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The graphene-inspired fermion actions recently proposed by Creutz and Boriçi have sparked in-

terest in the use of non-orthogonal lattices in lattice QCD.These fermion actions have the desired

chiral symmetry and have the minimal doubling required by the Nielsen-Ninomiya no-go theo-

rem. However, due to the lack of discrete symmetries, radiative corrections in the gauged lattice

theory will lead to the generation of unwanted relevant and marginal operators. Other similarly

motivated non-orthogonal fermion actions avoid these unwanted operators, but introduce incorrect

continuum behavior or excessive fermion doubling. A delicate balance of symmetry is required

for chiral symmetry, minimal doubling, and no relevant operators, and to date, no non-orthogonal

lattice action has accomplished this balance.
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1. Introduction

One major obstacle in various regularizations of lattice QCD is fermion doubling, where the
continuum limit describes multiple fermions despite only one fermion being attached to each node.
While more complicated discretizations can reduce the amount of doubling, this often comes at
the expense of exact chiral invariance as shown in the Nielsen-Ninomiya “no-go” theorem [1].
In the past, attempts were made by Karsten [2] and Wilczek [3]to minimize the doubling (only
two fermions) allowed by the Nielsen-Ninomiya “no-go” theorem while preserving chiral symme-
try. However, these actions broke additional symmetries leading to the generation of non-physical
dimension three and four operators in the continuum limit.

Within the past year, Creutz [4] and, shortly after, Boriçi [5] introduced a non-orthogonal
graphene-inspired action in four-dimensions in order to achieve both minimal doubling and chiral
symmetry. Unfortunately, as shown in Ref. [6], this new action suffers from similar symmetry
breaking issues that plagued the actions proposed by Karsten and Wilczek. However, an intriguing
realization upon studying the Boriçi-Creutz action is thatif a four-dimension action contains the
minimumZ5 permutation symmetry, the generation of the divergent dimension 3 operators could
be prevented in the continuum limit. As a result, Ref. [7], explores several non-orthogonal lattices
in order to achieve this symmetry, but these lattices also lead to other undesireable features. These
actions will be discussed throughout this note along with the Boriçi-Creutz action.

2. Graphene

The purpose of this section is to describe some of the most basic results of graphene lattices
that have attracted a great deal of attention throughout thecondenced matter community. Graphene
lattices, which are two dimensional hexagonal honeycomb lattices, have the intriguing property
that massless fermions on the sites lead to exact Dirac fermions.

Figure 1: (left) Graphene lattice composed of two sub-lattices. The “a-site” lattice is represented by black
circles and the “b-site” lattice is represented by red squares. (right) Illustrates the proposal by Creutz [4]
to group horizontal neighbors into two-atom sites, given bythe ellipses. With these sites, a grid can be
constructed, which is given by the pink lines.
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These lattices are analyzed by a two sub-lattice description. As shown in Fig. 1, one sub-
lattice (often referred to as the “a-sites” or “l-sites”) only communicates with its three nearest
neighbors which are members of the other sub-lattice (oftenreferred to as the “b-sites” or “r-sites”).
Another important feature is that these three nearest neighbors possess aZ3 permutation symmetry,
which means that these lattices are invariant under 120◦ rotations. As a result, the addition of the
three primary vectors,eα , created by the three connections to the neareast neighborsyields zero
(∑α eα = 0). Without going into detail, these features of a 1+ 1 dimensional graphene lattice,
along with two component Dirac spinors, result in chiral Dirac fermions in the massless limit. The
question that is of interest to this note is how to extend thisconstruction to four-dimensions.

3. Graphene-Inspired Lattice Actions

Within the past year, Creutz in Ref. [4] proposed a viable method of extending this construction
to four dimensional lattice gauge theory. The main idea behind this method was to combine the
horizontally connected “a” and “b” sites into an individualtwo-atom “site” (as shown in Fig. 1 as
the ellipses around these two-atom sites). Through this process, the connecting segments between
these two atom sides form a non-orthogonal grid, which is illustrated by the pink lines imposed
on the lattice in Fig. 1. With this formulation, Creutz generalized this non-orthogonal grid to four-
dimensions while maintaining a construction similar to graphene.

4. Boriçi-Creutz Action

The action of this graphene-inspired, non-orthogonal gridin four dimensions proposed by
Creutz [4], and later Boriçi [5] is given by

SBC =
1
2∑

x

[

4

∑
µ=1

(

ψx−µ eµ ·Γψx −ψx+µ eµ ·Γ†ψx

)

+ ψx e5 ·Γψx −ψx e5 ·Γ†ψx

]

, (4.1)

whereΓµ = (~γ , iγ4) and the four-vectorseα are defined in terms of two parametersB andC as

e1 = ( 1, 1, 1, B ), e2 = ( 1,−1,−1, B ), e3 = (−1,−1, 1, B ),

e4 = (−1, 1,−1, B ), e5 = −( 0, 0, 0,4BC).

Note, eacheα above is a four vector and theα does not refer to the individual components of this
vector. Theseeα vectors are generated from this non-orthogonal grid1, which are related to the
pink lines in Fig. 1. While written in a way that is similar to the naïve fermion lattice action, there
are several key differences in this action. First, the definition of Γµ contains aniγ4, as opposed
to the naïve fermion action that does not contain this factorof i. This leads to an important sign
difference in the fourth component of these vectors. Second, theseeα vectors contain the non-
orthogonal structure of this lattice action, which lead to non-trivial linear combinations of Dirac
matricies. To understand the behavior of this lattice action, it is beneficial to write this action in

1See Ref. [7] for more details.
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momentum space, which is given by

SBC =

∫

p
ψ p

[

i
4

∑
µ=1

(

sin(pµ)~eµ ·~γ + Bγ4(cos(pµ)−C)

)

]

ψp. (4.2)

When written in momentum space, one can immediately confirm that this action has exact chiral
symmetry. In addition, forB 6= 0 and 0< C < 1, this action has two poles at

p(1)
µ = p̃( 1, 1, 1, 1 ) p(2)

µ = − p̃( 1, 1, 1, 1 ),

where cos(p̃) = C. The existence of only two poles results in the action havingminimal fermion
doubling under the Nielsen-Ninomiya “no-go” theorem [1].

While the features of exact chiral symmetry and minimal doubling are both convenient and
attractive features in a lattice action, there are undesirable consequences as well. These conse-
quences stem from the action breaking additional discrete symmetries, namely parity (ψ(~p, p4) →
γ4ψ(−~p, p4)), charge conjugation (ψ(~p, p4)→Cψ̄T (~p, p4)), and time reversal (ψ(~p, p4)→ γ5γ4ψ(~p,−p4)).
These broken symmetries will lead to new unwanted operatorsthat are a result of radiative correc-
tions.

4.1 Radiative Corrections

The presence of additional broken symmetries in lattice actions allow for new operators to be
generated through radiative corrections. The new unphysical operators due to this lattice discretiza-
tion fall into three categories; relevant, marginal, or irrelevant operators. Irrelevant operators, which
are operators of mass dimension five or higher, are proportional to positive powers of the lattice
spacinga and would vanish in the continuum limit,a → 0. The other two categories, relevant and
marginal, remain in the continuum limit and add unphysical terms to the final results that require
fine tuning to eliminate. Marginal operators, dimension four, can have logarithmic lattice spac-
ing dependence. Relevant operators, dimension three or less, are particularly bad since they are
proportional to negative powers ofa and diverge in the continuum limit.

The exact chirality of the Boriçi-Creutz action prevents the relevant operator from the Wilson
action proportional toa−1ψψ , but the breaking of parity and time reversal allow to two additional
relevant operators,a−1 ∑ j c( j)

3 O
( j)
3 , where

O
(1)
3 = 4iBψγ4ψ = i

4

∑
µ=1

ψ(eµ · γ)ψ , O
(2)
3 = 4iBψγ4γ5ψ = i

4

∑
µ=1

ψ(eµ · γ)γ5ψ .

An emphasis should be placed on the fact thatµ = 1,2,3,4 and does not includee5 in this sum.
This illustrates theS4 permutation symmetry the Boriçi-Creutz action possesses,which is apparent
in this form since these relevant operators are invariant under any exchange of the fourµ values. In
addition to these two relevant operators, there are additionally ten marginal operators2, which we
will not focus on in this note. All these operators will be generated unless the action possesses an
additional symmetry.

2See Ref. [6] for more detail on the marginal operators.
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4.2 Additional Symmetry?

In physical two-dimensional graphene, there exists an additional Z3 rotational symmetry. The
question that now remains is whether an analogous symmetry exists for the graphene-inspired
Boriçi-Creutz action. Analysis on the subject [7] shows that if an action in four dimensions
poscesses the minimalZ5 permutation symmetry (or the larger two-operationA5 or S5 permuta-
tion symmetry), then forα = 1,2,3,4,5,

5

∑
α=1

eα = 0, (4.3)

which results in the relevant operators

O
(1)
3 = i

5

∑
α=1

ψ(eα · γ)ψ = 0, O
(2)
3 = i

5

∑
α=1

ψ(eα · γ)γ5ψ = 0.

Thus, a lattice action with this minimal symmetry would not have any relevant operators.
So does the Boriçi-Creutz action have this minimalZ5 permutation symmetry? To explore this

question, it is useful to write the action in terms of two two-component spinors, one which acts as
the “a-site” and one which acts as the “b-site” as illustrated in Fig. 1. The action written in this way
is

SBC =
1
2∑

x

[

4

∑
µ=1

(

φ x−µ Σ ·eµ χx − χx+µ Σ ·eµ φx

)

+ φ x Σ ·e5 χx − χx Σ ·e5 φx

+
4

∑
µ=1

(

χx−µ Σ ·eµ φx −φ x+µ Σ ·eµ χx

)

+ χx Σ ·e5 φx −φx Σ ·e5 χx

]

, (4.4)

with Σ = (~σ ,−1) andΣ = (~σ ,1) and

ψp =

(

φp

χp

)

, and ψ p =
(

φ p,χ p

)

.

With this two-component form of the action, examining whether or not this action has this sym-
metry is most easily accomplished by looking at a two-dimensional projection of this action and
using the graphene picture. In order for any of the terms to display thisZ5 permutation symmetry,
the choice ofB = 1/

√
5 andC = 1 is required. The first line of Eq. (4.4) is given by the left figure

in Fig. 2 and shows the desiredZ3, nearest neighbor behavior in this two dimensional projection
(generalizes to theZ5 permutation symmetry in four dimensions). However, the next line leads
to the right figure in Fig. 2, which violatesZ3 with next-to-nearest neighbor interactions (thus,
violates the desiredZ5 permutation symmetry in four dimensions). Therefore, thisaction does not
have the minimal symmetry required to eliminate the relevant operators.

5. Other Non-Orthogonal Actions

With the motivation of finding an action with exact chiral symmetry and this minimalZ5

permutation symmetry needed to eliminate the relevant operators, Ref. [7] explored several non-
orthogonal actions which will be reviewed here.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
6
8

Search for Chiral Fermion Actions on Non-Orthogonal Lattices Michael I. Buchoff
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e1

φ0,0 χ0,0

χ1,0

χ0,1
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e1

φ0,0 χ0,0

χ0,−1

χ−1,0

Figure 2: Two-dimensional projection of Boriçi-Creutz action with the blue duel basis vectorseµ = eµ −e5.
(left) Projection of the first line in of the two-component action shows nearest neighbor interactions leading
to Z3 rotational symmetry. (right) Projection of the second lineshows next-to-nearest neighbor interactions
breakingZ3.

5.1 Modified Boriçi-Creutz Action

With B = 1/
√

5 andC = 1, the first line of Eq. (4.4) obeys theZ5 symmetry and the second
line breaks this symmetry. A logical extension is to simply delete this last line. Therefore, using
the same notation as Eq. (4.4), this action withB = 1/

√
5 andC = 1 is given by

SMBC =
1
2 ∑

x

[

4

∑
µ=1

(

φ x−µ Σ ·eµ χx − χx+µ Σ ·eµ φx

)

+ φ x Σ ·e5 χx − χx Σ ·e5φx

]

. (5.1)

However, the analysis of this action about the polepµ ≃ 0 yields the behaviorψ(i~γ ·~k + γ5γ4k4)ψ .
This behavior, refered to as mutilated fermions [8, 9], is not the desired Dirac structure.

5.2 “Hyperdiamond” Action

A further modification to the modified Boriçi-Creutz action to ensure the correct Dirac struc-
ture in the continuum limit and preserve at least the minimalZ5 permutation symmetry led to the
“hyperdiamond” action, which is given by

S = ∑
x

[

4

∑
µ=1

(

φ x−µ σ ·eµ χx − χx+µ σ ·eµ φx

)

+ φx σ ·e5 χx − χx σ ·e5 φx

]

, (5.2)

where

e1 =
1
4
(

√
5,

√
5,

√
5, 1), e2 =

1
4
(

√
5,−

√
5,−

√
5, 1), e3 =

1
4
(−

√
5,−

√
5,

√
5, 1),

e4 =
1
4
(−

√
5,

√
5,−

√
5, 1), e5 = −( 0, 0, 0, 1).

and σ = (~σ ,−i), σ = (~σ , i). The key difference between this action and the modified Boriçi-
Creutz action is the imaginary fourth component of the sigmafour-vectors. This alteration allows
for the action to correctly reproduce the Dirac equation about pµ ≃ 0 (which is clear in Eq. (5.4)).
In addition, the vectorseα satisfy the desired behavior needed forZ5 (or A5 or S5) permutation
symmetry,∑α eα = 0 and

eα ·eβ =

{

1, for α = β
−1/4, for α 6= β

. (5.3)
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While the exact details of the transformation won’t be covered here, one can show that this action
has anA5 permutation symmetry3 invariant under pairs of permutations, which is enough symmetry
to prevent the relevant operators from being generated. In momentum space, the action is given by

S =
∫

p
ψ p

[

i
4

∑
µ=1

sin(pµ)eµ · γ −
( 4

∑
µ=1

cos(pµ )eµ +e5
)

· γ γ5

]

ψp, (5.4)

with

ψp =

(

φp

χp

)

, ψ p =
(

φ p,χ p

)

, and γµ =

(

0 σµ

σ µ 0

)

.

From this form of the action, it is clear that it maintains exact chiral symmetry and correctly repro-
duces the Dirac equation in the continuum limit. Additionally, due to theA5 permutation symmetry,
relevant operators will not be generated. Unfortunately, this action yields excessive fermion dou-
bling, not unlike the naïve fermion action. An example of sixpoles in addition to the one atpµ = 0
is p1 = −p2 = −p3 = p4 = cos−1(−2/3).

6. Conclusion

Non-orthogonal lattice actions can be used to enforce desirable features from a lattice action.
As shown for the Boriçi-Creutz action, clever discretizations can enforce exact chiral symmetry
and minimal doubling. However, upon gaining these benefits,additional symmetries are broken,
which can (and often will) lead to the generation of relevantor marginal operators from radiative
corrections. An intricate balance of symmetry is needed in adiscrete lattice action in order to
have exact chiral symmetry, minimal doubling, and no relevant operators. At this time, no non-
orthogonal lattice action has accomplished this task. However, this is by no means a proof that
such a lattice action does not exist. The possibility still stands that an action with just enough
symmetry to rule out these relevant operators exists and if found, it would be a very efficient, cheap
way to simulate chiral fermions.
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