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Nonrelativistic electrons hopping on the honeycomb lattitgraphene emerge as massless Dirac
fermions. When the on-site repulsion between electrons loonaycomb lattice exceeds a crit-
ical value, as it is the case for the dehydrated precursdreohigh-temperature superconductor
Na,Co0O; x yH,0, the system spontaneously breaksSt¥2)s spin symmetry and becomes an
antiferromagnet. The emergence of antiferromagnetismasogous to the spontaneous break-
down of theSU(2)|. x SU(2)r chiral symmetry in QCD. Just as the low-energy physics ofipio
and nucleons is described by baryon chiral perturbaticorihenagnons and holes in an antiferro-
magnet are also described by a systematic low-energy efaheory. Both the chiral condensate
in QCD and the staggered magnetization in an antiferrontaapties a quantum mechanical ro-
tor when the theory is put in a finite volume. When a nucleorrigppgating through the QCD
vacuum or when a hole is doped into an antiferromagnet, ayBdrase arises from a geometric
monopole gauge field and the angular momentum of the rotarastiged in half-integer units.
The finite-size effects of the rotor spectrum depend on thedoergy parameters of the corre-
sponding effective theories.
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Figure 1: Bipartite non-Bravais honeycomb lattice consisting of tri@ngular Bravais sublattices.

1. From Graphene to Na,CoO» x yH,0

The dynamics of electrons hopping on a lattice is strongfjuémced by the lattice geom-
etry. Two interesting condensed matter systems on a hondydattice are graphene — a 2-
dimensional sheet of graphite — and the dehydrated precafsbe high-temperature supercon-
ductor NaCoG;, x yH,0.

1.1 Free Fermionson the Honeycomb L attice

The honeycomb lattice, illustrated in figure 1, is a bipartibn-Bravais lattice which con-
sists of two triangular Bravais sublattices A and B. The ®asictors that generate the triangular
sublattices are given by

a1:\/§a(§’,%), a?=+/3a(0,1), (1.1)
wherea is the lattice spacing. The hexagonal Brillouin zd& of the honeycomb lattice is illus-
trated in figure 2. The honeycomb lattice has a number of @lis@ymmetries. Translations by
the vectorsd are denoted bf;. Counter-clockwise rotations by 60 degrees around theeceiit
a hexagon are denoted Ky and reflections at the-axis going through the center of rotation are
denoted byR. Translations by other distance vectors, rotations byrahgles or around other cen-
ters, and reflections with respect to other axes can be @ota@ia combinations of the elementary
symmetry operationB1, D, O, andR.

Free fermions hopping between nearest-neighbor &xgson the honeycomb lattice are de-
scribed by the Hamiltonian

th—t%(CIW+C;Cx)7 o = (ClWClOa Cx = (?T) . (1.2)
Xy x|

The creation and annihilation operatafs andc,s for fermions with spirs =1, | at a lattice sitex
obey standard anti-commutation relations. ObviouslyHbailtonian commutes with the unitary
transformations that generate the discrete symmeie®, andR of the honeycomb lattice. In
addition, anSU(2)s symmetry is generated by the total spin

Cx, (1.3)
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Figure 2: The momentum space of a honeycomb lattice, which is a daolbbred Brillouin zone dual to
the two triangular sublattices A and B.

whered are the Pauli matrices. The spin symmetry plays the role dhi@nnal symmetry, like
quark flavor in QCD. Th&J(1)q symmetry corresponding to fermion number (relative to-half
filling) is generated by the charge operator

Q=3 &= (clex—1). (1.4)

It is straightforward to diagonalize the above Hamiltonigngoing to momentum space using

B
\/AEXZ\CXeXp( ikx), c°(k)= \/_ngchexp( ikx). (1.5)

Here Agz = 81 /3/3a? is the area of the Brillouin zone. In momentum space the Hanidn
takes the form

K Ak
H = z Bzdzk(CQT(k)7CsBT(k)) <HAB(‘)(k)* HA(B)( )> (Cngk;>’

s=1.1

Hag(K) = —t [exp(—iksa) +exp(i ko + \/§k2)g) +exp(i(ke - \@kz)g)} . @e)

cA(k)

Finally, diagonalizing the 2 2 matrix yields the energy eigenvalues
Esi(k) = i|HAB(k)|7 s=1,1]. (17)

The energy of single-particle states vanishes,Elsg,(kf) =0 with f =a, 3, for

a 4 B - am
- (01 - (02 ). as

The pointsk? andk? are located at the corners of the hexagonal Brillouin zdustitated in figure
2. The other four corners of the Brillouin zone are periodipies ofk® andk?. These points
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form the centers of two Dirac cones of massless fermionsoggther, there are four “flavors” of
two-component Dirac fermions with = a, ands=T,|. Expanding the Hamiltonian near the
pointsk? andk? one obtains two single-particle Dirac Hamiltonians

Hi(k? + p) = — (p102+ p201) ¢ + O(p?), Hi(KP 4 p) = — (p102 — p201) cF + O(p?), (1.9)
with the Fermi-velocityce = 3ta.

1.2 Thet-J Model on the Honeycomb L attice

When one endows the free fermions of the previous subsewiitbnan on-site Coulomb re-
pulsion that exceeds a critical value, t88(2)s spin symmetry breaks down spontaneously to its
U (1)s subgroup by the formation of a non-zero staggered magtietizal his is realized in the de-
hydrated antiferromagnetic precursor of the high-tenpegasuperconductor N&00, x yH»0.

At large Coulomb repulsion, doubly-occupied sites costgelamount of energy, and the physics
is captured by the-J model with the Hamiltonian

Ho=P |-t (oy+e) +I5 S-§ P (1.10)
{xy) (xy)

Here P is a projection operator that eliminates doubly occupi¢elssirom the fermionic Hilbert
space, and > 0 is the antiferromagnetic exchange coupling. THemodel is still invariant under
the symmetrieSU(2), Di, O, andR.

At half-filling, i.e. with one fermion per lattice site, hoioyg is completely Pauli-blocked and
thet-J model reduces to the quantum Heisenberg model with the Karah

HJszé‘X-é,. (1.11)
xy)

As we will see in the next section, cluster algorithm simiolad of the Heisenberg model on the
honeycomb lattice show that it has an antiferromagneticmpiostate in which th&U(2)s spin
symmetry is spontaneously broken dowrlk¢l)s. The corresponding Goldstone bosons are two
massless spinwaves, also known as magnons. As summaritadderi, there are many analogies
between antiferromagnets and QCD. In particular, magnaa eondensed matter analog of pions,
and electrons or holes doped into an antiferromagnet alegmss to nucleons or anti-nucleons
in QCD. In fact, just as nucleons are massive due to spongsnetaral symmetry breaking, the
previously massless Dirac fermions become massive in tiifer@momagnetic phase due to sponta-
neousSU(2)s symmetry breaking. Indeed, the single-hole dispersicatiei of thet-J model on
the honeycomb lattice, illustrated in figure 3, correspaiedsassive fermions.

2. Low-Energy Effective Theoriesfor Antiferromagnets

Just as the low-energy physics of QCD is described by cheelupbation theory, antiferro-
magnets are described by an analogous low-energy effdatidetheory. In particular, the pure
magnon effective theory is analogous to pion chiral pedtiom theory, while the effective theory
for magnons coupled to doped holes is analogous to baryoal gierturbation theory.
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| QCD | Antiferromagnetism |
broken phase hadronic vacuum antiferromagnetic phase
global symmetry chiral symmetry spin rotations
symmetry groups SU(2)L ® SU(2)r SU(2)s
unbroken subgroupl SU(2)-r U(1)s
Goldstone boson pion magnon
Goldstone field irG/H U(x) € SU(2) 8x) € &
order parameter chiral condensatépy) | staggered magnetizatiows
coupling strength pion decay constari,; spin stiffnessps
propagation speed velocity of light spin-wave velocityc
conserved charge | baryon numbeU (1)g electric chargdJ (1)q
charged patrticle nucleon or anti-nucleon electron or hole
long-range force pion exchange magnon exchange
dense phase nuclear or quark mattey  high-T. superconductor
microscopic description lattice QCD t-J model
effective description chiral perturbation magnon effective
of Goldstone bosons theory theory
effective description baryon chiral magnon-hole
of charged fields perturbation theory effective theory

Table 1: Analogies between QCD and antiferromagnetism.

2.1 Low-Energy Effective Theory for Magnons

Due to the spontaneous breaking of ®8lg(2)s spin symmetry down to it (1)s subgroup,
the low-energy physics of antiferromagnets is governedwayrmassless magnons. The descrip-
tion of the low-energy magnon physics was pioneered by Givakty, Halperin, and Nelson in
[1]. In analogy to chiral perturbation theory for the psew@loldstone pions in QCD, a system-
atic low-energy effective field theory for magnons was deped in [2, 3, 4, 5]. The staggered
magnetization of an antiferromagnet is described by a vegtter field&(x) in the coset space
SU(2)s/U(1)s =S, i.e.

&(x) = (sinB(x) cosg (x),sinB(x) sing (x),cosO(x)). (2.2)

Herex = (xq,%2,t) denotes a point in (2+1)-dimensional space-time. To |lepdier, the Eu-
clidean magnon low-energy effective action takes the form

S8 = /dzx dt%s <c9ié- de+ C—lzdté- dé) , 2.2)

where the index € {1,2} labels the two spatial directions amndefers to the Euclidean time-
direction. The parametegr, is the spin stiffness andlis the spin wave velocity.

In the e-regime of magnon chiral perturbation theory, the finiteyperature and finite-volume
effects of the staggered susceptibility have been workétyptiasenfratz and Niedermayer at the
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Figure 3: The energy-momentum dispersion relatiofkEor a single hole in the t-J model on the honey-
comb lattice.

two-loop level [6] and are given by

2] 2 2
xs= 2P ”Zﬁ&(')*(ps—m [Bl<l>2+3Bz(l)}+ﬁ<L—13> X

Here.#; is the staggered magnetization density. The uniform stibdép takes the form

~ 2 ~ ~
Xo= 0103 h+3 (5 ) [R0- 30w +o () @

Herel = (BC/L)1/3 determines the shape of a space-time box oflsizd. x 3, with Bc~ L. The
functionsfi(l), ﬁi(l), andy(l) are known shape coefficients [6].

In the very low temperature limit, one enters the cylindriegime of space-time volumes
with Bc>> L in which thed-expansion of chiral perturbation theory applies. Thermliical space-
time geometry is illustrated in figure 4. In this case, thggésed magnetization acts as a quantum

mechanical rotor governed by the Lagrange function [6]

&= %até-até: % [(66)?+sir?0(a¢)?] . (2.5)

Integrating out the fast non-zero modes of the staggereaetiagtion at one loop, the moment of

inertia results as
psL? 3.900265/ ¢ 1
o= 1 — ol —=)]|. 2.6
c? [ T an psL o\ (2.:6)

The momenta conjugate thand¢ are

0¥ 07 :
pezmz@ﬁte, p¢:m:@SIn29c?t¢, (2.7)
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Figure 4: Cylindrical space-time geometry with temporal extgat> L.

and the Hamiltonian as well as its energy spectrum result as

11+ 1)
20

1/ 1 _ 1 ,\ L2
H——% <—Sin6(99[8|n669]+—Sinzea¢> —%, E|_

1€{0,1,2,..}. (2.8)

The probability distribution of the uniform magnetizatibi? is then given by

NI —

PMY) =7 3 expl-BE). Z= 3 (24 Dexp(-pE). @9)
=

1> M3
2.2 Determination of the L ow-Energy Parameters of the Undoped System

In order to determine the low-energy parametefs, ps, andc, numerical simulations of
the Heisenberg model on the honeycomb lattice have beearpexdl in [7], both in cubical and
in cylindrical space-time geometries, using a very efficieop-cluster algorithm [8, 9, 10]. A
simultaneous fit of the Monte Carlo data for the susceptidiys and x, to eq.(2.3) and eq.(2.4)
is shown in figure 5. The fitted values of the low-energy patanseare

=23

Ma? =0.26883), ps=0.1022)J, c=1.29716)Ja (2.10)
For comparison, on the square lattice the correspondimgstad magnetization per spin/%’; =
0.30744) [9, 10]. Due to the smaller coordination number of the hooeyk lattice, quantum
fluctuations (which reduce the order parame{@ are larger than on the square lattice.

Once the values of the low-energy parameté(é Ps, andc have been fixed in the cubical
regime, the effective theory can be tested in the cylintiregime. Figure 6 compares the effective
theory result for the probability distributiop(M?3) of eq.(2.9) with Monte Carlo data [7]. The
observed excellent agreement — which does not rely on anji@utal adjustable parameters —
confirms the quantitative correctness of the effective fhedumerical determinations of low-
energy parameters have also been success@(N) models with classical spin variables [11].
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Figure5: Fit of the finite-size and finite-temperature effects of taggered and uniform susceptibilitiqg
and x to analytic results of the effective theory in the cubicagimnee.
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Figure 6: Comparison of the effective theory prediction for the piaibiy distribution p(M3) of eq.(2.9)
with Monte Carlo data for the Heisenberg model on a honeyclattizce with 836 spins a8J = 60. The
open circles are the Monte Carlo data while the histogranheseffective theory prediction.

2.3 Effective Field Theory for Holes and M agnons

The description of holes doped into an antiferromagnet erstfuare lattice was pioneered by
Shraiman and Siggia [12]. Motivated by the success of baciinal perturbation theory for QCD,
a systematic low-energy effective field theory for magnamd laoles in an antiferromagnet on the
square lattice was constructed in [13, 14]. This theory Enlused in a detailed analysis of two-
hole states bound by one-magnon exchange [14, 15] as weflsgsral phases in the staggered
magnetization [16], which are a condensed matter analogoof gpndensation in dense nuclear
matter. The systematic effective field theory investigatitiave also been extended to electron-
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doped antiferromagnets [17]. Similarly, an effective ttydfor holes doped into an antiferromagnet
on the honeycomb lattice has been constructed in [18].

Magnons are coupled to holes through a nonlinear realizaifathe spontaneously broken
SU(2)s symmetry [13]. First, one diagonalizes the magnon field byitaty transformation(x) €
SU(2), i.e.

ux)ex)-gux) " =03,  u(x)>0. (2.11)

Under a globaBU(2)s transformatiorg, the diagonalizing fieldi(x) transforms as

ux)’ =hxux)g’,  u(x) >0, (2.12)

which implicitly defines the nonlinear symmetry transfotioa

h(x) = explia (x)03) = (eXp(ig(X)) o p(_?a ) ) cU(1)s. (2.13)
Introducing the traceless anti-Hermitean field
Vu(X) = u(x)duux)" =iV (x)ga,  VI(X) = V5 (X) FiVA(X), (2.14)

the fieldv,(x) decomposes into an Abelian “gauge” fieﬂﬁi(x) and two “charged” vector fields

vﬁ(x). The Abelian “gauge” transformation acts on the composiEiar fields as

(X =V3(X)—dua(x), V(X' =Vvi(x)exp(E£2ia(x)). (2.15)

As one sees in figure 3, in thel model on the honeycomb lattice holes occur in pockets cen-
tered at lattice momente = —kP = (0, 347’;&), and their copies in the periodic Brillouin zone. In
the effective theory, the holes are described by Grassmalued fieIds;,usf (x) carrying a “flavor”
index f = a, 3 that characterizes the corresponding hole pocket. Theiade+ denotes spin
parallel () or antiparallel {) to the local staggered magnetization. Under the varioomsgtry

operations the hole fields transform as

SU2)s:  Yi(x) = exp(ia (X)L (x),

e
= exp(iw)yL (x),
e

Ug: r(x
Dy Pyl (x) = exp(ik] ) ) (x),
0: OY¥(x) = Fexp(Fip(0x) +iZ Yk (0x),

(%)
(%)
(%)
Y (x) = Fexp(Fid (0X) FiZ)Ya (OX),
Rpe() =yl Ry, Ryl (x) = yf (R,
(x) = exp(FIp(Tx) L (Tx), Tyl =exp(xip(Tx)wi (Tx).  (2.16)
with

Ox = O(X1,Xp,t) = (5% — §3X2, §3X1+ 3%2,1),
RX = R(X1,X2,t) = (X1, =Xz, t),  Tx=T(X1,%,t) = (X1,%, —t), (2.17)
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whereT denotes time-reversal. Hdog1)q is the fermion number symmetry of the holes. Interest-
ingly, in the effective continuum theory the location of &@lin lattice momentum space manifests
itself as a “chargekjf a‘j under the displacement symmey.

Following the principles of chiral perturbation theoryettow-energy effective action of mag-
nons and holes is constructed as a derivative expansioce 8ie holes are heavy nonrelativistic
fermions, one time-derivative counts like two spatial datives. The leading terms in the La-
grangian are given by

1
2M/

Z=5 [Myd'yl+ gDl +

f=a,B
s=+,—

Dipd Dl + Al s +ond)e’s|. (2.18)

It should be noted that*(x) contains one spatial derivative, such that magnons and leote
indeed derivatively coupled. In eq.(2.18),is the rest mass and’ is the kinetic mass of a hole,
while A is the leading hole-one-magnon coupling. The signs + for f = o and— for f = 3.
The covariant derivative in eq.(2.18) takes the form

Dt (X) = Gl (x) £ v (YL (). (2.19)

3. Rotor Spectrain the Presence of Fermions

Berry phases and monopole fields are familiar from adialpaticesses in quantum mechanics
[19]. For example, the slow rotation of the nuclei in a diaibmolecule is influenced by a geomet-
ric vector potential generated by the fast motion of theted&xs, whose Abelian and non-Abelian
monopole content was worked out in [20]. Corresponding \Behases and monopole fields have
been identified for antiferromagnets and for QCD in [21].

3.1 Rotor Spectrum of an Antiferromagnet in the Presence of a Single Hole

When a single hole is doped into the antiferromagnet, the spihe system changes by2
and thus the angular momentum of the resulting rotor must Itleequantized in half-integer units.
The half-integer quantization is a result of Berry phasesrannopole fields. The leading terms in
the low-energy Lagrange function of a hole with small moraenp are given by

Z = %até'dté-l- YT [EP) —id+os+A] ',

Herey(t) is a two-component Grassmann-valued field describing faxivith spin parallel or
anti-parallel to the local staggered magnetization. Theniien energyE(p) as well asA can be
determined by integrating out the non-zero momentum mobifestaggered magnetization. For
hole-doped cuprates on the square as well as on the honeyatiiog, the corresponding effective
theories predict that = 0 [14, 18], while for other antiferromagnets in genekal 0 [13]. One
obtains

V= sinzgdt(p, Vi = :—2Lsin9(cos¢ o1+ sing 02) dd + %( sing o1 —cosp av) 3,6. (3.1)

These velocity-dependent terms give rise to a modificatfdhencanonically conjugate momenta
such that 1
@06 =pg+iAg, © = ——(pp +iAg), 3.2
06 = pg+iAg oo - nze(p¢ %) (3.2)

10
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Figure 7: Rotor spectrum of an antiferromagnet in the presence ofglsinole as a function of.

with the non-Abelian vector potential

Ag = i%(sind) 01—COSp 02), Ay = isinzgag+i%sin6(cos¢ 01+ Sing 07), (3.3)

and the corresponding field strength

2

2

Interestingly, the resulting geometric Berry gauge fieltexactly the same as for a diatomic
molecule [20]. For cupratesi (= 0) the vector potential is Abelian and describes a monopole
with quantized magnetic flux. For a general antiferromagwith A # 0), on the other hand, the
vector potential becomes non-Abelian and the flux is no loggantized.

The resulting Hamilton operator then takes the form

Fop = 00Ap — 0pAg + [Ag, Ap] =1 sin@ os. (3.4)

HO) = o {ﬁ(ag — Ag)[ SINB(dp — Ag)] + ﬁ(@ —A¢)2} +E(F. (35

The solution for the energy spectrum has been obtained jreJatg the lines of [20]. The Hamil-
tonianH (0) (corresponding td = 0) commutes with the angular momentum operators

J. = exp(+ig) (i dp +icotd dy — %tan%@) , J=—idy— % (3.6)
The HamiltoniarH (0) together with its spectruri; (0) is given by
1 (5 1 P 1
HO) = 55 (7-F) +E®. EO =5 |i+D-5] +E®. @D

Here j is a half-integer. In this case, each state(i8j2- 1)-fold degenerate because the fermion
sectors+ and— cost the same energy. The Hamiltonian witk: O takes the form

H()\):H(O)+%<)\C+:—2L)\2>, (3.8)

11
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and still commutes witd of eq.(3.6). Here

o cosp 1 6 . sing 6
C=-i (sm(pdg +— <o Op — —sm(ptan O1+1i | cospdg — sm66¢ — cosd) tanE 0o,
(3.9)
and[C,J] = 0. UsingC? = J2+  one obtains the energy spectrum
Ei(A) = — [J'(/'+1) + - +E(p) (3.10)
with j = j i% and j again being a half-integer. Far=£ 0 the fermion sectors- and— get mixed

and the previously degeneraté2?+ 1) states are now split into two groups of 2 1 degenerate
states. Interestingly, fok = -1 the monopole field strength of eq.(3.4) vanishes Bjd-1) =
5 J'(j’+1) with j = j£ 3. In that case, the rotor spectrum looks like the one of &) @though
the angular momenturis now a half-integer. The rotor spectrum as a functioi @ illustrated
in figure 7.

3.2 Rotor Spectrum of QCD in the Single Nucleon Sector

Let us now consider QCD with two massless flavors and thus avigpontaneously broken
SU(2), x SU(2)r chiral symmetry. When the theory is put in a finite spatialmoéL3, the chiral
order parametet (t) € SU(2) describes a quantum rotor with the moment of inertia given by
O = F2L3, whereF is the pion decay constant. The corresponding Hamiltorsahe Laplacian
on the spher&®. The QCD rotor spectrum has been derived by Leutwyler [2#h@d-expansion
of chiral perturbation theory as

Lo+ +jrjr+1)  1(1+2)

] 20
In this casej. = jrwith | = j_ + jr€ {0,1,2,...} and each state (], +1)(2jr+1) = (I + 1)
fold degenerate. The low-energy dynamics of nucleons amdspis described by baryon chiral
perturbation theory. When a nucleon with small momenfiim |p|€, is propagating in the finite
volume, the Lagrangian reads

&= %Tr [aU QU] + YT [E(B) —id —ivi —iA (T &)a] g (3.12)

E = (3.11)

Here g(t) is a Pauli spinor with a flavor index distinguishing protomsl aneutrons an(% is the
nucleon spin. At tree leveE (p) = M + p2/2M andA = ga|B|/M, whereM is the mass angda is
the axial vector coupling of the nucleon. As for the antifenagnet, the paramete®s E(p), and
A get renormalized by the coupling to non-zero momentum piodes. Herel® = U and

= % (ugu' +u'qu), a = % (ugu’ —uGu) . (3.13)
Parameterizing
U(t) =cosa(t) +isina(t)é(t) T
(sinB(t)cosp(t),sin (t)sde( ),cos0(t)),
t) = (cosO(t)cosg(t),cosO(t)sing(t), —sinO(t)),
(—sing(t),cosp(t),0), (3.14)

12
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and denoting the Pauli matrices for isospintyyne obtains

Vi = isinzg (008 —sinbag &) T, a= <dt7éa +sma%é9+smasmedt¢ >

(3.15)
The resulting Hamilton operator takes the form

HON) = 5 { S (0 — Al sitPa (0 — A

1
—————— (09 — Ag)[SINB(dg — Ag)] + —5——— (03 — A 2}4—E , (3.16
smzasme( o= Aol (9 =Ao)] smzasmze( e (P). 3:16)
with the non-Abelian vector potential
. Lo . A . : S
Ay =i (— s,|n2E Sin6 & + (3 - &) sina'sind é¢> T, (3.17)
and the corresponding field strength representing a notiakbmonopole
D V4 1— 2 1— 2
Faog =i sina & T, Fgy=I sirfa sinf &, - 7, Foa = sina sinB & - T.
2 2 2
(3.18)
The generators BU(2)_ ® SU(2)r are given by
- 1 = — - 1 = — . . T:I:
J = z(J —K), JRr= §(J+ K), J:=exp(xi¢)(+ dg+icotl dp) + >
Ky = exp(£i¢) (ISIHQ O0q +icotacost dg F —954, F Etan > € T+ ;tan% cosf & -?) ,
B3 = —idp+ %, K3z =1i(cosB dq — cota sind dg) — %tanE Sin@ & - T. (3.19)
The HamiltoniarH (0) (with A = 0) and its spectrurk;(0) take the form
1 (> o 3 N 1
H(0) = 6 (J +K2- 4>+E(ﬁ), EJ(O)_ZG {J(H—Z) 2}+E(ﬁ). (3.20)

In this casej. = jr+ 1 andj = j_+ jr€ {3,3,...}. Each state isd + 3)(j + 3)-fold degenerate
because the states with spin up and spin down cost the samgy.efike Hamiltonian wittA £ 0
can be written as

H(A) = H(0)+ zle ()\C+ 3)2 > (3.21)
and it still commutes witd andK. Here
c:ma%%@%+§%@@+§ﬁaﬁgg—m%@>f, (3.22)
and[C,J] = = 0. UsingC? = J2+ K2+ 2 one finally obtains the energy spectrum
Ei(A) =55 [i’(i’+2)+’\2_1]+E(ﬁ), (3.23)
20 2
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with j’ = j+ 4, where+ refers to the spin eigenstatesaf €, with eigenvaluest1. Thus we see
that for A # O the degeneracy is partly lifted and there are now two gradig$ + %)(j + %)—fold
degenerate states. Remarkably, Aoe= +1 the non-Abelian field strength of eq.(3.18) vanishes
andE;j(£1) = 55j'(j’ +2) with j’ = j£ 3. Just as for an antiferromagnet with= £1, the QCD
rotor spectrum then looks like the one of eq.(3.11) althotighsystem now has fermion number
one.

The study in the-regime [21] complements other investigations of finitawoé effects in the
one-nucleon sector of QCD in the [23, 24], &- [25], and&’-regimes [26] of chiral perturbation
theory. A comparison of numerical lattice QCD data in thewsm sector with finite volume
predictions in the- andd-regimes of chiral perturbation theory leads to an accudatermination
of low-energy parameters suchlgg[27, 28]. Before one could do the same in the single-nucleon
sector, e.g. in order to determigg, one must match the volume-dependent param@e£s(p),
andA of the effective quantum mechanics to those of the infinitarwe effective theory.

4. Conclusions

Antiferromagnets and QCD share a number of common featimgzmarticular, systematic ef-
fective field theories capture the low-energy physics imlwatses. The condensed matter analog of
pions and nucleons in QCD are magnons and holes in dopedrantifagnets. Thus, the analog of
baryon chiral perturbation theory is a systematic effecfigld theory for magnons and holes. The
effective theories make quantitative predictions for &rstze and finite-temperature effects which
can be tested in great detail in numerical simulations. &thiee-regime of chiral perturbation
theory is more easily accessible in numerical simulatitims,rotor spectra in thé-regime have
intriguing theoretical features. In particular, in the tees with a single hole doped into an anti-
ferromagnet or a single nucleon propagating through the @&ium, Berry gauge fields with
Abelian and non-Abelian monopoles arise. In contrast to Q@y efficient cluster algorithms
are available for quantum antiferromagnets. In this wag,dffective theory has been verified in
great detail even at the 2-loop level. It is to be expectetldtsamilar accuracy will eventually be
reached in simulations of lattice QCD.
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