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coupling lattice QCD with one species of staggered fermions at finite quark chemical potential

(u) and/or finite temperatur@ ). In particular, their evolution with the finite coupling (d?) is

studied in the next to leading order of the strong coupling expansion. We formulate the treatment
of the temporal plaquette effects by introducing some new kinds of mean fields, which lead to the

suppression oft and the constituent quark massgf. These energy scale modifications cause
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nuclear matter in the current frame work.
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1. Introduction

Exploring the phase diagram of Quantum Chromodynamics (QCD) has recently attracted
much attention due to the developments in the heavy-ion collision experiments. The Relativistic
Heavy-lon Collider (RHIC) has shown intriguing experimental findings: the formation of strongly
interacting Quark Gluon Plasma (sQGH). [Further developments are also expected in the AL-
ICE experiment in the Large Hadron Collider (LHC). Compressed baryonic matter can be created
in heavy-ion collision experiments at lower energies (FAIR and so on), and cold and dense baryonic
matter is realized in the core of neutron stars. In the high density region, various interesting phases
have been proposed so far: the color supercondugipand the quarkyonic matte] etc. Un-
fortunately, the lattice MC simulations is difficult to access to this region because of the notorious
negative sign problem of the Dirac determinant. Many ideas have been proposed, and the relatively
small density region becomes accessible by using MC simulaf@nsHowever the alternative
methods may be needed to investigate the whole structure of the phase diagram including the low
temperature and high density region.

Here the effective model would be a possible approach, and in fact, there are many successful
effective models in the study of the QCD phase diagram. In this proceedings, we adopt a more
direct method which is based on the strong coupling expansion (expansion in the inverse of the
squared bare coupling/@?) in the lattice QCD. In 1980’s, the sophisticated methods were devel-
oped in the staggered fermion formalidBHg], in order to investigate the chiral phase transition.
There the sign problem could be avoided in the mean field approximation.Siioisg Coupling
Lattice QCD(SC-LQCD) is based on the same formulation as the lattice MC simulations, therefore
the results of the former should be reproduced by the latter in the strong coupling region. Such a
kind of comparison plays an important role to obtain a firm confirmation of the formulation and
numerical results. We shall explicitly perform that in the phase diagram study.

Recently the transition order and the location of the critical end point have become fascinating
topics. In this point of view, some remarkable developments in SC-LQCD can be found in the
recent few years: In the strong coupling limit (SCL/gt — 0), the phase diagrams have been
precisely investigated in the $P) [@] and SU?3) [10 [L1] cases. It is interesting to consider the
finite coupling cases, and to investigate the phase diagram evolution ygtreffects. Then the
key quantity may be the ratie = u%io/Tﬁr:io in the following reason. In our previous woiK7],
we pointed out thalR might be much smaller than the empirical value. The lattice MC simulations
suggest that the critical end point locates in the regigi > 1. This indicateR > 1, while the
strong coupling limit showR ~ 0.3 — 0.45. Since SC-LQCD should be consistent with the lattice
MC at strong coupling, the finite coupling effect should improve the critical Ratio

Another interesting problem in the SC-LQCD is tBaryon Mass Puzzle (BMPNaively, the
chiral phase transition is expected to occur when a baryon chemical pobéyptiapproaches to the
baryon mas#/g, i.e. N.uc ~ Mg [[]. From a more practical point of view, the relatibgu. > Mg
may be preferable to form nuclei. Contrary to these expectations, previous studies based on the
strong coupling limit of lattice QCD indicate the relatibii: < Mg. This BMP problem has been
known since 1980’s, and confirmed in the lattice MC stUfi§ [[3. The MC result forMg at
strong coupling[ld is quite larger tharN.p. semi-analytically obtained in the strong coupling
limit. For this problem, the previous worl{] indicated that the finite coupling makBlsLi; larger
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and closer to thé/g [[I5]. And the analytic relation betwee¥. L. andMg is recently indicated in
the strong coupling limit by B. BringoltZg].

In this proceedings, we investigate the phase diagram and the baryorMgasshe strong
coupling lattice QCD with one species of staggered fermions at finite quark chemical patgitial
and/or finite temperatur€l ) . This is along the line of our previous investigatiofid} [17—27].

In particular, the 1g? evolution in the next to leading order of the strong coupling expansion is
studied. We formulate the treatment of the temporal plaquette effects by introducing some new
kinds of mean fields, which lead to the suppressiop ahd the constituent quark mass;§. Then

we investigate evolution of the phase diagram with finite coupling effects in a Tiniteatment.
The same suppression mechanismuoélso modifies the analytic relation between the baryon
massMg and the critical baryon chemical potenti&l {i;). This analysis provides the extension
with the finite coupling to the later part of the wofkg. Although the BMP with ¥ g effects has
been investigated in Reflf]], the present work could give some additional knowledge: Firstly we
provide the analytic relation betwedlp. andMg with 1/g? effects, and secondly the comparison
is performed in a completely consistent way in terms ai #xpansion. In particular, the baryon
hopping effects in the spatial directiof(1/+/d) effects) is precisely evaluated.

The organization of this proceedings is as follows. In kave evaluate the next to leading
order contribution of the strong coupling expansion, and derive the analytic expression of the ef-
fective potential. From the minimum search at finite couplings, we investigate the phase diagram
evolution. In Sed3, we investigate the analytic relation betwedyu. andMg and their evolution
at finite couplings by applying the formulation obtained in &t a zero temperature treatment.
Finally we provide the concluding remarks in Sdc.

2. Phase diagram evolution

In this section, we obtain the analytic expression of the effective potential, and investigate the
phase diagram evolution with the finite coupling effects.
2.1 Formulation

We start from the lattice QCD action and the partition function with one species of staggered
fermion (x),

/ PIX, X\ Uo,Uj] & & —§ ~Se-mo5.(Xx)x 2.1)
§ = 33 [ XU o—e(ho) (2.2)
§ = ;Zi XU Xy}~ (00)] (2.3)
o ng ZZ[ trc(uvpx+uvpx)] : (2.4)

whereUp andU; represent the temporal and spatial link variables respectively) gndenotes the
staggered phase factpr1)©***i-1, In the following, we consider the color $N; = 3) case
in 3+ 1 dimension @ = 3). We introduce the lattice chemical potentiafollowing the work in
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Ref. [27]. We take account of the finite temperatuf® gffect by imposing the periodic and anti-
periodic boundary conditions on gluon and quarks respectively. Then it is known that the specified
gauge (called Polyakov gaug®} [

Uo(T,x) = diag{eT®'™ ... T*X)y (2.5)

can be taken with respect to the periodicity. Hegeepresents thisl; x N, color unit matrix.

In the strong coupling regiorg(> 1), plaquette contribution$](1/g?) can be approximated
by utilizing the expansion in terms of @ (Strong Coupling Expansion). With the nilpotent nature
of the quark fields ¥, x), the integral over the links can be exactly evaluated, and leads to a sum
over the local color singletse. mesonic and baryonic composites. In the current formulation,
we first integrate out the only spatial linkl{) variables while the temporal linkJg) is kept and
evaluated later with respect to the finite temperature effect. We consider the leGdingand the
next-to-leading ordem(sg’s)) terms in the strong coupling (@°) expansion, and the leading order
in the 1/d expansion[Z3. Then the effective action is found to be,

S=SscL+48)) +ASy +0(1/Vd, 1/g%) (2.6)
1
S’SCL - éﬂ + Mo z Mx - E z MxnyMy (2-7)
Xy
T \/— +\/—
sy = 4N2 . z (Ve Vo s VY ) (2.8)
AS(S 8N4 8N%a2 Z MxMx+JMx+RMx+R+f ) (2.9)
x,k>]>0

whereMy = x2x2, VT =exUox, V™ = e*“)?ugx, and the matriXiy = 5 (&, 7y + 6 5y)/2Nc
represents the meson hopping. Due to the existence of the temporbklitke non-local color
singletsV ™,V appear, which play an important role in the phase diagram evolution.

Now some kinds of interactiont{V M andA§FS’T)) appear as a consequencépintegral. To
evaluate them, we apply the new method narBgténded Hubbard-Stratonovich Transformation
[@7, where two auxiliary fieldg¢, ) are introduced to the original composite fieldsB),

QOAB _ /d¢ d(pe—a{¢2_(A+B)¢+(p2—i(A—B)q)}
~ o {97~ (A+B)$—¢?+(A-B)p} (2.10)
Herea is an arbitrary real constant. In the second line, we have applied the mean field and the
saddle point approximation fgr andg, respectively, provided that the stationary valugas pure

imaginary. For the temporal plaquette actlkﬁsﬁ?) we substitutéa, A, B) = (1/4N2g?, -V, Vx+1)
and obtain,

) 1 . .
A%TNWX;OW + (Vg e~ = (VD (e —D) . (21D)

For the spatial plaquette actidksgs) in Eq. 2.9, we obtain the effective action in a similar way,
except that the saddle point fieqd is found to give no effects. Effective action terms frmﬁ(ﬁns)
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have similar forms to those in the effective action in the strong coupling limit (Ss¢.,). Here
we assume the auxiliary fields s andg; are constant. Considering up @(1/g*), the Ssc. and
Asg’s) are combined to be,

Serf :%(1"‘ BT¢T) Z (eiﬁr(p[vx+ - eﬁr%\/x*)

C d
_7MZMxnyMy+anMX+NTLd [BT(‘Pr ) "‘E s | s (2.12)
Xy X

whereB; = d/N2g?, Bs = (d — 1)/8N2g?, Cm = 1+ NeBsps, andL andN; are the lattice sizes in
spatial and temporal directions. By expand@ig% up to & (1/g%), it is easily confirmed that the
first line in Eq. 12 reproduces the coupling part f {,V~) and @+, ¢;) in Eq. £.13). In the
same procedure to that in SAEZJ, we introduce the auxiliary field for the quadratic term of the
mesonic composit¥l in Eq. 2.12),

G
exp{TM Xzy MxnyMy} = / 90 exp|:c [_7 JZXyGXnyUy z O'xnyMy}:|

:exp[cMNdc[ N2Ld 2 ) H (2.13)

In the second line, we assumed that the auxiliary feeltbok a constant equilibrium value, and
then the factofd/N;) comes from the meson hopping matwy,. Here it is known that the in
this prescription corresponds to the constant scalar m(aﬁﬁ:g],m@) Liastdl) in the Dirac fermion

(w) picture P4 29.

Now the effective action is reduced to the bilinear form in terms of the quark figldg) (

d s T
St = (1+Br¢r ZXxnyXy+ NTLd {70 "‘dﬁsd’s "‘TB s+ B (‘Pr (Prz)} (2-14)
Gy = (e“UOX 0y — e_“Uo7x5x76,y>5xy+mq@<y (2.15)
Mo + (d/2Nc) (1 + 2NcBsds)

B=u-Bep, my= (2.16)

1+ Bc¢r

The finite coupling 1g? effects are included in some terms with a fagdgg. It is interesting that

guark chemical potential and the constituent quark mass are modified due to the finite coupling
effects (s, ¢r). In particular, the temporal plaquette effegis ¢r cause the suppression of quark
chemical potential and the constituent quark mass. As shown in the next subsection, this mecha-
nism is essential to the phase diagram evolution. In[Eq4 and .19, the quark kinetic term

has the same functional form as the strong coupling limit case except for some modification due
to ¢ s and . Hence the quark and temporal link integral can be evaluated in the same manner as
the strong coupling limit. The resultant effective potential (free energy density) is a function of the
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auxiliary fields® = (o, ¢r s, ¢r), the temperatur@ and the effective quark chemical potential

Fet(O; T, 1) = Fpux(P) + 74(mg(®); T, 1) (2.17)
Faux(P) = 4ch0 + dBs¢ps0° + fs Be (¢T @) —Nclog(1+ Br¢r) (2.18)
Y4(mg(®); T, 1) = —Tlog {XNC+2cost{N_T_ﬂH (2.19)
_ sinh[(Ne+ 1)E(my(®))/T] 9 20

e = sinh[E(mg(®))/T] ’ (2.20)

where E(mg(®)) = sinh‘l[m](db)] corresponds to the quark excitation energy. Now we have
introduced four kinds of auxiliary field® = (o, ¢s, ¢, @), and it seems to contain some redundant
degrees of freedom. This can be cared by considering the considaifisg @) /0P = 0. From

0 Fett(®)/d0 = 0, we obtaing = —dm, 74+ 0(1/g?), and the constraints faf; s are also derived

by utilizing this relation,

¢s = 207 (2.21)

e <2ch0+ nrb) Ne+ 0(1/g?) . (2.22)

By substituting equilibrium values df; s, the effective potential is obtained as functiong@f ¢)
and(T, ),

%ﬁz%x(o @) + Yq(mg(0), (), T) (2.23)
,/Aux_ébgo +BT (m(?CL)Z-F% 4 [;T(pr, (2.24)
Mg =m;“H(1— NCBT>+BT (mg°)? +2dBsa® (2.25)

whereb, = d/2Nc, Mgt = b, 0 +my, and we have omitted higher order termsfl/g*) in Zaux
andmy. The chiral condensaig is regarded as a dynamical parameter, and the phase diagram is
investigated by performing the minimum search of the effective potegfigl with a remnant
constraintd Ze(®) /0 ¢ = 0, which leads,

- du XN +2coshNcf1/T)

o= =pq. (2.26)

2.2 Results and Discussion

Considering the expansioffer = 5 ,Cnh0o", the critical line for the second order transition is
given by,

1, bZN(Ne+1)(Ne+2)(1— Nefr)?
C2 — 7bo’

277 6T (Ne+ 1+ 2coshNefi/T)) =0. (2.27)

In some region, the Wigner phase £ 0) is not the globalZe# minimum on the phase transition
line given by Eq.[2.29), then the phase transition is the first order. First we concentrate on the
critical temperature along the axis (u = 0). By solvingC;|,—o = 0, we find the second order
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phase transition temperaturéznd)]u:o is expressed by using that in the strong coupling limit
TC(SC"'Z”d)|u:0 with a suppression factor due to the finite coupling effects,

(scL2nd) ~ d(Nc+1)(N.+2)
Te |u:0 -

T o = T2 g (1 NoBo)?, 6(Ne +3)

(2.28)
The decrease of the critical temperature is mainly caused by the suppression(IaetBs¢:)

in the constituent quark mass expressed in Eql@. As shown in the left panel of Fiffl the
high T transition becomes the first order in the regiglys> 1.40 while it is the second order
around SCLIQ,[I]]. This change is caused by the higher order terms of .#a.x andmy. The
calculated critical temperature is in agreement with the Monte-Carlo (MC) resultdNyith2 at
strong coupling@d. Compared to the quenchedy = ) result3. = 6/g2 = 5.097(1) [27] at

N; = 2, the critical inverse coupling decreases with small quark magses3.81(2)(my = 0.05)
and B. = 3.67(2)(my = 0.025) [2g on a & x 2 lattice with one species of staggered fermions
(Nf =4). These MC results with small quark masses are consistent with the preserfyeslél
atT. = 1/N; = 1/2 in the chiral limit, as shown in the right panel of HIj. The suppression &
would be a natural consequence of finite coupling, since hadrons are less bound than in SCL.

We numerically find that the chiral phase transition along fihaxis is the first order, and
the critical chemical potential with finite COUplihgl&lSt)) is not largely modified from the strong
coupling limit valuepSS=*" (c.f. u™? ~ 0.59 at §/g? = 3.0 andu{>-*! ~ 0.55). This small
modification is understood as follows: In the low temperature region, the first order phase transition
is described in terms of the competition between the quark chemical potential and the constituent
guark mass. Since the temporal plaquette leads to the suppression of both, the relative relations
between them are not largely changed. Hepd& ~ {5 follows.

Thus we find the significant difference in the suppressions of the critical vaifes” 2"
andu™. As aresult, the rati® = pi**? /T " 2" increases and become closer to the empirical
valueR>> 1, as the coupling decreases. In Elgwe show the phase diagram wit}igs = 3.0 and
N¢ = 3 in the chiral limit as a typical example. We find the raé@io: 1.0, which is much larger than

the strong coupling limit valuRsc ~ 0.3— 0.45.

3. Baryon Mass Puzzle

As explained in the introduction, the strong coupling limit encounters the Baryon Mass Puzzle
(BMP); the chiral phase transition occurs before the baryon chemical potBgtiaéxceeds the
baryon mas$/g. In the previous section, we learned that the effective chemical potential is mod-
ified to 1 = u — Br @ due to the finite coupling effect. Naively, the result in the strong coupling
limit Nepic < Mg may be replaced witNcfic = Ne(tec — Br @) < Mg. Then it could be possible that
the plausible relatioh L. > Mg is realized due to the finite coupling effe@; ;). In this section,
we explicitly investigate this mechanism.

3.1 Formulation

The analytic expression of the baryon mass is obtained from the mass pole of the baryon
propagator. Therefore it is necessary to consider the baryon hopping effects, which are included in
the next to leading order (NL@7(1/+/d)) of the 1/d expansionZd. We investigate the’(1/+/d)
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Figure 1: Left: The coupling dependence of critical temperature. The red solid and blue dashed lines
represent the first and second order transition, respectively. The MC results are also plotted (small triangles):
From the leftmg = 0.025, 0.05 andmg = » [27. Right: Comparison of the critical coupling = 6/g2

atN; = 2 (T =1/2) in MC simulations (open circles) and the present result (filled circle). MC results are
taken from Ref.[24g.

N_=3, 6/g=3.0

0 0.2 0.4 0.6 0.8
u

Figure 2: The phase diagram #t= 6/g?> = 3.0 The red solid and blue dashed lines represent the first and
second order transition, respectively. The actual transition is described by the red solid line.

effects in the strong coupling limit, while we restrict our analysis to the leading ordeyf 1
expansion in the NLO of the strong coupling expansion. In order to investigate the BMP, it is
enough to consider the zero temperature treatment. Those set-ups may be the simplest to study the
finite coupling effects to BMP. The effective action can be obtained by adding they/d) effects

of the strong coupling limit,

_1)Ne(Ne—1)/2 d _
= T e 3 (BB, + (-1 (he)] (3.1)
=1

to Eq. 2. 12. In the zero temperature treatment, the temporal (i is simply integrated in the
same way as the spatial linkly, hence the Polyakov gauge ER.J) is not used here. However we
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would like to emphasize thaly is integrated after introducing the auxiliary fields, ¢, in order
to include the modificatiom — fi.
The integral ovet)y leads to the effective action,

S = —gM Ve M- BVe B my Y Ml | 07— 7 o2 32
1+ VYT
VM(Xy) — ( 4[lg\l¢ ) '[5x+6,y+5X—6,y] + (4N +BS¢S) z x+]y )( Jy (33)
C C ]

N - -
V() = (~pfte 2| [LERE] Sy oy (cavetig g

+1jx [6x+f,y+ (_l)Ncéx—f,y]] ) (3.4)

where “- " represents the summation over the spacetime iriggs. The mesonic composite term
MVuM in the effective actiorg is evaluated in the same way as B2, and the baryon fields
b,b are also introduced via the similar meth@®, [

exp[B-Vg B = Deth/.@ blexp[~b-Vg!-b+B-b+b-B]. (3.5)

In the zero temperature treatment, there is no hopping of the staggered gueylafter the link
integral, and we can perform the path integral overx) by expanding the exponential at each
lattice site. This simply causes the constant shift to the baryon propa@a}owhich is evaluated

by utilizing the Fourier transformation. These are the parallel works to the strong coupling limit
casel[f]], and the resultant effective potential becomes,

Fer = %"GZ+B (92— 08)+ 07— Nolog[L+ o] + 7o 39
B ENc  Eg(p) < [N
- Z{ AR (37)

whereEg(p) corresponds to the baryon excitation energy,

o 1 . 1 2Ne
Es(p) = sinh! HBTW\/ZSIHZ Pj +Z<2(%+COU)) ] (3.8)
Ca = o + kL bo+ 208+ 01/ @9

Here we concentrate on the zero momentum nmpde0, where we obtain the baryon mads as,

Ne
Es(p, 0, dsz, @) — Ma(0, bsr, @) = sinh 2 [; (W) ] . (3.10)

We can numerically confirm that replacifigy with Mg leads to at most a few percent error. It
is interesting that the finitgp; causes stronger suppression of the baryon mass rather than the
constituent quark mass, and this is the different point from the previous section.



SC-Lattice study af/g? evolution in phase diagram andgvl Kohtaroh Miura

As in the phase diagram investigation, the redundant degrees of freedom are reduced by uti-
lizing the stationary constraints for the auxiliary fields,

g2
= - = 202 =N+ — 1/¢) . 11
O- 0%7 ¢S O- ) ¢T C+Nc+ﬁ( /g) (3 )
Substituting the second and third expressiongfand¢, in Eq. 8.7, we obtain the final expres-
sion of the effective potential,

G | Br 2 ﬂNC MB(G) < ﬂNc
T = S Aol P2 3.12
f Z 17 2% {MB(O) Mg(0) > fiNe (3.12)
(Cz, c4) - (dztlclwr, 4N—B2T+16d[33> . (3.13)

Now the baryon mashklg becomes the function of the chiral condensajend its expression is
obtained by substituting the second and third expressiof@Id)(for Cy in (310. We analyze
the obtained effective action E@.{2 with the stationary constraints fgx, which leads,

Ne (Mg < Ne(M — BeNc))
@ =9 (1/B)(H—Ms/Ne)  (Ne(U —BrNe) <Mg < Nept) - (3.14)
0 (Nept < Mg)

3.2 Results and Discussion

In the left panel of Fig3, we show the effective potential as a function of the chiral condensate
o for several values of quark chemical potengial We find the two local minimum structure of
the effective potential, and the chiral phase transition is described by those competitions. Hence
the critical value of the chiral condensat@sand the critical quark chemical potentjal satisfy
Fett(0 = 0) = Fet(0 = 0¢), Or equivalently,

C
Mg+ PNz = “Ma(oe) 3 ol (3.15)

where we used Eq3(19. The left and right hand sides in E@.D correspond to the left and
right minima in the red line in the figure, respectively. This equation gives us the explicit relation
between the critical baryon chemical potenhglic and the baryon masdg(o¢) in the vacuum.

Now let us move on the investigation of the Baryon Mass Puzzle (BMP). First we consider
the strong coupling limit case. Then the second term in the left hand side @H8. disappears,
and we find that there exists the discrepancy betwégnr andMg due to the chiral condensate
contributionsy (C|/|)G(|:. As a result, the relatioNcp: < Mg or Neue/Mg ~ 0.52 < 1.0 follows.
This is the origin of the BMP. The similar discussion at strong coupling limit can be found in
Ref. [1§).

Next we consider the finite coupling case. Then second term in the left hand side BEE. (
increases as the coupling decreases, and has an effect to cancel the chiral coryjédsije;.
in the right hand side. Therefore the rahgL:/Mg becomes larger. This is illustrated in the right
panel of Fig[@ Thus the finite coupling effects make the BMP softer, however we find that this is
not enough to solve the BMP: The ratigu./Mg is still less than D for the relatively large value

of B =6/g°.

10
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Figure 3: Left: The effective potential as a function of the chiral condensate at some chemical potential
values. The red solid line corresponds to the effective potential at the critical chemical potential. Right: The
ratio Ncic/Mg as a function of the inverse coupling squafee- 6/g°.

4. Concluding Remarks

We have investigated the phase diagram and the baryon Ma¥#(the strong coupling lat-
tice QCD with one species of staggered fermions at finite quark chemical potentehd/or finite
temperaturéT). In particular, their evolution with the finite coupling (d?) was studied. In the
mean field approximation, we formulated the treatment of temporal plaquette effects by introducing
some new auxiliary fields which give rise to the suppressiofuofand the constituent quark mass
(mg). Then the ratid 1/ T¢) was found to become larger and closer to the empirical value, as the
coupling decreases. And the second order transition along the temperature axis evolves to the first
order, and the critical valu& is found to be consistent with lattice Monte-Carlo simulation results.
The same suppression mechanisnuafias found to make the ratie. 1. /Mg larger, however that
is not enough to form nuclear matter.
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