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The dimensionless parameterξ ′ = M2/(16π2F2), whereF is the pion decay constant in the

chiral limit andM is the pion mass at leading order in the quark mass, is expected to control the

convergence of chiral perturbation theory applicable to QCD. Here we demonstrate that a strongly

coupled lattice gauge theory model with the same symmetriesas two-flavor QCD but with a much

lighterσ -resonance is different. Our model allows us to study efficiently the convergence of chiral

perturbation theory as a function ofξ . We first confirm that the leading low energy constants

appearing in the chiral Lagrangian are the same when calculated from theε-regime and thep-

regime. However,ξ ′ . 0.002 is necessary before 1-loop chiral perturbation theory predicts the

data within 1%. However, forξ ′ > 0.0035 the data begin to deviate qualitatively from 1-loop

chiral perturbation theory predictions. We argue that thisqualitative change is due to the presence

of a light σ -resonance in our model. Our findings may be useful for lattice QCD studies.
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1. Introduction

Chiral perturbation theory is an effective field theory that describes thelow momentum physics
of the pions. According to this theory physical quantities can be expressed as a power series in
the dimensionless parameterξ ′ = M2/(16π2F2) whereM2 = mΣ/F2 is the square of the pion
mass to the leading order in the quark massm, F is the pion decay constant andΣ is the chiral
condensate both evaluated in the chiral limit. The unknown coefficients of thepower series encode
the dynamics of QCD and are referred to as the low energy constants. Oneof the important topics
of research today is to match lattice QCD data to the chiral expansion and compute these low energy
constants from first principles [1, 2]. In order to match data with the chiralexpansion reliably it is
important to find the range inξ where the predictions will be valid [3, 4]. The region of validity is
governed by the properties of resonances in the theory. Can theσ -resonance affect the convergence
of the chiral expansion?

The σ -resonance arises inπ −π scattering in a channel with vacuum quantum numbers. In
the physical world sigma is a broad resonance and has been studied in the context of the chiral
expansion since a long time [5, 6]. Recently, it was estimated thatMσ ≃ 440MeV andΓσ ≃
544MeV [7]. One also finds that the properties of theσ -resonance depends strongly on the quark
mass [8]. Hence, in lattice QCD, as the pion masses increase, the propertiesof this resonance will
clearly change. It is interesting to ask if this dependence is related to the convergence of the chiral
expansion. This question is non-perturbative and difficult to answer within lattice QCD currently.
On the other hand it may be answerable in models with the same symmetries as QCD and such
studies may help shed some light on the subject.

Here we study a QCD-like lattice field theory model which has the same symmetries as two-
flavor QCD. Our model also contains a parameter which we tune so that it contains a light sigma
resonance in addition to pions. We then find evidence that indeed chiral perturbation theory breaks
down whenMπ & Mσ/3. For more details we refer to the published versions of this work in [9, 10].

2. Model and Observables

Our model involves two flavors of staggered fermions interacting strongly with abelian gauge
fields. The action of the model is given by

S = −∑
x

5

∑
µ=1

ηµ,x

[

eiφµ ,xψxψx+µ̂ −e−iφµ ,xψx+µ̂ψx

]

−∑
x

[

mψxψx +
c̃
2

(

ψxψx

)2]

, (2.1)

wherex denotes a lattice site on a 4+1 dimensional hyper-cubic latticeLt ×L4. HereL4 is the usual
Euclidean space-time box whileLt represents a fictitious temperature direction whose role will be
discussed below. The two component Grassmann fields,ψx andψx, represent the two quark(u,d)

flavors of massm, andφµ,x is the compactU(1) gauge field through which the quarks interact.
Here µ = 1,2, ..,5 runs over the 4+ 1 directions. Theµ = 1 direction will denote the fictitious
temperature direction, while the remaining directions represent Euclidean space-time. The usual
staggered fermion phase factorsηµ,x obey the relations:η2

1,x = T andη2
i,x = 1 for i = 2,3,4,5. The

parameterT controls the fictitious temperature. The four fermion coupling ˜c sets the strength of
the anomaly. As explained in [9], the above model has the same symmetries asN f = 2 QCD.
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We have developed an efficient cluster algorithm to solve this model and have studied it in the
ε-regime [9] and thep-regime [10]. In our work we fixLt = 2 and ˜c = 0.3. For these parameters the
temperatureT can be tuned so that the model is either in a spontaneously broken phase for T < Tc

or in the symmetric phase forT > Tc, whereTc = 1.73779(4) [9]. Since the phase transition is
second order, close toTc the pion decay constant in the chiral limitF is small in lattice units. This
reduces the lattice artifacts in our model. Further, tuningT close toTc in the low temperature phase
also guarantees the existence of a lightσ -resonance. For this reason, we choose to fixT = 1.7 in
this work.

We focus on three observables: The vector current susceptibilityYv, the chiral current suscep-
tibility Yc, and the chiral condensate susceptibilityχσ . These are defined as

Yv,c =
1

dLd

〈 d

∑
µ=1

(

∑
x

Jv,c
µ (x)

)2〉

, χσ =
1

Ld ∑
x,y
〈ψxψx ψyψy〉 (2.2)

whereJv
µ(x) andJc

µ(x) denote one of the components of the vector and the chiral current respec-
tively. For a detailed discussion of our algorithm and observables, we refer the reader to [9].

3. Results

We first setm = 0 and study the finite size scaling of our observables. This is in theε-regime
of chiral perturbation theory. At 1-loop the theory predicts that [11, 12, 13, 14]

Yc = Yv =
F2

2

(

1+
0.14046
(FL)2 +

a
(FL)4...

)

, χσ =
Σ2L4

4

(

1+
0.42138
(FL)2 +

b
(FL)4...

)

(3.1)

Our data and fits are shown in figure 1. Using the fits we extract the low energy constantsF andΣ
and find thatF = 0.2327(1),a = 1.91(9) with a χ2/DOF = 1.2 andΣ = 0.4346(2),b = 1.72(11)
with a χ2/DOF = 0.2.

Next we vary the quark mass in the interval 0.0002≤ m ≤ 0.01 for lattices in the range 12≤
L ≤ 32 and thus explore thep-regime of the chiral expansion. Here the 1-loop predictions forYc,
Yv andχσ are given by [12, 14].

Yc = (Fπ)2

[

1−2g̃1(LMπ)ξ +O(ξ 2)

]

(3.2a)

Yv = (Fπ)2

[

−2L
∂ g̃1(LMπ)

∂L
ξ +O(ξ 2)

]

(3.2b)

χσ = (〈qq〉)2L4
[

1−3g̃1(LMπ)ξ +O(ξ 2)

]

(3.2c)

whereMπ is the pion mass,Fπ is the pion decay constant and〈qq〉 is the chiral condensate at a
given quark massm. The function ˜g1 arises due to pions constrained to be inside a periodic box
and is given by

g̃1(λ ) =
∞

∑
n1,n2,n3,n4 6=0

4
λ
√

n
K1(λ

√
n) (3.3)
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Figure 1: Finite size scaling of observables in theε-regime. The left figure shows the current susceptibility
and the right figure shows the chiral condensate susceptibility both atm = 0. The insets show a larger range
of data. The solid line is the fit to the eq.(3.1) while the dashed line is obtained when we seta = b = 0.

whereK1 is a Bessel function of the second kind andn = n2
1 + n2

2 + n2
3 + n2

4. Fitting our data with
these predictions we can determineMπ ,Fπ and〈qq〉 as a function of the quark massm.

Our data fit well to the above predictions for 0.0002< m ≤ 0.0035. Form > 0.0035 the
fits converge only if we exclude almost all the curvature inYc andχσ . In particular, we are not
sensitive to the ˜g1(λ ) function for these two observables and the data fit well even to a constant.
On the other handYv continues to fit well for the entire range of data and this can be used to
extractMπ accurately as a one parameter fit. This may be a useful observation even for lattice
QCD calculations. Thus, we were able to extractFπ , Mπ and〈qq〉 as functions of the quark mass.
Some of our results are summarized in Table 1. As an illustration, we also show our data at
m = 0.0065,m = 0.0035,m = 0.001 andm = 0.0002 along with the fits in Fig. 2.

The quark mass dependence ofFπ , 〈qq〉 and Mπ have also been computed up to 1-loop in

m 〈qq〉 Fπ Mπ

0.0002 0.4392(2) 0.2348(1) 0.0400(2)
0.0005 0.4441(2) 0.2377(1) 0.0627(2)
0.0010 0.4528(2) 0.2423(1) 0.0878(1)
0.0020 0.4678(2) 0.2501(1) 0.1220(2)
0.0035 0.4867(2) 0.2606(1) 0.1584(2)
0.0050 0.5024(3) 0.2690(2) 0.1860(3)
0.0065 0.5170(3) 0.2764(2) 0.2083(4)
0.0100 0.5433(2) 0.2912(2) 0.2521(5)

Table 1: Results forMπ , Fπ and〈qq〉 from fitting Yv,Yc, andχσ as a function ofL to the finite-size 1-loop
chiral perturbation theory.
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Figure 2: Finite size scaling ofYv,Yc andχσ at m = 0.0002 (top left),m = 0.001 (top right),m = 0.0035
(bottom left) andm = 0.0065 (bottom right). The solid lines are fits of the data to theexpected finite size
scaling form from chiral perturbation theory while dashed lines are fits to a constant.

[11, 12]:

Fπ = F

[

1−ξ ′(logξ ′−2cF)

]

; 〈qq〉= Σ
[

1− 3
2

ξ ′(logξ ′−2cΣ

]

; M2
π = M2

[

1+
1
2

ξ ′(logξ ′−2cM)

]

,

(3.4)
wherecF ,cΣ andcM are higher order low energy constants and are usually defined in the literature
asci = log(Λi/4πF). We have performed a combined fit ofFπ ,〈qq〉 andMπ , quoted in Table 1, in
the region 0.0002≤ m ≤ 0.001 to the above three relations. The result is tabulated in Table 2. The
values ofF andΣ obtained in thep-regime agree nicely with the those computed in theε-regime.

In order to isolate the region where 1-loop corrections are a good description of the data we
define the following rescaled and subtracted quantities:RF ≡ Fπ/F −1+ξ ′ logξ ′, RΣ ≡ 〈qq〉/Σ−

Σ F cΣ cF cM χ2

0.4354(3) 0.2329(2) 11.9(3) 19.3(5) 39(3)1.1

Table 2: Results from a combined fit of the data in Table 1 to Eqs.(3.6)
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Figure 3: Rescaled and subtracted quantities defined in the text whichgo to zero linearly in the region
where 1-loop chiral perturbation theory is valid. The solidlines are plots of the fits discussed in the text.
The dashed lines show the linear region for larger values ofξ ′. The “knee” is estimated roughly as the point
where the two lines cross.

1+3ξ ′ logξ ′/2, andRM ≡ M2
π/M2−1−ξ ′ log(ξ ′)/2 usingF = 0.2329 andΣ = 0.4354 obtained

from our fits. By definition, theR’s must be linear inξ ′ in the region where 1-loop results are valid.
In Fig. 3 we plot theR’s as a function ofξ ′. Assuming errors of 1% or less can be tolerated, Fig. 3
shows that 1-loop chiral perturbation theory describes the data forξ ′ . 0.002. Interestingly, there
is also an approximately linear region forξ ′ & 0.006 but with a completely different slope. This
is shown as the dashed line in Fig. 3. This behavior suggests that chiral perturbation theory begins
to break down roughly aroundξ ′ ≈ 0.0035, which is the location of the “knee” that separates the
low ξ ′ and highξ ′ regions. We will argue below that theσ -resonance is responsible for this break
down.

4. Discussion and Conclusions

It has been argued in the context of theO(4) linear sigma model, that the physics in the sigma
channel is directly related to the coefficientscF ,cΣ andcM. Perturbative calculations show that
[15, 16, 17]:

cΣ = log(MR/4πF)− 7
6

+
8π2

3gR
, cM = log(MR/4πF)− 7

3
+

8π2

gR
(4.1)

whereM2
σ = M2

R[1+ gR(3π
√

3−13)/(16π2)]. HereMσ is that mass of theσ particle andgR is
the corresponding renormalized coupling,gR = M2

R/2F2. Since our model is close to theO(4)

phase transition the linear sigma model should be a reliable description of the physics in the sigma
channel. Indeed, usingcΣ = 12 we find thatMσ/F ∼ 2 while usingcM = 39 we again find that
Mσ/F ∼ 2. The fact that these two agree with each other is a confirmation of our belief. Assuming
Mσ/F ∼ 2 and setting the scale of our lattice withF = 90MeV we estimateMσ ∼ 180MeV in our
model. At ξ ′ ∼ 0.0035 we find thatMπ ∼ 60MeV. Hence, we conclude that whenMπ > Mσ/3
chiral perturbation theory begins to break down and the physics is better described by the linear
sigma model.
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There are many important differences between our model and QCD. However the most im-
portant difference is that our model contains a light and perhaps a narrow σ -resonance while in
QCD theσ -resonance is expected to be heavier and broader. This is the reason why our low energy
constants turned out to be much larger than QCD and the convergence of chiral perturbation theory
was affected. Despite the differences, it is indeed encouraging that our model supports the most
important expectations of chiral perturbation theory namely, chiral perturbation theory is applica-
ble in a region of small quark masses and that the properties of resonances play an important role in
determining this region. In particular, we have found evidence that the properties ofσ -resonance
are encoded in the low energy constants that control the chiral logarithms and hence can play an
important role in determining the region where 1-loop chiral perturbation theory is valid. The res-
onance properties of course change with the quark masses. Thus, it is safe to assume that chiral
perturbation theory can only become reliable in the region of the quark mass where the properties
of the σ -resonance (and other resonances) varies little. A rough estimate basedon [8] suggests
that Mπ . 250MeV may be necessary. Thus, it should not be very surprising that1-loop chiral
perturbation theory may be applicable at a few percent accuracy only atrealistic pion masses.
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