase diagram evolution: (1) The ratio of the critical value(µc/Tc) becomes closer

to the empirical value. (2) As the coupling decreases, the second order transition at zero chemical

potential evolves to the first order, and the critical temperatureTc is found to be consistent with

lattice Monte-Carlo simulations. The same suppression mechanism ofµ also modifies the analytic

relation between the baryon massMB and the critical baryon chemical potential (Ncµc). We show

that the ratioNcµc/MB grows as the coupling decreases, and this trend may be helpful to form the

nuclear matter in the current frame work.
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1. Introduction

Exploring the phase diagram of Quantum Chromodynamics (QCD) has recently attracted
much attention due to the developments in the heavy-ion collision experiments. The Relativistic
Heavy-Ion Collider (RHIC) has shown intriguing experimental findings: the formation of strongly
interacting Quark Gluon Plasma (sQGP) [1]. Further developments are also expected in the AL-
ICE experiment in the Large Hadron Collider (LHC). Compressed baryonic matter can be created
in heavy-ion collision experiments at lower energies (FAIR and so on), and cold and dense baryonic
matter is realized in the core of neutron stars. In the high density region, various interesting phases
have been proposed so far: the color superconductor [2], and the quarkyonic matter [3] etc. Un-
fortunately, the lattice MC simulations is difficult to access to this region because of the notorious
negative sign problem of the Dirac determinant. Many ideas have been proposed, and the relatively
small density region becomes accessible by using MC simulations [4]. However the alternative
methods may be needed to investigate the whole structure of the phase diagram including the low
temperature and high density region.

Here the effective model would be a possible approach, and in fact, there are many successful
effective models in the study of the QCD phase diagram. In this proceedings, we adopt a more
direct method which is based on the strong coupling expansion (expansion in the inverse of the
squared bare coupling, 1/g2) in the lattice QCD. In 1980’s, the sophisticated methods were devel-
oped in the staggered fermion formalism [5–8], in order to investigate the chiral phase transition.
There the sign problem could be avoided in the mean field approximation. ThisStrong Coupling
Lattice QCD(SC-LQCD) is based on the same formulation as the lattice MC simulations, therefore
the results of the former should be reproduced by the latter in the strong coupling region. Such a
kind of comparison plays an important role to obtain a firm confirmation of the formulation and
numerical results. We shall explicitly perform that in the phase diagram study.

Recently the transition order and the location of the critical end point have become fascinating
topics. In this point of view, some remarkable developments in SC-LQCD can be found in the
recent few years: In the strong coupling limit (SCL, 1/g2 → 0), the phase diagrams have been
precisely investigated in the SU(2) [9] and SU(3) [10, 11] cases. It is interesting to consider the
finite coupling cases, and to investigate the phase diagram evolution with 1/g2 effects. Then the
key quantity may be the ratioR= µcri

T=0/Tcri
µ=0 in the following reason. In our previous work [11],

we pointed out thatRmight be much smaller than the empirical value. The lattice MC simulations
suggest that the critical end point locates in the regionµ/T > 1. This indicatesR≫ 1, while the
strong coupling limit showsR∼ 0.3−0.45. Since SC-LQCD should be consistent with the lattice
MC at strong coupling, the finite coupling effect should improve the critical ratioR.

Another interesting problem in the SC-LQCD is theBaryon Mass Puzzle (BMP): Naïvely, the
chiral phase transition is expected to occur when a baryon chemical potentialNcµ approaches to the
baryon massMB, i.e. Ncµc ≃ MB [7]. From a more practical point of view, the relationNcµc > MB

may be preferable to form nuclei. Contrary to these expectations, previous studies based on the
strong coupling limit of lattice QCD indicate the relationNcµc < MB. This BMP problem has been
known since 1980’s, and confirmed in the lattice MC study [12, 13]. The MC result forMB at
strong coupling [12] is quite larger thanNcµc semi-analytically obtained in the strong coupling
limit. For this problem, the previous work [14] indicated that the finite coupling makesNcµc larger
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and closer to theMB [15]. And the analytic relation betweenNcµc andMB is recently indicated in
the strong coupling limit by B. Bringoltz [16].

In this proceedings, we investigate the phase diagram and the baryon massMB in the strong
coupling lattice QCD with one species of staggered fermions at finite quark chemical potential(µ)
and/or finite temperature(T) . This is along the line of our previous investigations [11, 17–21].
In particular, the 1/g2 evolution in the next to leading order of the strong coupling expansion is
studied. We formulate the treatment of the temporal plaquette effects by introducing some new
kinds of mean fields, which lead to the suppression ofµ and the constituent quark mass (mq). Then
we investigate evolution of the phase diagram with finite coupling effects in a finiteT treatment.
The same suppression mechanism ofµ also modifies the analytic relation between the baryon
massMB and the critical baryon chemical potential (Ncµc). This analysis provides the extension
with the finite coupling to the later part of the work [16]. Although the BMP with 1/g2 effects has
been investigated in Ref. [14], the present work could give some additional knowledge: Firstly we
provide the analytic relation betweenNcµc andMB with 1/g2 effects, and secondly the comparison
is performed in a completely consistent way in terms of 1/d expansion. In particular, the baryon
hopping effects in the spatial direction (O(1/

√
d) effects) is precisely evaluated.

The organization of this proceedings is as follows. In Sec.2, we evaluate the next to leading
order contribution of the strong coupling expansion, and derive the analytic expression of the ef-
fective potential. From the minimum search at finite couplings, we investigate the phase diagram
evolution. In Sec.3, we investigate the analytic relation betweenNcµc andMB and their evolution
at finite couplings by applying the formulation obtained in Sec.2 in a zero temperature treatment.
Finally we provide the concluding remarks in Sec.4.

2. Phase diagram evolution

In this section, we obtain the analytic expression of the effective potential, and investigate the
phase diagram evolution with the finite coupling effects.

2.1 Formulation

We start from the lattice QCD action and the partition function with one species of staggered
fermion (χ),

Z =
∫

D [χ, χ̄,U0,U j ] e−S(τ)
F −S(s)

F −SG−m0 ∑x(χ̄χ)x (2.1)

S(τ)
F =

1
2 ∑

x

[
eµ χ̄xU0,xχx+0̂−e−µ(h.c)

]
(2.2)

S(s)
F =

1
2 ∑

x

d

∑
j=1

η j,x
[
χ̄xU j,xχx+ ĵ − (h.c)

]
(2.3)

SG =
2Nc

g2 ∑
x

∑
ν ,ρ

[
1− 1

2Nc
trc

(
Uνρ ,x +U†

νρ ,x

)]
, (2.4)

whereU0 andU j represent the temporal and spatial link variables respectively, andη j,x denotes the
staggered phase factor(−1)x0+···+x j−1. In the following, we consider the color SU(Nc = 3) case
in 3+ 1 dimension (d = 3). We introduce the lattice chemical potentialµ following the work in
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Ref. [22]. We take account of the finite temperature (T) effect by imposing the periodic and anti-
periodic boundary conditions on gluon and quarks respectively. Then it is known that the specified
gauge (called Polyakov gauge) [6],

U0(τ ,x) = diag{eiTθ 1(x), · · · ,eiTθ Nc(x)} , (2.5)

can be taken with respect to the periodicity. Here1c represents theNc×Nc color unit matrix.
In the strong coupling region (g≫ 1), plaquette contributions (∝ 1/g2) can be approximated

by utilizing the expansion in terms of 1/g2 (Strong Coupling Expansion). With the nilpotent nature
of the quark fields (χ , χ̄), the integral over the links can be exactly evaluated, and leads to a sum
over the local color singletsi.e. mesonic and baryonic composites. In the current formulation,
we first integrate out the only spatial link (U j ) variables while the temporal link (U0) is kept and
evaluated later with respect to the finite temperature effect. We consider the leading (SSCL) and the
next-to-leading order (∆S(τ,s)

β ) terms in the strong coupling (1/g2) expansion, and the leading order
in the 1/d expansion [23]. Then the effective action is found to be,

S= SSCL+∆S(τ)
β +∆S(s)

β +O(1/
√

d,1/g4) (2.6)

SSCL = S(τ)
F +m0∑

x
Mx−

1
2 ∑

xy
MxVxyMy (2.7)

∆S(τ)
β =

1
4N2

c g2 ∑
x, j>0

(V+
x V−

x+ ĵ
+V+

x V−
x− ĵ

) (2.8)

∆S(s)
β = − 1

8N4
c g2 ∑

x,k> j>0

MxMx+ ĵMx+k̂Mx+k̂+ ĵ , (2.9)

whereMx = χ̄a
x χa

x , V+ = eµ χ̄U0χ, V− = e−µ χ̄U†
0 χ , and the matrixVxy = ∑ j(δx+ ĵ,y +δx− ĵ,y)/2Nc

represents the meson hopping. Due to the existence of the temporal linkU0, the non-local color
singletsV+,V− appear, which play an important role in the phase diagram evolution.

Now some kinds of interactions (MVM and∆S(s,τ)
F ) appear as a consequence ofU j integral. To

evaluate them, we apply the new method namedExtended Hubbard-Stratonovich Transformation
[17], where two auxiliary fields(ϕ ,φ) are introduced to the original composite fields(A,B),

eαAB =
∫

dϕ dφ e−α{ϕ2−(A+B)ϕ+φ2−i(A−B)φ}

≈ e−α{ϕ2−(A+B)ϕ−φ2+(A−B)φ} . (2.10)

Hereα is an arbitrary real constant. In the second line, we have applied the mean field and the
saddle point approximation forϕ andφ , respectively, provided that the stationary value ofφ is pure
imaginary. For the temporal plaquette action∆S(τ)

β , we substitute(α,A,B)= (1/4N2
c g2,−V+

x ,V−
x+ ĵ

),
and obtain,

∆S(τ)
β ≈ 1

4N2
c g2 ∑

x, j>0

[
ϕ2

τ +(V+
x −V−

x+ ĵ
)ϕτ −φ2

τ − (V+
x +V−

x+ ĵ
)φτ

]
+( j ↔− j) . (2.11)

For the spatial plaquette action∆S(s)
β in Eq. (2.9), we obtain the effective action in a similar way,

except that the saddle point fieldφs is found to give no effects. Effective action terms from∆S(τ,s)
β

4
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have similar forms to those in the effective action in the strong coupling limit (SCL,SSCL). Here
we assume the auxiliary fieldsϕτ,s andφτ are constant. Considering up toO(1/g4), theSSCL and

∆S(τ,s)
β are combined to be,

Seff =
1
2
(1+βτϕτ)∑

x

(
e−βτ φτV+

x −eβτ φτV−
x

)
− CM

2 ∑
xy

MxVxyMy +m0∑
x

Mx +NτLd
[

βτ

2
(ϕ2

τ −φτ)2 +
dβs

2
ϕ2

s

]
, (2.12)

whereβτ = d/N2
c g2, βs = (d−1)/8N4

c g2, CM = 1+ Ncβsϕs, andL andNτ are the lattice sizes in
spatial and temporal directions. By expandinge±βτ φτ up toO(1/g4), it is easily confirmed that the
first line in Eq. (2.12) reproduces the coupling part of (V+,V−) and (ϕτ ,φτ ) in Eq. (2.11). In the
same procedure to that in SCL [23], we introduce the auxiliary fieldσ for the quadratic term of the
mesonic compositeM in Eq. (2.12),

exp
[CM

2 ∑
xy

MxVxyMy

]
=

∫
Dσ exp

[
CM

[
−1

2 ∑
j,xy

σxVxyσy−∑
x

σxVxyMy

]]
≃ exp

[
CM

d
Nc

[
−NτLd

2
σ2−σ ∑

y
My

]]
. (2.13)

In the second line, we assumed that the auxiliary fieldσ took a constant equilibrium value, and
then the factor(d/Nc) comes from the meson hopping matrixVxy. Here it is known that theσ in
this prescription corresponds to the constant scalar meson⟨ψ̄1spin⊗1tasteψ⟩ in the Dirac fermion
(ψ) picture [24, 25].

Now the effective action is reduced to the bilinear form in terms of the quark fields (χ, χ̄),

Seff =
(
1+βτϕτ

)
∑
xy

χ̄xG
−1
xy χy +NτLd

[ d
4Nc

σ2 +dβsϕsσ2 +
dβs

2
ϕ2

s +
βτ

2

(
ϕ2

τ −φ2
τ
)]

(2.14)

G−1
xy =

1
2

(
eµ̃U0,xδx+0̂,y−e−µ̃U†

0,xδx−0̂,y

)
δxy +mqδxy (2.15)

µ̃ = µ −βτφτ , mq =
m0 +(d/2Nc)σ(1+2Ncβsϕs)

1+βτϕτ
. (2.16)

The finite coupling 1/g2 effects are included in some terms with a factorβτ ,s. It is interesting that
quark chemical potential and the constituent quark mass are modified due to the finite coupling
effects (ϕτ ,s,φτ ). In particular, the temporal plaquette effectsϕτ ,φτ cause the suppression of quark
chemical potential and the constituent quark mass. As shown in the next subsection, this mecha-
nism is essential to the phase diagram evolution. In Eq. (2.14) and (2.15), the quark kinetic term
has the same functional form as the strong coupling limit case except for some modification due
to ϕτ ,s andφτ . Hence the quark and temporal link integral can be evaluated in the same manner as
the strong coupling limit. The resultant effective potential (free energy density) is a function of the

5
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auxiliary fieldsΦ = (σ ,ϕτ ,s,φτ), the temperatureT and the effective quark chemical potentialµ̃,

Feff(Φ;T, µ̃) = FAux(Φ)+Vq(mq(Φ);T, µ̃) (2.17)

FAux(Φ) =
d

4Nc
σ2 +dβsϕsσ2 +

dβs

2
ϕ2

s +
βτ

2

(
ϕ2

τ −φ2
τ
)
−Nc log

(
1+βτϕτ

)
(2.18)

Vq(mq(Φ);T, µ̃) = −T log

[
XNc +2cosh

[Ncµ̃
T

]]
(2.19)

XNc =
sinh

[
(Nc +1)E(mq(Φ))/T

]
sinh

[
E(mq(Φ))/T

] , (2.20)

whereE(mq(Φ)) = sinh−1
[
mq(Φ)

]
corresponds to the quark excitation energy. Now we have

introduced four kinds of auxiliary fieldsΦ = (σ ,ϕs,ϕτ ,φτ), and it seems to contain some redundant
degrees of freedom. This can be cared by considering the constraints∂Feff(Φ)/∂Φ = 0. From
∂Feff(Φ)/∂σ = 0, we obtainσ = −∂mqVq+O(1/g2), and the constraints forϕτ ,s are also derived
by utilizing this relation,

ϕs = 2σ2 (2.21)

ϕτ = σ
( d

2Nc
σ +m0

)
−Nc +O(1/g2) . (2.22)

By substituting equilibrium values ofϕτ ,s, the effective potential is obtained as functions of(σ ,φτ)
and(T, µ̃),

Feff =FAux(σ ,φτ)+Vq(mq(σ), µ̃(φτ),T) , (2.23)

FAux =
1
2

bσ σ2 +
βτ

2
σ2(mSCL

q )2 +
3dβs

2
σ4− βτ

2
φ2

τ , (2.24)

mq =mSCL
q (1−Ncβτ)+βτσ(mSCL

q )2 +2dβsσ3 , (2.25)

wherebσ = d/2Nc, mSCL
q = bσ σ +m0, and we have omitted higher order terms ofO(1/g4) in FAux

andmq. The chiral condensateσ is regarded as a dynamical parameter, and the phase diagram is
investigated by performing the minimum search of the effective potentialFeff with a remnant
constraint∂Feff(Φ)/∂φτ = 0, which leads,

φτ = −∂Feff

∂ µ
=

2Ncsinh(Ncµ̃/T)
XNc +2cosh(Ncµ̃/T)

≡ ρq . (2.26)

2.2 Results and Discussion

Considering the expansionFeff = ∑nCnσn, the critical line for the second order transition is
given by,

C2 =
1
2

bσ − b2
σ Nc(Nc +1)(Nc +2)(1−Ncβτ)2

6T(Nc +1+2cosh(Ncµ̃/T))
= 0 . (2.27)

In some region, the Wigner phase (σ = 0) is not the globalFeff minimum on the phase transition
line given by Eq. (2.27), then the phase transition is the first order. First we concentrate on the
critical temperature along theT axis (µ = 0). By solvingC2|µ=0 = 0, we find the second order

6
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phase transition temperatureT(2nd)
c |µ=0 is expressed by using that in the strong coupling limit

T(SCL,2nd)
c |µ=0 with a suppression factor due to the finite coupling effects,

T(2nd)
c |µ=0 = T(SCL,2nd)

c |µ=0 (1−Ncβτ)2 , T(SCL,2nd)
c |µ=0 =

d(Nc +1)(Nc +2)
6(Nc +3)

. (2.28)

The decrease of the critical temperature is mainly caused by the suppression factor(1+ βτϕτ)
in the constituent quark mass expressed in Eq. (2.16). As shown in the left panel of Fig.1, the
high T transition becomes the first order in the region 6/g2 > 1.40 while it is the second order
around SCL [10, 11]. This change is caused by the higher order terms ofσ in FAux andmq. The
calculated critical temperature is in agreement with the Monte-Carlo (MC) results withNτ = 2 at
strong coupling [26]. Compared to the quenched (m0 = ∞) resultβc = 6/g2

c = 5.097(1) [27] at
Nτ = 2, the critical inverse coupling decreases with small quark masses;βc = 3.81(2)(m0 = 0.05)
and βc = 3.67(2)(m0 = 0.025) [26] on a 83 × 2 lattice with one species of staggered fermions
(Nf = 4). These MC results with small quark masses are consistent with the present resultβc = 3.61
at Tc = 1/Nτ = 1/2 in the chiral limit, as shown in the right panel of Fig.1. The suppression ofTc

would be a natural consequence of finite coupling, since hadrons are less bound than in SCL.
We numerically find that the chiral phase transition along theµ axis is the first order, and

the critical chemical potential with finite coupling (µ(1st)
c ) is not largely modified from the strong

coupling limit valueµ(SCL,1st)
c (c.f. µ(1st)

c ≃ 0.59 at 6/g2 = 3.0 andµ(SCL,1st)
c ≃ 0.55). This small

modification is understood as follows: In the low temperature region, the first order phase transition
is described in terms of the competition between the quark chemical potential and the constituent
quark mass. Since the temporal plaquette leads to the suppression of both, the relative relations
between them are not largely changed. Henceµ(1st)

c ≃ µ(SCL,1st)
c follows.

Thus we find the significant difference in the suppressions of the critical valuesT(1st or 2nd)
c

andµ(1st)
c . As a result, the ratioR= µ(1st)

c /T(1st or 2nd)
c increases and become closer to the empirical

valueR≫ 1, as the coupling decreases. In Fig.2, we show the phase diagram with 6/g2 = 3.0 and
Nc = 3 in the chiral limit as a typical example. We find the ratioR≃ 1.0, which is much larger than
the strong coupling limit valueRSCL ∼ 0.3−0.45.

3. Baryon Mass Puzzle

As explained in the introduction, the strong coupling limit encounters the Baryon Mass Puzzle
(BMP); the chiral phase transition occurs before the baryon chemical potentialNcµ exceeds the
baryon massMB. In the previous section, we learned that the effective chemical potential is mod-
ified to µ̃ = µ −βτφτ due to the finite coupling effect. Naïvely, the result in the strong coupling
limit Ncµc < MB may be replaced withNcµ̃c = Nc(µc−βτφτ) < MB. Then it could be possible that
the plausible relationNcµc ≥ MB is realized due to the finite coupling effect (βτφτ ). In this section,
we explicitly investigate this mechanism.

3.1 Formulation

The analytic expression of the baryon mass is obtained from the mass pole of the baryon
propagator. Therefore it is necessary to consider the baryon hopping effects, which are included in
the next to leading order (NLO,O(1/

√
d)) of the 1/d expansion [23]. We investigate theO(1/

√
d)

7
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 3.5

 3.6

 3.7

 3.8

 3.9

 0  0.025  0.05

β c

m0

T=1/2

MC
present

Figure 1: Left: The coupling dependence of critical temperature. The red solid and blue dashed lines
represent the first and second order transition, respectively. The MC results are also plotted (small triangles):
From the leftm0 = 0.025, 0.05 [26] andm0 = ∞ [27]. Right: Comparison of the critical couplingβc = 6/g2

c

at Nτ = 2 (T = 1/2) in MC simulations (open circles) and the present result (filled circle). MC results are
taken from Ref. [26].

Figure 2: The phase diagram atβ = 6/g2 = 3.0 The red solid and blue dashed lines represent the first and
second order transition, respectively. The actual transition is described by the red solid line.

effects in the strong coupling limit, while we restrict our analysis to the leading order of 1/d
expansion in the NLO of the strong coupling expansion. In order to investigate the BMP, it is
enough to consider the zero temperature treatment. Those set-ups may be the simplest to study the
finite coupling effects to BMP. The effective action can be obtained by adding theO(1/

√
d) effects

of the strong coupling limit,

S(b)
eff =

(−1)Nc(Nc−1)/2

2Nc

d

∑
j=1

η j,x
[
B̄xBx+ ĵ +(−1)Nc(h.c.)

]
, (3.1)

to Eq. (2.12). In the zero temperature treatment, the temporal link(U0) is simply integrated in the
same way as the spatial linksU j , hence the Polyakov gauge Eq. (2.5) is not used here. However we

8
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would like to emphasize thatU0 is integrated after introducing the auxiliary fieldsϕτ ,φτ in order
to include the modificationµ → µ̃.

The integral overU0 leads to the effective action,

Seff = −1
2

M ·VM ·M− B̄ ·VB ·B+m0∑
x

Mx +NτLd
[

βτ

2
(ϕ2

τ −φτ)2 +
dβs

2
ϕ2

s

]
, (3.2)

VM(xy) =

(
1+βτϕτ

)2

4Nc

[
δx+0̂,y +δx−0̂,y

]
+

( 1
4Nc

+βsϕs

)
∑

j

[
δx+ ĵ,y +δx− ĵ,y

]
(3.3)

VB(xy) = (−1)Nc(Nc−1)/2
[[1+βτϕτ

2

]Nc[
eNcµ̃δx+0̂,y +(−1)Nce−Ncµ̃δx−0̂,y

]
+η j,x

[
δx+ ĵ,y +(−1)Ncδx− ĵ,y

]]
, (3.4)

where “· ” represents the summation over the spacetime index(x,y). The mesonic composite term
MVMM in the effective actionSeff is evaluated in the same way as Eq. (2.13), and the baryon fields
b, b̄ are also introduced via the similar method [7],

exp
[
B̄·VB ·B

]
= DetVB

∫
D [b, b̄]exp

[
−b̄·V−1

B ·b+ B̄·b+ b̄·B
]
. (3.5)

In the zero temperature treatment, there is no hopping of the staggered quark (χ , χ̄) after the link
integral, and we can perform the path integral over (χ, χ̄) by expanding the exponential at each
lattice site. This simply causes the constant shift to the baryon propagatorV−1

B , which is evaluated
by utilizing the Fourier transformation. These are the parallel works to the strong coupling limit
case [7], and the resultant effective potential becomes,

Feff =
Cσ

2
σ2 +

βτ

2
(ϕ2

τ −φ2
τ )+

dβs

2
ϕ2

s −Nc log
[
1+βτϕτ

]
+VB , (3.6)

VB = − 1
NτLd ∑

p

{
µ̃Nc EB(p) ≤ µ̃Nc

EB(p) EB(p) ≥ µ̃Nc

, (3.7)

whereEB(p) corresponds to the baryon excitation energy,

EB(p) = sinh−1

[
1

(1+βτϕτ)Nc

√
∑

j

sin2 p j +
1
4

(
2(m0 +Cσ σ)

)2Nc

]
(3.8)

Cσ =
d+1
2Nc

+
βτ

Nc
ϕτ +2dβsϕs+O(1/g4) . (3.9)

Here we concentrate on the zero momentum modep → 0, where we obtain the baryon massMB as,

EB(p,σ ,ϕs,τ ,φτ) → MB(σ ,ϕs,τ ,φτ) = sinh−1

[
1
2

(
2(m0 +Cσ σ))

1+βτϕτ

)Nc
]

. (3.10)

We can numerically confirm that replacingEB with MB leads to at most a few percent error. It
is interesting that the finiteϕτ causes stronger suppression of the baryon mass rather than the
constituent quark mass, and this is the different point from the previous section.
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As in the phase diagram investigation, the redundant degrees of freedom are reduced by uti-
lizing the stationary constraints for the auxiliary fields,

σ = −∂VB

∂m′
q

, ϕs = 2σ2 , ϕτ = Nc +
σ2

Nc
+O(1/g2) . (3.11)

Substituting the second and third expressions forϕs andϕτ in Eq. (3.7), we obtain the final expres-
sion of the effective potential,

Feff = ∑
l

Cl

l
σ l − βτ

2
φ2

τ −

{
µ̃Nc MB(σ) ≤ µ̃Nc

MB(σ) MB(σ) ≥ µ̃Nc

(3.12)

(
C2, C4

)
=

(d+1
2Nc

+βτ ,
4βτ

N2
c

+16dβs

)
. (3.13)

Now the baryon massMB becomes the function of the chiral condensateσ , and its expression is
obtained by substituting the second and third expressions in (3.11) for Cσ in (3.10). We analyze
the obtained effective action Eq. (3.12) with the stationary constraints forφτ , which leads,

φτ =


Nc (MB ≤ Nc(µ −βτNc))

(1/βτ)(µ −MB/Nc) (Nc(µ −βτNc) ≤ MB ≤ Ncµ)

0 (Ncµ ≤ MB)

. (3.14)

3.2 Results and Discussion

In the left panel of Fig.3, we show the effective potential as a function of the chiral condensate
σ for several values of quark chemical potentialµ. We find the two local minimum structure of
the effective potential, and the chiral phase transition is described by those competitions. Hence
the critical value of the chiral condensatesσc and the critical quark chemical potentialµc satisfy
Feff(σ = 0) = Feff(σ = σc), or equivalently,

−Ncµc +
βτ

2
N2

c = −MB(σc)+∑
l

Cl

l
σ l

c , (3.15)

where we used Eq. (3.14). The left and right hand sides in Eq. (3.15) correspond to the left and
right minima in the red line in the figure, respectively. This equation gives us the explicit relation
between the critical baryon chemical potentialNcµc and the baryon massMB(σc) in the vacuum.

Now let us move on the investigation of the Baryon Mass Puzzle (BMP). First we consider
the strong coupling limit case. Then the second term in the left hand side of Eq. (3.15) disappears,
and we find that there exists the discrepancy betweenNcµc andMB due to the chiral condensate
contributions∑l (Cl/l)σ l

c. As a result, the relationNcµc < MB or Ncµc/MB ≃ 0.52< 1.0 follows.
This is the origin of the BMP. The similar discussion at strong coupling limit can be found in
Ref. [16].

Next we consider the finite coupling case. Then second term in the left hand side of Eq. (3.15)
increases as the coupling decreases, and has an effect to cancel the chiral condensate∑l (Cl/l)σ l

c

in the right hand side. Therefore the ratioNcµc/MB becomes larger. This is illustrated in the right
panel of Fig.3. Thus the finite coupling effects make the BMP softer, however we find that this is
not enough to solve the BMP: The ratioNcµc/MB is still less than 1.0 for the relatively large value
of β = 6/g2.
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Figure 3: Left: The effective potential as a function of the chiral condensate at some chemical potential
values. The red solid line corresponds to the effective potential at the critical chemical potential. Right: The
ratioNcµc/MB as a function of the inverse coupling squaredβ = 6/g2.

4. Concluding Remarks

We have investigated the phase diagram and the baryon mass (MB) in the strong coupling lat-
tice QCD with one species of staggered fermions at finite quark chemical potential(µ) and/or finite
temperature(T). In particular, their evolution with the finite coupling (1/g2) was studied. In the
mean field approximation, we formulated the treatment of temporal plaquette effects by introducing
some new auxiliary fields which give rise to the suppression of(µ) and the constituent quark mass
(mq). Then the ratio(µc/Tc) was found to become larger and closer to the empirical value, as the
coupling decreases. And the second order transition along the temperature axis evolves to the first
order, and the critical valueTc is found to be consistent with lattice Monte-Carlo simulation results.
The same suppression mechanism ofµ was found to make the ratioNcµc/MB larger, however that
is not enough to form nuclear matter.
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