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1. Introduction

One major obstacle in various regularizations of latticeDQ€ fermion doubling, where the
continuum limit describes multiple fermions despite onfyedermion being attached to each node.
While more complicated discretizations can reduce the atotidoubling, this often comes at
the expense of exact chiral invariance as shown in the Nield§eomiya “no-go” theorem [1].

In the past, attempts were made by Karsten [2] and Wilczekd3hinimize the doubling (only
two fermions) allowed by the Nielsen-Ninomiya “no-go” tliem while preserving chiral symme-
try. However, these actions broke additional symmetriaditey to the generation of non-physical
dimension three and four operators in the continuum limit.

Within the past year, Creutz [4] and, shortly after, Borig] [ntroduced a non-orthogonal
graphene-inspired action in four-dimensions in order tue® both minimal doubling and chiral
symmetry. Unfortunately, as shown in Ref. [6], this new a@ttsuffers from similar symmetry
breaking issues that plagued the actions proposed by KeaatdWilczek. However, an intriguing
realization upon studying the Borici-Creutz action is ttia four-dimension action contains the
minimum Zs permutation symmetry, the generation of the divergent dsim 3 operators could
be prevented in the continuum limit. As a result, Ref. [7plexes several non-orthogonal lattices
in order to achieve this symmetry, but these lattices alsd te other undesireable features. These
actions will be discussed throughout this note along wighBlorici-Creutz action.

2. Graphene

The purpose of this section is to describe some of the mo#t besults of graphene lattices
that have attracted a great deal of attention throughoutdhdenced matter community. Graphene
lattices, which are two dimensional hexagonal honeycorttizés, have the intriguing property
that massless fermions on the sites lead to exact Dirac desni

Figure 1: (left) Graphene lattice composed of two sub-lattices. Tdasite” lattice is represented by black
circles and the “b-site” lattice is represented by red sgsia(right) Illustrates the proposal by Creutz [4]
to group horizontal neighbors into two-atom sites, giventhuy ellipses. With these sites, a grid can be
constructed, which is given by the pink lines.
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These lattices are analyzed by a two sub-lattice desaniptids shown in Fig. 1, one sub-
lattice (often referred to as the “a-sites” or “I-sites”)lprcommunicates with its three nearest
neighbors which are members of the other sub-lattice (oéBmred to as the “b-sites” or “r-sites”).
Another important feature is that these three nearest herglpossesszs permutation symmetry,
which means that these lattices are invariant undef t@@tions. As a result, the addition of the
three primary vector”, created by the three connections to the neareast neighietils zero
(5 4€" =0). Without going into detail, these features of a1 dimensional graphene lattice,
along with two component Dirac spinors, result in chiraldg2ifermions in the massless limit. The
guestion that is of interest to this note is how to extendc¢hisstruction to four-dimensions.

3. Graphene-Inspired Lattice Actions

Within the past year, Creutz in Ref. [4] proposed a viablehoébof extending this construction
to four dimensional lattice gauge theory. The main ideardmlhis method was to combine the
horizontally connected “a” and “b” sites into an individualo-atom “site” (as shown in Fig. 1 as
the ellipses around these two-atom sites). Through thisgss) the connecting segments between
these two atom sides form a non-orthogonal grid, which issithted by the pink lines imposed
on the lattice in Fig. 1. With this formulation, Creutz gealézed this non-orthogonal grid to four-
dimensions while maintaining a construction similar topirane.

4. Borici-Creutz Action

The action of this graphene-inspired, non-orthogonal grifour dimensions proposed by
Creutz [4], and later Borici [5] is given by

1 4
Sc=3Y Lzl(wxue“-rwx—wwe“-r*wx)+wxe5'rwx—wxe5-r*wx . (41

wherel™; = (Y,iys) and the four-vectors” are defined in terms of two paramet&andC as

et= (1, 1, 1, B), = ( 1,-1,-1, B), &€= (-1,-1, 1, B),
= (-1, 1,-1, B), €=—( 0, 0, 0,4BC).

Note, eacte” above is a four vector and tleedoes not refer to the individual components of this
vector. Thes&” vectors are generated from this non-orthogonal ‘gnichich are related to the
pink lines in Fig. 1. While written in a way that is similar tiea naive fermion lattice action, there
are several key differences in this action. First, the daéfmiof [, contains ariy,;, as opposed
to the naive fermion action that does not contain this fagfar This leads to an important sign
difference in the fourth component of these vectors. Sectmabee” vectors contain the non-
orthogonal structure of this lattice action, which lead tm+irivial linear combinations of Dirac
matricies. To understand the behavior of this lattice actibis beneficial to write this action in

1See Ref. [7] for more details.
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momentum space, which is given by

4
Sc = /pwp [i uzl (sin(pu)é“ - Y+ Bya(cos py) —C)) Yp. (4.2)

When written in momentum space, one can immediately confiahthis action has exact chiral
symmetry. In addition, foB # 0 and 0< C < 1, this action has two poles at

Y =p 1 1 1, 1) pP=-p1 1, 1, 1),

where co§fj) = C. The existence of only two poles results in the action hawnigimal fermion
doubling under the Nielsen-Ninomiya “no-go” theorem [1].

While the features of exact chiral symmetry and minimal dimgpare both convenient and
attractive features in a lattice action, there are undelgiraonsequences as well. These conse-
quences stem from the action breaking additional discetereetries, namely parityl((B, pa) —

Yal(— P, pa)), charge conjugationy{(P, ps) — C" (P, pa)), and time reversali{(p, pa) — Vs (P, —pa)).
These broken symmetries will lead to new unwanted oper#tatsare a result of radiative correc-
tions.

4.1 Radiative Corrections

The presence of additional broken symmetries in latticemastallow for new operators to be
generated through radiative corrections. The new unpalysjgerators due to this lattice discretiza-
tion fall into three categories; relevant, marginal, celewant operators. Irrelevant operators, which
are operators of mass dimension five or higher, are propadtito positive powers of the lattice
spacinga and would vanish in the continuum lim#é,— 0. The other two categories, relevant and
marginal, remain in the continuum limit and add unphysieais to the final results that require
fine tuning to eliminate. Marginal operators, dimensionrfaan have logarithmic lattice spac-
ing dependence. Relevant operators, dimension three grdes particularly bad since they are
proportional to negative powers afand diverge in the continuum limit.

The exact chirality of the Borici-Creutz action prevents thlevant operator from the Wilson
action proportional tm—lww, but the breaking of parity and time reversal allow to twoitiddal
relevant operatorg 1y | cé”ﬁé”, where

4 4
of) = 4BPuy =iy B Yy, 05 =aBPupw =i Y T y)py.
=1 p=1

An emphasis should be placed on the fact fhat 1,2,3,4 and does not include® in this sum.
This illustrates th&, permutation symmetry the Borigi-Creutz action possesgskgh is apparent

in this form since these relevant operators are invariadeuany exchange of the foprvalues. In
addition to these two relevant operators, there are addifipten marginal operatofswhich we

will not focus on in this note. All these operators will be gested unless the action possesses an
additional symmetry.

2See Ref. [6] for more detail on the marginal operators.



Search for Chiral Fermion Actions on Non-Orthogonal Lattices Michael I. Buchoff

4.2 Additional Symmetry?

In physical two-dimensional graphene, there exists antiaddi Z3 rotational symmetry. The
guestion that now remains is whether an analogous symmeisis €or the graphene-inspired
Borici-Creutz action. Analysis on the subject [7] showsttHiaan action in four dimensions
poscesses the minimdk permutation symmetry (or the larger two-operatianor S5 permuta-
tion symmetry), then foor = 1,2,3,4,5,

5
Z e’ =0, (4.3)
a=1

which results in the relevant operators

5 5
oF =iy WE =0, 7=y Pe-y)py=0.
a=1 a=1

Thus, a lattice action with this minimal symmetry would nat/a any relevant operators.

So does the Borigi-Creutz action have this minitdgbermutation symmetry? To explore this
guestion, it is useful to write the action in terms of two ta@mmponent spinors, one which acts as
the “a-site” and one which acts as the “b-site” as illusttateFig. 1. The action written in this way
is

NI =

Ssc = (Ex—yz'eﬂXX_YXJ,-IJZ'eH(B()+Exz'eSXX_7xz'es(B<

5|3

I

+ <7x—ui'eu@<—§_0x+ui'eu)(x) +7xi'95@<—§_0xi'e5)(x]a (4.4)
u=1

with £ = (d,—1) andZ = (F,1) and

W= (;?z) . and P,— <¢p,7p) .
With this two-component form of the action, examining wtegtbr not this action has this sym-
metry is most easily accomplished by looking at a two-dinmre projection of this action and
using the graphene picture. In order for any of the termsapldy thisZs permutation symmetry,
the choice oB = 1/+/5 andC = 1 is required. The first line of Eq. (4.4) is given by the lefuiig

in Fig. 2 and shows the desirgt}, nearest neighbor behavior in this two dimensional prajact
(generalizes to th&s permutation symmetry in four dimensions). However, thet fiee leads

to the right figure in Fig. 2, which violateg; with next-to-nearest neighbor interactions (thus,
violates the desireds permutation symmetry in four dimensions). Therefore, #uon does not
have the minimal symmetry required to eliminate the releeogerators.

5. Other Non-Orthogonal Actions

With the motivation of finding an action with exact chiral syratry and this minimals
permutation symmetry needed to eliminate the relevantabdpes, Ref. [7] explored several non-
orthogonal actions which will be reviewed here.
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Figure 2: Two-dimensional projection of Borigi-Creutz action withetblue duel basis vectoeg = " — e.
(left) Projection of the first line in of the two-componentiaa shows nearest neighbor interactions leading
to Zs rotational symmetry. (right) Projection of the second kfews next-to-nearest neighbor interactions
breakingZs.

5.1 Modified Borici-Creutz Action

With B = 1/4/5 andC = 1, the first line of Eq. (4.4) obeys tt#; symmetry and the second
line breaks this symmetry. A logical extension is to simpéede this last line. Therefore, using
the same notation as Eq. (4.4), this action vt 1/4/5 andC = 1 is given by

1 < - — s 5, w5 5
SMBc:QZLzl(cpx_pi-e“xx—xwz-e“fpx)+¢XZ'exx—xxi'e<Px- (5.1)

However, the analysis of this action about the pale~ 0 yields the behaviow(iV-h- V5 Vaka) .
This behavior, refered to as mutilated fermions [8, 9], isthe desired Dirac structure.

5.2 “Hyperdiamond” Action

A further modification to the modified Borici-Creutz actiamensure the correct Dirac struc-
ture in the continuum limit and preserve at least the minifiyabermutation symmetry led to the
“hyperdiamond” action, which is given by

SZZ[

(Pu0 @ XX T ¢ @) + BT EX~ X0 |, (5:2)

HM4>

=3 VE VB VB 1), @=3( VBB VB 1), €=7(-vE-v5 V5 1)
e4:%(—\/§, Vv5,—v5,1), €=—( 0, 0, 0 1).

ando = (3,—i), 0 = (4,i). The key difference between this action and the modified gori
Creutz action is the imaginary fourth component of the sifoua-vectors. This alteration allows
for the action to correctly reproduce the Dirac equationualpg ~ 0 (which is clear in Eq. (5.4)).
In addition, the vectorg? satisfy the desired behavior needed #ay (or As or S5) permutation
symmetry,y ,€* =0 and

a B 1, fora=p
¢ = {—1/4, for a £B° (®-3)
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While the exact details of the transformation won'’t be cedenere, one can show that this action
has ams permutation symmetAjinvariant under pairs of permutations, which is enough syinyn
to prevent the relevant operators from being generated.olnemtum space, the action is given by

S— /p 7, [' 3 sinpu)ey- (“;cospm“ +6)- vvs] Wp. (5.4)

_ (% (o v _ (0 oy
Wp—(xp>7 Wp—((mep)a and y“_<6p 0)

From this form of the action, it is clear that it maintains etxehiral symmetry and correctly repro-
duces the Dirac equation in the continuum limit. Additidpadue to theAs permutation symmetry,
relevant operators will not be generated. Unfortunatéiig action yields excessive fermion dou-
bling, not unlike the naive fermion action. An example ofjgbtes in addition to the one @}, = 0

iSp1 = —p2 = —pP3 = pa = cos 1(—2/3).

with

6. Conclusion

Non-orthogonal lattice actions can be used to enforce algsifeatures from a lattice action.
As shown for the Borici-Creutz action, clever discretiaa can enforce exact chiral symmetry
and minimal doubling. However, upon gaining these bendisljitional symmetries are broken,
which can (and often will) lead to the generation of relevaninarginal operators from radiative
corrections. An intricate balance of symmetry is needed thsarete lattice action in order to
have exact chiral symmetry, minimal doubling, and no reléwperators. At this time, no non-
orthogonal lattice action has accomplished this task. Hewehis is by no means a proof that
such a lattice action does not exist. The possibility stdingls that an action with just enough
symmetry to rule out these relevant operators exists amaiifd, it would be a very efficient, cheap
way to simulate chiral fermions.
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