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1. Introduction

Chiral perturbation theory is an effective field theory that describelethenomentum physics
of the pions. According to this theory physical quantities can be exptessa power series in
the dimensionless paramet&r = M?/(16m°F?) whereM? = m=/F? is the square of the pion
mass to the leading order in the quark masd- is the pion decay constant aadis the chiral
condensate both evaluated in the chiral limit. The unknown coefficients pitlier series encode
the dynamics of QCD and are referred to as the low energy constantsf @meeimportant topics
of research today is to match lattice QCD data to the chiral expansion and totigse low energy
constants from first principles [1, 2]. In order to match data with the chikpansion reliably it is
important to find the range i& where the predictions will be valid [3, 4]. The region of validity is
governed by the properties of resonances in the theory. Canthsonance affect the convergence
of the chiral expansion?

The o-resonance arises im— 71 scattering in a channel with vacuum quantum numbers. In
the physical world sigma is a broad resonance and has been studied ontegt®of the chiral
expansion since a long time [5, 6]. Recently, it was estimatedNhat- 440MeV andl; ~
544MeV [7]. One also finds that the properties of theesonance depends strongly on the quark
mass [8]. Hence, in lattice QCD, as the pion masses increase, the propettissresonance will
clearly change. It is interesting to ask if this dependence is related to thergence of the chiral
expansion. This question is non-perturbative and difficult to answeimnidktice QCD currently.
On the other hand it may be answerable in models with the same symmetries as @Glchn
studies may help shed some light on the subject.

Here we study a QCD-like lattice field theory model which has the same symmetiies-a
flavor QCD. Our model also contains a parameter which we tune so thatt#tiesm light sigma
resonance in addition to pions. We then find evidence that indeed chitatlpegion theory breaks
down wherM; > M /3. For more details we refer to the published versions of this work in [9, 10]

2. Modd and Observables

Our model involves two flavors of staggered fermions interacting stroniglyafoelian gauge
fields. The action of the model is given by

5 , . ~ 2
S==F S Nux|€®Wthp—e P, ‘-,Ux] -5 {mwxwﬁ g (ﬂ&%) ] , (2.1)

X u=1

wherex denotes a lattice site on ardl dimensional hyper-cubic lattide x L*. HereL# is the usual
Euclidean space-time box whilg represents a fictitious temperature direction whose role will be
discussed below. The two component Grassmann figidand g, represent the two quaki, d)
flavors of massn, and ¢, x is the compact) (1) gauge field through which the quarks interact.
Hereu =1,2,..,5 runs over the 4- 1 directions. Theu = 1 direction will denote the fictitious
temperature direction, while the remaining directions represent Euclideae-$ime. The usual
staggered fermion phase facteysy obey the relationsqfx =T andnﬁX =1fori=2,3,4,5. The
parametef controls the fictitious temperature. The four fermion couplirgefs the strength of
the anomaly. As explained in [9], the above model has the same symmethes-a2 QCD.
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We have developed an efficient cluster algorithm to solve this model ardshagied it in the
e-regime [9] and the-regime [10]. In our work we fix; = 2 andc’= 0.3. For these parameters the
temperaturd can be tuned so that the model is either in a spontaneously broken phdse
or in the symmetric phase far > T, whereT, = 1.737794) [9]. Since the phase transition is
second order, close iy the pion decay constant in the chiral linkitis small in lattice units. This
reduces the lattice artifacts in our model. Further, tuffirgjose toT in the low temperature phase
also guarantees the existence of a lightesonance. For this reason, we choose t@ fix 1.7 in
this work.

We focus on three observables: The vector current susceptijlitiie chiral current suscep-
tibility Y;, and the chiral condensate susceptibijty. These are defined as

1

Yoo = de<z (33 >2> xozﬁszymwxwyw 22)

whereJj; (x) andJj;(x) denote one of the components of the vector and the chiral currentrespe
tively. For a detailed discussion of our algorithm and observables, feethe reader to [9].

3. Resaults

We first setm= 0 and study the finite size scaling of our observables. This is ig-ttegime
of chiral perturbation theory. At 1-loop the theory predicts that [11,182 14]

F2( 014046 a s214( 042138 b
Yo=Y, = [1 - 1 1
c=WV= ( T FL? +(|:|_)4...>’ Xo="% ( T FL? +(FL)4...> 3-1)

Our data and fits are shown in figure 1. Using the fits we extract the lowggrenstant$ and
and find thaF = 0.23271),a = 1.91(9) with a x?/DOF = 1.2 andZ = 0.43462),b = 1.72(11)
with a x2/DOF = 0.2.

Next we vary the quark mass in the intervad002< m < 0.01 for lattices in the range 12
L < 32 and thus explore thp-regime of the chiral expansion. Here the 1-loop prediction&for
Y, and xg are given by [12, 14].

Yo = (Fn)?|1-2G1(LMn)& + 0(E?) (3.23)
YW = (Fn)z —2Lagl(dILMn)E+ﬁ(62) (32b)
Xo = ({ag))2L* 1—3g~1<LMH>s+ﬁ<sz>] (3.20)

whereM;; is the pion massk is the pion decay constant arigq) is the chiral condensate at a
given quark mass. The functiong; arises due to pions constrained to be inside a periodic box
and is given by

9~1(/\): Z 7 /\\f) (3.3)

M1,M2,N3,N47#0
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Figure 1l: Finite size scaling of observables in theegime. The left figure shows the current susceptibility
and the right figure shows the chiral condensate susceftibidth atm= 0. The insets show a larger range
of data. The solid line is the fit to the eq.(3.1) while the dakline is obtained when we set= b= 0.

whereK; is a Bessel function of the second kind ame nZ + n3 + n3 + n3. Fitting our data with
these predictions we can determMeg, F; and(dq) as a function of the quark mass

Our data fit well to the above predictions for0002 < m < 0.0035. Form > 0.0035 the
fits converge only if we exclude almost all the curvaturerjrand xo. In particular, we are not
sensitive to the{A) function for these two observables and the data fit well even to a constant.
On the other hand, continues to fit well for the entire range of data and this can be used to
extractM;; accurately as a one parameter fit. This may be a useful observation@viattite
QCD calculations. Thus, we were able to extriagtM;; and(qq) as functions of the quark mass.
Some of our results are summarized in Table 1. As an illustration, we also shodata at
m = 0.0065 m= 0.0035 m= 0.001 andm = 0.0002 along with the fits in Fig. 2.

The quark mass dependencefef (qgq) and M;; have also been computed up to 1-loop in

m (qa) Fr My
0.0002| 0.4392(2) 0.2348(1) 0.0400(2)
0.0005| 0.4441(2) 0.2377(1) 0.0627(2)
0.0010| 0.4528(2) 0.2423(1) 0.0878(1)
0.0020| 0.4678(2) 0.2501(1) 0.1220(2)
0.0035| 0.4867(2) 0.2606(1) 0.1584(2)
0.0050| 0.5024(3) 0.2690(2) 0.1860(3)
0.0065| 0.5170(3) 0.2764(2) 0.2083(4)
0.0100| 0.5433(2) 0.2912(2) 0.2521(5)

Table 1: Results foriMy, F;; and(qq) from fitting Y,,Ye, and xs as a function oL to the finite-size 1-loop
chiral perturbation theory.
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Figure 2. Finite size scaling o¥,,Y. and xs atm= 0.0002 (top left)m= 0.001 (top right),m= 0.0035
(bottom left) andm = 0.0065 (bottom right). The solid lines are fits of the data togRpected finite size
scaling form from chiral perturbation theory while dashiee$ are fits to a constant.

[11, 12]:

Fr=F 1—5’(Iog€’—20p)] ; (4g) = Z{l—if’(logf’—Zcz} ;M2 =M?2 [1+;E’(Iogf’—2c,v.) ,

(3.4)
wherecg, cs andcy are higher order low energy constants and are usually defined in théuitera
asc; = log(A\/4mnF). We have performed a combined fitlef,(qq) andM, quoted in Table 1, in
the region 00002< m < 0.001 to the above three relations. The result is tabulated in Table 2. The
values ofF andZ obtained in thep-regime agree nicely with the those computed inghregime.

In order to isolate the region where 1-loop corrections are a goodigtaerof the data we
define the following rescaled and subtracted quantiRes= F,;/F — 1+ ¢&’logé’, Rs = (qq) /Z —

b3 F Cs Ck ow | x?
0.4354(3) 0.2329(2) 11.9(3) 19.3(5) 39(3)L.1

Table2: Results from a combined fit of the data in Table 1 to Eqgs.(3.6)



o-resonance and convergence of CHPT Shailesh Chandrasekharan

0.21 > 0.21 ‘ o — —
0.8 A 0.18F d a ]
> 1 [ R -0.031- ]
0.15- et : 0.15- g : H ]
~ & E -0.06- B
0.12 o 0.12 ] L ]
12+ [ - A2 e 7 - L ]
o r N ] o [ S 1 & '0'09,\\ - ]
0.09+ g B 0.09+ /e B N 1
L. | P ] -0.12f S\ = 1
0.06¢" - 0.060 - [ 1
] 1 i ] -0.15¢ = ]
0.03|- - 0.03F - [ =]
] L ] -0.18 o]
L L L L L L L L | L L L L L L L L L L L L L L L L L L

% 0.003 0.006  0.009 % 0.003 0.006  0.009 0 0.003 0.006  0.009

13 3 13

Figure 3: Rescaled and subtracted quantities defined in the text wjocto zero linearly in the region
where 1-loop chiral perturbation theory is valid. The sdiicts are plots of the fits discussed in the text.
The dashed lines show the linear region for larger valugs.ofhe “knee” is estimated roughly as the point
where the two lines cross.

1+3&’logé’/2, andRy = M2/M2 — 1 — &'log(&’) /2 usingF = 0.2329 andx = 0.4354 obtained
from our fits. By definition, th&'s must be linear i’ in the region where 1-loop results are valid.
In Fig. 3 we plot theR's as a function of’. Assuming errors of 1% or less can be tolerated, Fig. 3
shows that 1-loop chiral perturbation theory describes the da# f§r0.002. Interestingly, there

is also an approximately linear region f&f > 0.006 but with a completely different slope. This
is shown as the dashed line in Fig. 3. This behavior suggests that chitalgagion theory begins

to break down roughly aroundf ~ 0.0035, which is the location of the “knee” that separates the
low &" and highé’ regions. We will argue below that thee-resonance is responsible for this break
down.

4. Discussion and Conclusions

It has been argued in the context of B&4) linear sigma model, that the physics in the sigma
channel is directly related to the coefficiemts cz andcy. Perturbative calculations show that
[15, 16, 17]:

Cs = Iog(MR/4nF)—;+2g:, v = |Og(MR/47TF)—;+897|:2 (4.1)
whereM2 = M3[1+ gr(3m/3 - 13)/(161)]. HereM, is that mass of the particle andgr is
the corresponding renormalized couplirgg, = M3/2F2. Since our model is close to th@(4)
phase transition the linear sigma model should be a reliable description ofythiepm the sigma
channel. Indeed, usings = 12 we find thatMy/F ~ 2 while usingcy = 39 we again find that
My /F ~ 2. The fact that these two agree with each other is a confirmation of ouf. bediguming
Mg /F ~ 2 and setting the scale of our lattice wih= 90MeV we estimat&l,; ~ 180MeV in our
model. At&’ ~ 0.0035 we find thaM; ~ 60MeV. Hence, we conclude that whéfy, > My /3
chiral perturbation theory begins to break down and the physics is bet$erided by the linear
sigma model.
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There are many important differences between our model and QCD.Jdowe most im-
portant difference is that our model contains a light and perhaps ewarresonance while in
QCD theg-resonance is expected to be heavier and broader. This is the relagonmow energy
constants turned out to be much larger than QCD and the convergertieabperturbation theory
was affected. Despite the differences, it is indeed encouraging thamadel supports the most
important expectations of chiral perturbation theory namely, chiral fgeation theory is applica-
ble in a region of small quark masses and that the properties of resenaagan important role in
determining this region. In particular, we have found evidence that thgepies ofo-resonance
are encoded in the low energy constants that control the chiral logarithehBeance can play an
important role in determining the region where 1-loop chiral perturbatiorrytiewalid. The res-
onance properties of course change with the quark masses. Thusafi i assume that chiral
perturbation theory can only become reliable in the region of the quark nteehe properties
of the o-resonance (and other resonances) varies little. A rough estimate ta$8Hsuggests
that M, < 250MeV may be necessary. Thus, it should not be very surprisindlLtladp chiral
perturbation theory may be applicable at a few percent accuracy ordglgtic pion masses.
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