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Nonrelativistic electrons hopping on the honeycomb lattice of graphene emerge as massless Dirac

fermions. When the on-site repulsion between electrons on ahoneycomb lattice exceeds a crit-

ical value, as it is the case for the dehydrated precursor of the high-temperature superconductor

Na2CoO2× yH2O, the system spontaneously breaks itsSU(2)s spin symmetry and becomes an

antiferromagnet. The emergence of antiferromagnetism is analogous to the spontaneous break-

down of theSU(2)L ×SU(2)R chiral symmetry in QCD. Just as the low-energy physics of pions

and nucleons is described by baryon chiral perturbation theory, magnons and holes in an antiferro-

magnet are also described by a systematic low-energy effective theory. Both the chiral condensate

in QCD and the staggered magnetization in an antiferromagnet act as a quantum mechanical ro-

tor when the theory is put in a finite volume. When a nucleon is propagating through the QCD

vacuum or when a hole is doped into an antiferromagnet, a Berry phase arises from a geometric

monopole gauge field and the angular momentum of the rotor is quantized in half-integer units.

The finite-size effects of the rotor spectrum depend on the low-energy parameters of the corre-

sponding effective theories.
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Rotor Spectra, Berry Phases, and Monopole Fields: from Graphene to Antiferromagnets and QCD

Figure 1: Bipartite non-Bravais honeycomb lattice consisting of twotriangular Bravais sublattices.

1. From Graphene to Na2CoO2×yH2O

The dynamics of electrons hopping on a lattice is strongly influenced by the lattice geom-
etry. Two interesting condensed matter systems on a honeycomb lattice are graphene — a 2-
dimensional sheet of graphite — and the dehydrated precursor of the high-temperature supercon-
ductor Na2CoO2×yH2O.

1.1 Free Fermions on the Honeycomb Lattice

The honeycomb lattice, illustrated in figure 1, is a bipartite non-Bravais lattice which con-
sists of two triangular Bravais sublattices A and B. The basis vectors that generate the triangular
sublattices are given by

a1 =
√

3a
(√

3
2 , 1

2

)
, a2 =

√
3a(0,1) , (1.1)

wherea is the lattice spacing. The hexagonal Brillouin zoneBZ of the honeycomb lattice is illus-
trated in figure 2. The honeycomb lattice has a number of discrete symmetries. Translations by
the vectorsai are denoted byDi. Counter-clockwise rotations by 60 degrees around the center of
a hexagon are denoted byO, and reflections at thex-axis going through the center of rotation are
denoted byR. Translations by other distance vectors, rotations by other angles or around other cen-
ters, and reflections with respect to other axes can be obtained as combinations of the elementary
symmetry operationsD1, D2, O, andR.

Free fermions hopping between nearest-neighbor sites〈xy〉 on the honeycomb lattice are de-
scribed by the Hamiltonian

Ht = −t ∑
〈xy〉

(
c†

xcy +c†
ycx
)
, c†

x =
(

c†
x↑,c

†
x↓

)
, cx =

(
cx↑
cx↓

)
. (1.2)

The creation and annihilation operatorsc†
xs andcxs for fermions with spins=↑,↓ at a lattice sitex

obey standard anti-commutation relations. Obviously, theHamiltonian commutes with the unitary
transformations that generate the discrete symmetriesDi , O, andR of the honeycomb lattice. In
addition, anSU(2)s symmetry is generated by the total spin

~S= ∑
x

~Sx = ∑
x

c†
x

~σ
2

cx, (1.3)
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Figure 2: The momentum space of a honeycomb lattice, which is a doubly-covered Brillouin zone dual to
the two triangular sublattices A and B.

where~σ are the Pauli matrices. The spin symmetry plays the role of aninternal symmetry, like
quark flavor in QCD. TheU(1)Q symmetry corresponding to fermion number (relative to half-
filling) is generated by the charge operator

Q = ∑
x

Qx = ∑
x

(c†
xcx−1). (1.4)

It is straightforward to diagonalize the above Hamiltonianby going to momentum space using

cA(k) =
1√
ABZ

∑
x∈A

cx exp(−ikx), cB(k) =
1√
ABZ

∑
x∈B

cx exp(−ikx). (1.5)

HereABZ = 8π2/3
√

3a2 is the area of the Brillouin zone. In momentum space the Hamiltonian
takes the form

Ht = ∑
s=↑,↓

∫

BZ
d2k
(
cA†

s (k),cB†
s (k)

)
(

0 HAB(k)
HAB(k)∗ 0

)(
cA

s (k)
cB

s (k)

)
,

HAB(k) = −t
[
exp(−ik1a)+exp

(
i(k1 +

√
3k2)

a
2

)
+exp

(
i(k1−

√
3k2)

a
2

)]
. (1.6)

Finally, diagonalizing the 2×2 matrix yields the energy eigenvalues

Es,±(k) = ±|HAB(k)|, s=↑,↓ . (1.7)

The energy of single-particle states vanishes, i.e.Es,±(k f ) = 0 with f = α ,β , for

kα =

(
0,

4π
3
√

3a

)
, kβ =

(
0,− 4π

3
√

3a

)
. (1.8)

The pointskα andkβ are located at the corners of the hexagonal Brillouin zone illustrated in figure
2. The other four corners of the Brillouin zone are periodic copies ofkα andkβ . These points

3
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form the centers of two Dirac cones of massless fermions. Altogether, there are four “flavors” of
two-component Dirac fermions withf = α ,β ands =↑,↓. Expanding the Hamiltonian near the
pointskα andkβ one obtains two single-particle Dirac Hamiltonians

Ht(k
α + p) = −(p1σ2+ p2σ1)cF +O(p2), Ht(k

β + p) = −(p1σ2− p2σ1)cF +O(p2), (1.9)

with the Fermi-velocitycF = 3
2ta.

1.2 The t-J Model on the Honeycomb Lattice

When one endows the free fermions of the previous subsectionwith an on-site Coulomb re-
pulsion that exceeds a critical value, theSU(2)s spin symmetry breaks down spontaneously to its
U(1)s subgroup by the formation of a non-zero staggered magnetization. This is realized in the de-
hydrated antiferromagnetic precursor of the high-temperature superconductor Na2CoO2 × yH2O.
At large Coulomb repulsion, doubly-occupied sites cost a large amount of energy, and the physics
is captured by thet-J model with the Hamiltonian

HtJ = P

[
−t ∑

〈xy〉

(
c†

xcy +c†
ycx
)
+J ∑

〈xy〉
~Sx ·~Sy

]
P. (1.10)

HereP is a projection operator that eliminates doubly occupied sites from the fermionic Hilbert
space, andJ > 0 is the antiferromagnetic exchange coupling. Thet-J model is still invariant under
the symmetriesSU(2)s, Di , O, andR.

At half-filling, i.e. with one fermion per lattice site, hopping is completely Pauli-blocked and
thet-J model reduces to the quantum Heisenberg model with the Hamiltonian

HJ = J ∑
〈xy〉

~Sx ·~Sy. (1.11)

As we will see in the next section, cluster algorithm simulations of the Heisenberg model on the
honeycomb lattice show that it has an antiferromagnetic ground state in which theSU(2)s spin
symmetry is spontaneously broken down toU(1)s. The corresponding Goldstone bosons are two
massless spinwaves, also known as magnons. As summarized intable 1, there are many analogies
between antiferromagnets and QCD. In particular, magnons are a condensed matter analog of pions,
and electrons or holes doped into an antiferromagnet are analogous to nucleons or anti-nucleons
in QCD. In fact, just as nucleons are massive due to spontaneous chiral symmetry breaking, the
previously massless Dirac fermions become massive in the antiferromagnetic phase due to sponta-
neousSU(2)s symmetry breaking. Indeed, the single-hole dispersion relation of thet-J model on
the honeycomb lattice, illustrated in figure 3, correspondsto massive fermions.

2. Low-Energy Effective Theories for Antiferromagnets

Just as the low-energy physics of QCD is described by chiral perturbation theory, antiferro-
magnets are described by an analogous low-energy effectivefield theory. In particular, the pure
magnon effective theory is analogous to pion chiral perturbation theory, while the effective theory
for magnons coupled to doped holes is analogous to baryon chiral perturbation theory.

4
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QCD Antiferromagnetism

broken phase hadronic vacuum antiferromagnetic phase

global symmetry chiral symmetry spin rotations

symmetry groupG SU(2)L ⊗SU(2)R SU(2)s

unbroken subgroupH SU(2)L=R U(1)s

Goldstone boson pion magnon

Goldstone field inG/H U(x) ∈ SU(2) ~e(x) ∈ S2

order parameter chiral condensate〈ψψ〉 staggered magnetizationMs

coupling strength pion decay constantFπ spin stiffnessρs

propagation speed velocity of light spin-wave velocityc

conserved charge baryon numberU(1)B electric chargeU(1)Q

charged particle nucleon or anti-nucleon electron or hole

long-range force pion exchange magnon exchange

dense phase nuclear or quark matter high-Tc superconductor

microscopic description lattice QCD t-J model

effective description chiral perturbation magnon effective
of Goldstone bosons theory theory

effective description baryon chiral magnon-hole
of charged fields perturbation theory effective theory

Table 1: Analogies between QCD and antiferromagnetism.

2.1 Low-Energy Effective Theory for Magnons

Due to the spontaneous breaking of theSU(2)s spin symmetry down to itsU(1)s subgroup,
the low-energy physics of antiferromagnets is governed by two massless magnons. The descrip-
tion of the low-energy magnon physics was pioneered by Chakravarty, Halperin, and Nelson in
[1]. In analogy to chiral perturbation theory for the pseudo-Goldstone pions in QCD, a system-
atic low-energy effective field theory for magnons was developed in [2, 3, 4, 5]. The staggered
magnetization of an antiferromagnet is described by a unit-vector field~e(x) in the coset space
SU(2)s/U(1)s = S2, i.e.

~e(x) =
(

sinθ(x)cosϕ(x),sinθ(x)sinϕ(x),cosθ(x)
)
. (2.1)

Here x = (x1,x2, t) denotes a point in (2+1)-dimensional space-time. To leading order, the Eu-
clidean magnon low-energy effective action takes the form

S[~e] =

∫
d2x dt

ρs

2

(
∂i~e·∂i~e+

1
c2 ∂t~e·∂t~e

)
, (2.2)

where the indexi ∈ {1,2} labels the two spatial directions andt refers to the Euclidean time-
direction. The parameterρs is the spin stiffness andc is the spin wave velocity.

In theε-regime of magnon chiral perturbation theory, the finite-temperature and finite-volume
effects of the staggered susceptibility have been worked out by Hasenfratz and Niedermayer at the

5
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Figure 3: The energy-momentum dispersion relation E(k) for a single hole in the t-J model on the honey-
comb lattice.

two-loop level [6] and are given by

χs =
M 2

s L2β
3

{
1+2

c
ρsLl

β1(l)+

(
c

ρsLl

)2[
β1(l)

2 +3β2(l)
]
+O

(
1
L3

)}
. (2.3)

HereMs is the staggered magnetization density. The uniform susceptibility takes the form

χu =
2ρs

3c2

{
1+

1
3

c
ρsLl

β̃1(l)+
1
3

(
c

ρsLl

)2[
β̃2(l)−

1
3

β̃1(l)
2−6ψ(l)

]
+O

(
1
L3

)}
. (2.4)

Herel = (βc/L)1/3 determines the shape of a space-time box of sizeL×L×β , with βc≈ L. The
functionsβi(l), β̃i(l), andψ(l) are known shape coefficients [6].

In the very low temperature limit, one enters the cylindrical regime of space-time volumes
with βc≫ L in which theδ -expansion of chiral perturbation theory applies. The cylindrical space-
time geometry is illustrated in figure 4. In this case, the staggered magnetization acts as a quantum
mechanical rotor governed by the Lagrange function [6]

L =
Θ
2

∂t~e·∂t~e=
Θ
2

[
(∂tθ)2 +sin2 θ(∂tϕ)2] . (2.5)

Integrating out the fast non-zero modes of the staggered magnetization at one loop, the moment of
inertia results as

Θ =
ρsL2

c2

[
1+

3.900265
4π

(
c

ρsL

)
+O

(
1
L2

)]
. (2.6)

The momenta conjugate toθ andϕ are

pθ =
δL

δ∂tθ
= Θ ∂tθ , pϕ =

δL

δ∂tϕ
= Θ sin2θ ∂tϕ , (2.7)

6
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β

L

L

Figure 4: Cylindrical space-time geometry with temporal extentβc≫ L.

and the Hamiltonian as well as its energy spectrum result as

H = − 1
2Θ

(
1

sinθ
∂θ [ sinθ∂θ ]+

1

sin2θ
∂ 2

ϕ

)
=

~L2

2Θ
, El =

l(l +1)

2Θ
, l ∈ {0,1,2, ...}. (2.8)

The probability distribution of the uniform magnetizationM3 is then given by

p(M3) =
1
Z ∑

l≥|M3|
exp(−βEl ) , Z =

∞

∑
l=0

(2l +1)exp(−βEl) . (2.9)

2.2 Determination of the Low-Energy Parameters of the Undoped System

In order to determine the low-energy parametersMs, ρs, and c, numerical simulations of
the Heisenberg model on the honeycomb lattice have been performed in [7], both in cubical and
in cylindrical space-time geometries, using a very efficient loop-cluster algorithm [8, 9, 10]. A
simultaneous fit of the Monte Carlo data for the susceptibilities χs andχu to eq.(2.3) and eq.(2.4)
is shown in figure 5. The fitted values of the low-energy parameters are

M̃s =
3
√

3
4

Msa
2 = 0.2688(3), ρs = 0.102(2)J, c = 1.297(16)Ja. (2.10)

For comparison, on the square lattice the corresponding staggered magnetization per spin is̃Ms =

0.3074(4) [9, 10]. Due to the smaller coordination number of the honeycomb lattice, quantum
fluctuations (which reduce the order parameter̃Ms) are larger than on the square lattice.

Once the values of the low-energy parameters̃Ms, ρs, andc have been fixed in the cubical
regime, the effective theory can be tested in the cylindrical regime. Figure 6 compares the effective
theory result for the probability distributionp(M3) of eq.(2.9) with Monte Carlo data [7]. The
observed excellent agreement — which does not rely on any additional adjustable parameters —
confirms the quantitative correctness of the effective theory. Numerical determinations of low-
energy parameters have also been successful inO(N) models with classical spin variables [11].

7
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Figure 5: Fit of the finite-size and finite-temperature effects of the staggered and uniform susceptibilitiesχs

andχu to analytic results of the effective theory in the cubical regime.
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M
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Figure 6: Comparison of the effective theory prediction for the probability distribution p(M3) of eq.(2.9)
with Monte Carlo data for the Heisenberg model on a honeycomblattice with 836 spins atβJ = 60. The
open circles are the Monte Carlo data while the histogram is the effective theory prediction.

2.3 Effective Field Theory for Holes and Magnons

The description of holes doped into an antiferromagnet on the square lattice was pioneered by
Shraiman and Siggia [12]. Motivated by the success of baryonchiral perturbation theory for QCD,
a systematic low-energy effective field theory for magnons and holes in an antiferromagnet on the
square lattice was constructed in [13, 14]. This theory has been used in a detailed analysis of two-
hole states bound by one-magnon exchange [14, 15] as well as of spiral phases in the staggered
magnetization [16], which are a condensed matter analog of pion condensation in dense nuclear
matter. The systematic effective field theory investigations have also been extended to electron-

8
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doped antiferromagnets [17]. Similarly, an effective theory for holes doped into an antiferromagnet
on the honeycomb lattice has been constructed in [18].

Magnons are coupled to holes through a nonlinear realization of the spontaneously broken
SU(2)s symmetry [13]. First, one diagonalizes the magnon field by a unitary transformationu(x) ∈
SU(2), i.e.

u(x)~e(x) ·~σu(x)† = σ3, u11(x) ≥ 0. (2.11)

Under a globalSU(2)s transformationg, the diagonalizing fieldu(x) transforms as

u(x)′ = h(x)u(x)g†, u11(x)
′ ≥ 0, (2.12)

which implicitly defines the nonlinear symmetry transformation

h(x) = exp(iα(x)σ3) =

(
exp(iα(x)) 0

0 exp(−iα(x))

)
∈U(1)s. (2.13)

Introducing the traceless anti-Hermitean field

vµ(x) = u(x)∂µ u(x)† = iva
µ(x)σa, v±µ (x) = v1

µ(x)∓ iv2
µ(x), (2.14)

the fieldvµ(x) decomposes into an Abelian “gauge” fieldv3
µ(x) and two “charged” vector fields

v±µ (x). The Abelian “gauge” transformation acts on the composite vector fields as

v3
µ(x)′ = v3

µ(x)−∂µα(x), v±µ (x)′ = v±µ (x)exp(±2iα(x)). (2.15)

As one sees in figure 3, in thet-J model on the honeycomb lattice holes occur in pockets cen-
tered at lattice momentakα = −kβ = (0, 4π

3
√

3a
), and their copies in the periodic Brillouin zone. In

the effective theory, the holes are described by Grassmann-valued fieldsψ f
s (x) carrying a “flavor”

index f = α ,β that characterizes the corresponding hole pocket. The index s= ± denotes spin
parallel (+) or antiparallel (−) to the local staggered magnetization. Under the various symmetry
operations the hole fields transform as

SU(2)s : ψ f
±(x)′ = exp(±iα(x))ψ f

±(x),

U(1)Q : Qψ f
±(x) = exp(iω)ψ f

±(x),

Di : Di ψ f
±(x) = exp(ik f

j a
i
j)ψ

f
±(x),

O : Oψα
±(x) = ∓exp(∓iϕ(Ox)± i 2π

3 )ψβ
∓(Ox),

Oψβ
±(x) = ∓exp(∓iϕ(Ox)∓ i 2π

3 )ψα
∓(Ox),

R : Rψα
±(x) = ψβ

±(Rx), Rψβ
±(x) = ψα

±(Rx),

T : Tψα
±(x) = exp(∓iϕ(Tx))ψβ†

± (Tx), Tψβ
±(x) = exp(∓iϕ(Tx))ψα†

± (Tx). (2.16)

with

Ox = O(x1,x2, t) = (1
2x1−

√
3

2 x2,
√

3
2 x1 + 1

2x2, t),

Rx = R(x1,x2, t) = (x1,−x2, t), Tx= T(x1,x2, t) = (x1,x2,−t), (2.17)

9
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whereT denotes time-reversal. HereU(1)Q is the fermion number symmetry of the holes. Interest-
ingly, in the effective continuum theory the location of holes in lattice momentum space manifests
itself as a “charge”k f

j a
i
j under the displacement symmetryDi.

Following the principles of chiral perturbation theory, the low-energy effective action of mag-
nons and holes is constructed as a derivative expansion. Since the holes are heavy nonrelativistic
fermions, one time-derivative counts like two spatial derivatives. The leading terms in the La-
grangian are given by

L = ∑
f=α,β
s=+,−

[
Mψ f †

s ψ f
s + ψ f †

s Dtψ f
s +

1
2M′Diψ f †

s Diψ f
s + Λψ f †

s (isvs
1 + σ f v

s
2)ψ

f
−s

]
. (2.18)

It should be noted thatv±i (x) contains one spatial derivative, such that magnons and holes are
indeed derivatively coupled. In eq.(2.18),M is the rest mass andM′ is the kinetic mass of a hole,
while Λ is the leading hole-one-magnon coupling. The signσ f is + for f = α and− for f = β .
The covariant derivative in eq.(2.18) takes the form

Dµψ f
±(x) = ∂µψ f

±(x)± iv3
µ (x)ψ f

±(x). (2.19)

3. Rotor Spectra in the Presence of Fermions

Berry phases and monopole fields are familiar from adiabaticprocesses in quantum mechanics
[19]. For example, the slow rotation of the nuclei in a diatomic molecule is influenced by a geomet-
ric vector potential generated by the fast motion of the electrons, whose Abelian and non-Abelian
monopole content was worked out in [20]. Corresponding Berry phases and monopole fields have
been identified for antiferromagnets and for QCD in [21].

3.1 Rotor Spectrum of an Antiferromagnet in the Presence of a Single Hole

When a single hole is doped into the antiferromagnet, the spin of the system changes by 1/2
and thus the angular momentum of the resulting rotor must then be quantized in half-integer units.
The half-integer quantization is a result of Berry phases and monopole fields. The leading terms in
the low-energy Lagrange function of a hole with small momentum~p are given by

L =
Θ
2

∂t~e·∂t~e+ ψ f †[E(~p)− i∂t +v3
t σ3 + λVt

]
ψ f .

Hereψ f (t) is a two-component Grassmann-valued field describing fermions with spin parallel or
anti-parallel to the local staggered magnetization. The fermion energyE(~p) as well asλ can be
determined by integrating out the non-zero momentum modes of the staggered magnetization. For
hole-doped cuprates on the square as well as on the honeycomblattice, the corresponding effective
theories predict thatλ = 0 [14, 18], while for other antiferromagnets in generalλ 6= 0 [13]. One
obtains

v3
t = sin2 θ

2
∂tϕ , Vt =

1
2

sinθ(cosϕ σ1 +sinϕ σ2) ∂tϕ +
1
2
( sinϕ σ1−cosϕ σ2) ∂tθ . (3.1)

These velocity-dependent terms give rise to a modification of the canonically conjugate momenta
such that

Θ ∂tθ = pθ + iAθ , Θ ∂tϕ =
1

sin2 θ
(pϕ + iAϕ), (3.2)

10
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Figure 7: Rotor spectrum of an antiferromagnet in the presence of a single hole as a function ofλ .

with the non-Abelian vector potential

Aθ = i
λ
2

(sinϕ σ1−cosϕ σ2), Aϕ = i sin2 θ
2

σ3+ i
λ
2

sinθ(cosϕ σ1 +sinϕ σ2), (3.3)

and the corresponding field strength

Fθ ϕ = ∂θ Aϕ −∂ϕAθ +[Aθ ,Aϕ ] = i
1−λ 2

2
sinθ σ3. (3.4)

Interestingly, the resulting geometric Berry gauge field isexactly the same as for a diatomic
molecule [20]. For cuprates (λ = 0) the vector potential is Abelian and describes a monopole
with quantized magnetic flux. For a general antiferromagnet(with λ 6= 0), on the other hand, the
vector potential becomes non-Abelian and the flux is no longer quantized.

The resulting Hamilton operator then takes the form

H(λ ) = − 1
2Θ

{
1

sinθ
(∂θ −Aθ)[ sinθ(∂θ −Aθ )]+

1

sin2 θ
(∂ϕ −Aϕ)2

}
+E(~p). (3.5)

The solution for the energy spectrum has been obtained in [21] along the lines of [20]. The Hamil-
tonianH(0) (corresponding toλ = 0) commutes with the angular momentum operators

J± = exp(±iϕ)

(
± ∂θ + i cotθ ∂ϕ − 1

2
tan

θ
2

σ3

)
, J3 = −i∂ϕ − σ3

2
. (3.6)

The HamiltonianH(0) together with its spectrumE j(0) is given by

H(0) =
1

2Θ

(
~J2− 1

4

)
+E(~p), E j(0) =

1
2Θ

[
j( j +1)− 1

4

]
+E(~p). (3.7)

Here j is a half-integer. In this case, each state is 2(2 j + 1)-fold degenerate because the fermion
sectors+ and− cost the same energy. The Hamiltonian withλ 6= 0 takes the form

H(λ ) = H(0)+
1

2Θ

(
λC+

1
2

λ 2
)

, (3.8)

11
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and still commutes with~J of eq.(3.6). Here

C = −i

(
sinϕ∂θ +

cosϕ
sinθ

∂ϕ − 1
2

sinϕ tan
θ
2

)
σ1 + i

(
cosϕ∂θ −

sinϕ
sinθ

∂ϕ − 1
2

cosϕ tan
θ
2

)
σ2,

(3.9)
and[C, ~J] = 0. UsingC2 = ~J2 + 1

4 one obtains the energy spectrum

E j(λ ) =
1

2Θ

[
j ′( j ′ +1)+

λ 2−1
4

]
+E(~p), (3.10)

with j ′ = j ± λ
2 and j again being a half-integer. Forλ 6= 0 the fermion sectors+ and− get mixed

and the previously degenerate 2(2 j + 1) states are now split into two groups of 2j + 1 degenerate
states. Interestingly, forλ = ±1 the monopole field strength of eq.(3.4) vanishes andE j(±1) =
1

2Θ j ′( j ′ +1) with j ′ = j ± 1
2. In that case, the rotor spectrum looks like the one of eq.(2.8) although

the angular momentumj is now a half-integer. The rotor spectrum as a function ofλ is illustrated
in figure 7.

3.2 Rotor Spectrum of QCD in the Single Nucleon Sector

Let us now consider QCD with two massless flavors and thus witha spontaneously broken
SU(2)L ×SU(2)R chiral symmetry. When the theory is put in a finite spatial volumeL3, the chiral
order parameterU(t) ∈ SU(2) describes a quantum rotor with the moment of inertia given by
Θ = F2

π L3, whereFπ is the pion decay constant. The corresponding Hamiltonian is the Laplacian
on the sphereS3. The QCD rotor spectrum has been derived by Leutwyler [22] intheδ -expansion
of chiral perturbation theory as

El =
jL( jL +1)+ jR( jR+1)

Θ
=

l(l +2)

2Θ
. (3.11)

In this case,jL = jR with l = jL + jR ∈ {0,1,2, ...} and each state is(2 jL +1)(2 jR+1) = (l +1)2-
fold degenerate. The low-energy dynamics of nucleons and pions is described by baryon chiral
perturbation theory. When a nucleon with small momentum~p = |~p|~ep is propagating in the finite
volume, the Lagrangian reads

L =
Θ
4

Tr
[
∂tU

†∂tU
]
+ ψ† [E(~p)− i∂t − ivt − iλ (~σ ·~ep)at ]ψ . (3.12)

Hereψ(t) is a Pauli spinor with a flavor index distinguishing protons and neutrons and~σ2 is the
nucleon spin. At tree level,E(~p) = M +~p2/2M andλ = gA|~p|/M, whereM is the mass andgA is
the axial vector coupling of the nucleon. As for the antiferromagnet, the parametersΘ, E(~p), and
λ get renormalized by the coupling to non-zero momentum pion modes. Hereu2 = U and

vt =
1
2

(
u∂tu

† +u†∂tu
)
, at =

1
2i

(
u∂tu

†−u†∂tu
)
. (3.13)

Parameterizing

U(t) = cosα(t)+ i sinα(t)~eα (t) ·~τ,

~eα(t) = (sinθ(t)cosϕ(t),sinθ(t)sinϕ(t),cosθ(t)),

~eθ (t) = (cosθ(t)cosϕ(t),cosθ(t)sinϕ(t),−sinθ(t)),

~eϕ(t) = (−sinϕ(t),cosϕ(t),0), (3.14)
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and denoting the Pauli matrices for isospin by~τ, one obtains

vt = i sin2 α
2

(
∂tθ ~eϕ −sinθ ∂tϕ ~eθ

)
·~τ, at =

(
∂tα
2

~eα +sinα
∂tθ
2

~eθ +sinα sinθ
∂tϕ
2

~eϕ

)
·~τ.

(3.15)
The resulting Hamilton operator takes the form

H(λ ) = − 1
2Θ

{
1

sin2 α
(∂α −Aα)[ sin2 α(∂α −Aα)]

+
1

sin2 α sinθ
(∂θ −Aθ)[ sinθ(∂θ −Aθ)]+

1

sin2 α sin2θ
(∂ϕ −Aϕ)2

}
+E(~p), (3.16)

with the non-Abelian vector potential

Aα = i
λ
2

(~σ ·~ep)~eα ·~τ, Aθ = i

(
sin2 α

2
~eϕ +

λ
2

(~σ ·~ep)sinα ~eθ

)
·~τ ,

Aϕ = i

(
−sin2 α

2
sinθ ~eθ +

λ
2

(~σ ·~ep)sinα sinθ ~eϕ

)
·~τ, (3.17)

and the corresponding field strength representing a non-Abelian monopole

Fαθ = i
1−λ 2

2
sinα ~eϕ ·~τ, Fθ ϕ = i

1−λ 2

2
sin2α sinθ ~eα ·~τ, Fϕα = i

1−λ 2

2
sinα sinθ ~eθ ·~τ .

(3.18)
The generators ofSU(2)L ⊗SU(2)R are given by

~JL =
1
2
(~J−~K), ~JR =

1
2
(~J+~K), J± = exp(±iϕ)

(
± ∂θ + i cotθ ∂ϕ

)
+

τ±
2

,

K± = exp(±iϕ)

(
i sinθ ∂α + i cotα cosθ ∂θ ∓

cotα
sinθ

∂ϕ ∓ i
2

tan
α
2

~eθ ·~τ +
1
2

tan
α
2

cosθ ~eϕ ·~τ
)

,

J3 = −i∂ϕ +
τ3

2
, K3 = i (cosθ ∂α −cotα sinθ ∂θ )− 1

2
tan

α
2

sinθ ~eϕ ·~τ. (3.19)

The HamiltonianH(0) (with λ = 0) and its spectrumE j(0) take the form

H(0) =
1

2Θ

(
~J2 +~K 2− 3

4

)
+E(~p), E j(0) =

1
2Θ

[
j( j +2)− 1

2

]
+E(~p). (3.20)

In this case,jL = jR± 1
2 and j = jL + jR∈ {1

2, 3
2, ...}. Each state is 2( j + 1

2)( j + 3
2)-fold degenerate

because the states with spin up and spin down cost the same energy. The Hamiltonian withλ 6= 0
can be written as

H(λ ) = H(0)+
1

2Θ

(
λC+

3
4

λ 2
)

, (3.21)

and it still commutes with~J and~K. Here

C = i(~σ ·~ep)

(
~eα ∂α +

1
sinθ

~eθ ∂θ +
1

sinα sinθ
~eϕ ∂ϕ − tan

α
2
~eα

)
·~τ, (3.22)

and[C, ~J] = [C, ~K] = 0. UsingC2 = ~J2 +~K 2+ 3
4 one finally obtains the energy spectrum

E j(λ ) =
1

2Θ

[
j ′( j ′ +2)+

λ 2−1
2

]
+E(~p), (3.23)
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with j ′ = j ± λ
2 , where± refers to the spin eigenstates of~σ ·~ep with eigenvalues±1. Thus we see

that forλ 6= 0 the degeneracy is partly lifted and there are now two groupsof ( j + 1
2)( j + 3

2)-fold
degenerate states. Remarkably, forλ = ±1 the non-Abelian field strength of eq.(3.18) vanishes
andE j(±1) = 1

2Θ j ′( j ′ +2) with j ′ = j ± 1
2. Just as for an antiferromagnet withλ = ±1, the QCD

rotor spectrum then looks like the one of eq.(3.11) althoughthe system now has fermion number
one.

The study in theδ -regime [21] complements other investigations of finite volume effects in the
one-nucleon sector of QCD in thep- [23, 24], ε- [25], andε ′-regimes [26] of chiral perturbation
theory. A comparison of numerical lattice QCD data in the vacuum sector with finite volume
predictions in theε- andδ -regimes of chiral perturbation theory leads to an accuratedetermination
of low-energy parameters such asFπ [27, 28]. Before one could do the same in the single-nucleon
sector, e.g. in order to determinegA, one must match the volume-dependent parametersΘ, E(~p),
andλ of the effective quantum mechanics to those of the infinite volume effective theory.

4. Conclusions

Antiferromagnets and QCD share a number of common features.In particular, systematic ef-
fective field theories capture the low-energy physics in both cases. The condensed matter analog of
pions and nucleons in QCD are magnons and holes in doped antiferromagnets. Thus, the analog of
baryon chiral perturbation theory is a systematic effective field theory for magnons and holes. The
effective theories make quantitative predictions for finite-size and finite-temperature effects which
can be tested in great detail in numerical simulations. While theε-regime of chiral perturbation
theory is more easily accessible in numerical simulations,the rotor spectra in theδ -regime have
intriguing theoretical features. In particular, in the sectors with a single hole doped into an anti-
ferromagnet or a single nucleon propagating through the QCDvacuum, Berry gauge fields with
Abelian and non-Abelian monopoles arise. In contrast to QCD, very efficient cluster algorithms
are available for quantum antiferromagnets. In this way, the effective theory has been verified in
great detail even at the 2-loop level. It is to be expected that a similar accuracy will eventually be
reached in simulations of lattice QCD.
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