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A condensed introduction to the basic concepts of causal perturbation theory is given. Causal per-
turbation theory is a mathematically rigorous approach to renormalization theory, which makes it
possible to put the theoretical setup of perturbative quantum field theory on a sound mathematical
basis by avoiding infinities from the outset. It goes back to a seminal work by Henri Epstein and
Vladimir Jurko Glaser published in 1973, where a specific causality condition was imposed at
every order of perturbation theory in the case of scalar quantum field theory such that divergent
integrals could be avoided in actual calculations of loop diagrams. In the meantime, the causal
approach has been applied also to a wide range of gauge theories.
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Causal Perturbation Theory Andreas Aste

1. Introduction

Before we come to the actual problem of ultraviolet (UV) divergences in perturbative quan-
tum field theory (pQFT), we discuss here a naive example of ’UV divergence’ by considering
Heaviside-Θ- and Dirac-δ -distributions in 1-dim. ’configuration space’. The product of these two
distributions Θ(x)δ (x) is obviously ill-defined, however, considering the Fourier transforms

F{δ}(k) = δ̂ (k) =
∫

dxδ (x)e−ikx = 1, (1.1)

Θ̂(k) = lim
ε↘0

∫
dxΘ(x)e−ikx−εx = lim

ε↘0

ie−ikx−εx

k− iε

∣∣∣∣∣
∞

0

=− i
k− i0

, (1.2)

one can nevertheless calculate in a formal manner the Fourier transform of the ill-defined product
mentioned above

F{Θδ}(k) =
∫

dxe−ikx
Θ(x)δ (x) =

∫
dxe−ikx

∫ dk′

2π
Θ̂(k′)e+ik′x

∫ dk′′

2π
δ̂ (k′′)e+ik′′x. (1.3)

Since
∫

dxei(k′+k′′−k)x = 2πδ (k′+ k′′− k), we obtain the divergent convolution integral

F{Θδ}(k) =
1

2π

∫
dk′ Θ̂(k′)δ̂ (k− k′) =− i

2π

∫ dk′

k′− i0
. (1.4)

The obvious problem in x-space leads to a divergent integral in k-space. This situation arises in a
completely analogous manner in pQFT, as will be discussed in the following.

2. The origin of UV divergences in perturbative quantum field theory

In pQFT, the rôle of the Heaviside Θ-distribution is taken over by the time-ordering operator.
The well-known textbook expression for the perturbative scattering matrix given by

S =
∞

∑
n=0

(−i)n

n!

+∞∫
−∞

dt1 . . .

+∞∫
−∞

dtn T [Hint(t1) . . .Hint(tn)]

=
∞

∑
n=0

(−i)n

n!

∫
d4x1 . . .

∫
d4xn T [Hint(x1) . . .Hint(xn)], (2.1)

where the interaction Hamiltonian Hint(t) is given by the interaction Hamiltonian density Hint(x)
via Hint(t) =

∫
d3xHint(x), is problematic in the UV regime (and in the infrared regime, when

massless fields are involved). A time-ordered expression à la

T [Hint(x1) . . .Hint(xn)] = ∑
Perm. Π

Θ(x0
Π1
− x0

Π2
) . . .Θ(x0

Π(n−1)
− x0

Πn
)Hint(xΠ1) . . .Hint(xΠn) (2.2)

is formal (i.e., ill-defined), since the operator-valued distribution products of the Hint are simply
too singular to be multiplied by Θ-distributions. This observation provides a formal explanation
for the existence of UV divergent expressions in pQFT, which are usually related in a qualitative
manner to contributions of virtual particles with ’very high energy’, or, equivalently, to physical
phenomena at very short distances.
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A first step towards the solution of the apparent mathematical problem was taken by N. N. Bo-
goliubov and D. V. Shirkov [1], which introduced a clear definition of the causality condition in
pQFT and the concept of adiabatic switching (see below). However, in their attempt the UV diver-
gences did persist. A rigorous mathematical analysis within the framework of distribution theory
was finally presented by H. Epstein and V. Glaser [2], who derived an inductive construction of
the perturbation series based on Poincaré invariance and causality (unitarity plays no immediate
rôle). In their approach, UV divergences are avoided from the start, and the Feynman rules only
hold on tree-level. The calculation of loop diagrams turns out to be rather technical and involves
finite (subtracted) dispersion integrals instead of divergent Feynman integrals. A new strategy to
treat the infrared problem by adiabatic switching of the interaction is also introduced in the causal
approach.

In the following, an introduction to the basic concepts of the causal Epstein-Glaser method is
given. It is important to note that the presentation below suffers from a certain lack of mathematical
rigor as a natural consequence of the limited space available in these proceedings. For a concise
introduction to the causal method we refer to the textbook of G. Scharf [3].

3. Mathematical preliminaries

3.1 Free quantum fields and operator valued distributions

It is a crucial observation that free field operators are operator-valued distributions. E.g., for a
scalar (neutral) field of a particle with mass m one has

ϕ(x) =
1

(2π)3/2

∫ d3k√
2E

[
a(~k)e−ikx +a+(~k)e+ikx

]
, E =

√
~k2 +m2, (3.1)

where the annihilation- and creation operators a and a+ fulfill the usual commutation relations.
This expression must be smeared out by rapidly decreasing test functions g(x) in the Schwartz
space S (R4) (S (R3) would also be sufficient in the case of a free field) in order to get an operator
in Fock space, formally written in integral form as ϕ(g) =

∫
d4xϕ(x)g(x). Note that ϕ(x)|0〉 is not a

Fock state. The same arguing applies to the interaction Hamiltonian densities used in perturbation
theory constructed from normally ordered products of free fields. E.g., in QED the perturbative
interaction Hamiltonian density is expressed by the help of the free spinor field Ψ(x) and the photon
field Aµ(x) by the well-defined operator-valued distribution Hint = −e : Ψ̄(x)γµΨ(x) : Aµ(x). In
ϕ3-theory, which will serve as a model theory in the following, one has Hint = λ

3! : ϕ(x)3 :.

3.2 The perturbative S-matrix: basic properties

Based on the observations made above, it is therefore most natural to replace the problematic
expression eq. (2.1) by

S(g) = 1+
∞

∑
n=1

1
n!

∫
d4x1 . . .d4xn Tn(x1, . . . ,xn)g(x1) . . .g(xn), g∈S (R4), (3.2)

where the switching function g(x) can be considered as a local variation of the coupling constant
and we set T1(x) = −iHint(x). In the causal approach, the Tn(x1, . . . ,xn) ' T [T1(x1) . . .T1(xn)]
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denote a well-defined (divergence free) time-ordered product, which is symmetric in the sense that

Tn(. . . ,xi, . . . ,x j, . . .) = Tn(. . . ,x j, . . . ,xi, . . .) ∀i, j (3.3)

by construction. Since the Tn are constructed such that they are free of any UV divergences, every
order of the perturbative S−matrix Sn(g) = 1

n!
∫

d4x1 . . .d4xn Tn(x1, . . . ,xn)g(x1) . . .g(xn) is well-
defined even when massless fields are present. Infrared divergences are absent as long as the
interaction is switched by g ∈ S (R4). Infrared problems arise in the so-called adiabatic limit
g(x) → 1, since 1 6∈ S (R4). Performing the adiabatic limit is a delicate task as far as existence
and uniqueness of the limit are concerned. The limit has to be taken such that observable quantities
(like cross sections) remain finite. A typical strategy is to rescale g(x) according to

lim
ε↘0

g(εx) ”→ ” g(x) = g(0) = const. (3.4)

No further regularizations, like the introduction of a finite photon in mass in theories like QED, are
then necessary in this approach.

One should note that no statements about the convergence of the full series eq. (3.2) can
be made in general. We further mention that perturbative expansion of the inverse perturbative
S-matrix is given by

S(g)−1 = 1+
∞

∑
n=1

1
n!

∫
d4x1 . . .d4xn T̃n(x1, . . . ,xn)g(x1) . . .g(xn) = (1+T )−1 = 1+

∞

∑
r=1

(−T )r,

(3.5)

where T̃n(X) =
n
∑

r=1
(−1)r

∑
Pr

Tn1(X1) . . .Tnr(Xr), and X = {x1, . . . ,xn} is a disordered set and ∑
Pr

de-

notes all partitions of X into r disjoint subsets

X = X1∪ . . .∪Xr, X j 6= /0, Xi∩X j = /0, |X j|= n j. (3.6)

4. The method of Epstein and Glaser

4.1 Inductive construction of the perturbative S-matrix

Causality is the pivotal point in the UV divergence-free approach of Epstein and Glaser.
Causality is expressed by the condition that if the switching function g(x) = g1(x) + g2(x) can
be decomposed such that the supports of g1(x) and g2(x) (denoted by supp(g1) and supp(g2)) are
space-like separated, i.e. if there exists a reference frame such that from x∈ supp(g1) follows
x0 < 0 and from y∈supp(g2) follows y0 > 0 (see Fig. 1), then one has S(g1 +g2) = S(g2)S(g1) for
all switching functions g1,g2 which fulfill the condition above (denoted by supp(g1) < supp(g2),
where the symbol ’<’ should be read as ’earlier’).
This implies Tn(x1, . . . ,xn) = Tm(x1, . . . ,xm)Tn−m(xm+1, . . . ,xn) if {x1, . . . ,xm} > {xm+1, . . . ,xn}, a
condition which is, of course, intuitively clear.

Note that the support of a (test) function supp(g) is the closed set obtained by taking the
complement of the largest open set on which g vanishes. Thus we adopt an analogous definition of
the support for distributions, which is the complement of the largest open set on which a distribution
vanishes. A distribution vanishes on an open set if it vanishes for all test functions whose supports
are in the open set.
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Fig. 1: An example for supp(g2) > supp(g1).

4.2 Explicit construction of S2(g)

Causality and translation invariance require that the commutator D2(z = x1− x2)

D2(x1− x2) = (−i)2[Hint(x1),Hint(x2)] = [T1(x1),T1(x2)] = 0 for (x1− x2)2 < 0 (4.1)

has causal support on the (closed) four-dimensional light-cones supp(D2) = V̄ +(0)∪ V̄−(0) (see
Fig. 2), which are defined by

V̄ +(x) = {y |(y− x)2 ≥ 0, y0 ≥ x0}, V̄−(x) = {y |(y− x)2 ≥ 0, y0 ≤ x0}. (4.2)

One therefore introduces (primed) advanced and retarded distributions A(′)
2 (z) and R(′)

2 (z) according
to

R2 = +D2

∣∣∣
V̄ +−{0}

, A2 =−D2

∣∣∣
V̄−−{0}

, R2, A2 = 0 elsewhere, (4.3)

R′2 =−T1(x2)T1(x1) , A′2 =−T1(x1)T1(x2). (4.4)

The non-trivial (!) splitting of D2 into the retarded and advanced distributions R2 and A2 (see
Fig. 2) indeed corresponds to time-ordering: One has T [T1(x1)T1(x2)]”=”T2(x1,x2) = R2−R′2 =
A2 −A′2. One may substantiate this observation by explicitly checking that R2 −R′2 is given for
z0 > 0 by T1(x1)T1(x2)−T1(x2)T1(x1)+T1(x2)T1(x1), and for z0 < 0 by +T1(x2)T1(x1). However,
the decomposition is not unique in general in the critical point z = 0.

Fig. 2: D2(z) = R2(z)−A2(z) = R′2(z)−A′2(z)

5
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Considering ϕ3-theory as an example with T1(x) = iλ
3! : ϕ(x)3 : and the scalar Feynman propagator

defined via 〈0|T (ϕ(x1)ϕ(x2))|0〉= i∆F(x1− x2), standard Wick ordering leads to

T2(x1,x2)”=” − λ 2

3!2 : ϕ(x1)3
ϕ(x2)3 :−9λ 2

3!2 : ϕ(x1)2
ϕ(x2)2 : i∆F(x1− x2)

−18λ 2

3!2 : ϕ(x1)ϕ(x2) : [i∆F(x1− x2)]2−
λ 2

3!
[i∆F(x1− x2)]3. (4.5)

However, in the causal approach one constructs first

D2(x1− x2) =− λ 2

3!2 [: ϕ(x1)3 :, : ϕ(x2)3 :] = . . .− 9λ 2

3!2 : ϕ(x1)2
ϕ(x2)2 : i∆(x1− x2)+ . . . , (4.6)

where ∆(x1− x2) is the Pauli-Jordan distribution, which can be decomposed into the positive- and
negative-frequency Pauli-Jordan distributions ∆(z) = ∆+(z)+∆−(z) given by

∆
±(z) =∓ i

(2π)3

∫
d4k Θ(±k0)δ (k2−m2)e−ikx. (4.7)

4.2.1 Tree level

In order to get the retarded C-number part of dtree
2 (z) := ∆(z) of the particle-particle scattering

diagram, we simply multiply by Θ(z0): rtree
2 (z) = Θ(z0)∆(z). From Θ̂(k) = i(2π)3

k0+i0 δ (3)(~k) follows
(in a ’sloppy’ style) in momentum space

r̂tree
2 ((k0,~0)) =

i
2π

∫
d p0 ∆̂((p0,~0))

k0− p0 + i0
=

i
2π

∫
dt

∆̂((tk0,~0))
1− t + i0

, (4.8)

or, from the Lorentz covariance of ∆(z) (∆̂(k)) one may derive a dispersion relation

r̂tree
2 (k) =

i
2π

∫
dt

∆̂(tk)
1− t + i0

for k∈V +. (4.9)

From ∆̂(k) =−2πisgn(k0)δ (k2−m2) follows

r̂tree
2 (k) =

∫
dt

sgn(tk0)δ (t2k2−m2)
1− t + i0

=
∫

dt
[δ (t− m√

k2 )−δ (t + m√
k2 )]

2
√

k2m(1− t + i0)
=

1
k2−m2 (k∈V +). (4.10)

The full expressions for r̂tree
2 (k) and t̂tree

2 (k) for arbitrary k follow from analytic considerations.

4.2.2 Loop level

The self-energy (one-loop) part in T2 is logarithmically divergent:

t loop
2 (x1− x2)∼ [i∆F(x1− x2)]2 −→F

∫ d4 p
[p2−m2 + i0][(k− p)2−m2 + i0]

. (4.11)

In the causal approach, one calculates first D2(x1− x2) = [T1(x1),T1(x2)], leading to

dloop
2 (x1− x2)∼ [∆−(x1− x2)]2− [∆−(x2− x1)]2 −→F sgn(k0)Θ(k2−4m2). (4.12)
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Naive splitting leads to a divergent dispersion integral, as in the Feynman integral case:

Θ(z0)dloop
2 (z) −→F

∫
dt

d̂loop
2 (tk)

1− t + i0
(k∈V +). (4.13)

However, it can be shown that the retarded part of dloop
2 can be obtained from a finite, subtracted

dispersion integral (in the massive case m 6= 0)

r̂loop
2 (k) =

i
2π

+∞∫
−∞

d̂loop
2 (tk)

(t− i0)ω+1(1− t + i0)
+ const. (k∈V +) with ω = 0. (4.14)

ω derives from the scaling properties (→ power counting degree of divergence) of the causal dis-
tribution dloop

2 .

4.3 Higher orders

With causality as the fundamental input, it is possible to construct causal distributions
An, Rn and Dn(x1, . . . ,xn) = Rn(x1, . . . ,xn)− An(x1, . . . ,xn) at every order of perturbation theory,
which have causal support

suppRn(x1, . . . ,xn)⊆ Γ
+(xn), suppAn(x1, . . . ,xn)⊆ Γ

−(xn), (4.15)

where the generalized closed forward (backward) light-cones are defined by

Γ
±(xn) = {(x1, . . . ,xn) |x j∈V̄±(xn)∀ j = 1, . . . ,n−1}. (4.16)

Obviously, one has suppDn(x1, . . . ,xn) ⊆ Γ+(xn)∪Γ−(xn). We give here a short recipe how the
higher order distributions are constructed. The crucial step in the inductive construction of the Tn is
the splitting of the Dn, which can be performed in a mathematically well-defined (’finite’) manner.
However, the result is in general not unique, a fact which is directly related to the possibility of
finite renormalizations of Green’s functions in the standard approaches to renormalization theory.
Recipe: Tm known for 1≤ m≤ n−1

⇓

construct primed distributions

A′n(x1, . . . ,xn) = ∑
P2

T̃n1(X)Tn−n1(Y,xn) and R′n(x1, . . . ,xn) = ∑
P2

Tn−n1(Y,xn)T̃n1(X)

with P2 : {x1, . . . ,xn−1}= X ∪Y, X 6= /0,n1 = |X | ≥ 1

⇓

allow X = /0, consider distributions with causal (light-cone) support

An(x1, . . . ,xn) = A′n(x1, . . . ,xn)+Tn(x1, . . . ,xn) , Rn(x1, . . . ,xn) = R′n(x1, . . . ,xn)+Tn(x1, . . . ,xn)

⇓

7
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Tn unknown, but difference distribution

Dn = R′n−A′n = Rn−An

can be shown to be causal: distribution splitting of Dn generates Rn

⇓

Tn = Rn−R′n !

As demonstrated above at second order for the particle-particle scattering tree diagram and the
self-energy loop diagram, the C-number parts of the Dn, Rn: dtree,loop,...(x1 − xn, . . . ,xn−1 − xn),
rtree,loop,...(x1−xn, . . . ,xn−1−xn) go over into r̂tree,loop,...(p1, . . . , pn−1) and d̂tree,loop,...(p1, . . . , pn−1)
via Fourier transformation. If at least one field in a field theory is massive, it can be shown in
general that at all orders of perturbation theory, for p = (p1, p2, . . .)∈Γ+ a subtracted dispersion
relation applies as a distribution splitting operator

r̂(p) =
i

2π

+∞∫
−∞

d̂(t p)
(t− i0)ω+1(1− t + i0)

dt +
ω

∑
|α|=0

cα pα , (α : multi-index), (4.17)

where ω is a rigorously defined power-counting degree of divergence. The terms ∑cα pα corre-
spond to possible finite renormalization terms (which have been discussed in connection with the
renormalization group of QED in [3]). The polynomial terms in Fourier space are due to the fact
that the splitting of Dn into Rn and An is not uniquely defined at the "tip" x1 = x2 = . . . = xn of
the generalized forward/backward light-cones Γ±. In configuration space, they correspond to lo-
cal terms ∼ ∑ ĉαDαδ (x1 − xn, . . . ,xn−1 − xn). Perturbation theory alone does not specify them,
and they have to be restricted, e.g., by symmetry considerations and may lead to subsequent finite
renormalizations of the Tn, as already mentioned.

5. Gauge theories

We shortly mention the case of purely gluonic QCD as a standard example for a gauge theory.
Within the causal approach, it is most natural to start from a first order gluon field coupling (matter
fields neglected)

T1(x) = i
g
2

fabc : Aa
µ(x)Ab

ν(x)Fνµ
c (x) :, Fµν

c (x) = ∂
µAν

c (x)−∂
νAµ

c (x). (5.1)

First order gauge invariance requires additional fields (ghosts)

T1(x) = ig fabc : Aa
µ(x)Ab

ν(x)∂ νAµ
c (x) :−ig fabc : Aµ

a (x)ub(x)∂ µ ũc(x) : . (5.2)

At second order, tree diagrams containing C-number distributions∼ ∂µ∂ν∆(x1−x2) −→F −kµkν ∆̂(k)
appear; their splitting is fixed up to a local term∼ gµνδ (4)(x1−x2) according to distribution theory.

kµkν
∆̂(k) −→splitting kµkν

k2 + i0
+Cgµν . (5.3)

Second order gauge invariance determines the constant C such that the usual four-gluon coupling
term is automatically generated [12].

8
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6. Concluding remarks

We conclude by giving a short and incomplete review of recent activities concerning the causal
Epstein-Glaser approach. The causal approach was ’rediscovered’ by Michael Dütsch and Günter
Scharf (U. Zürich) in 1985. Their work resulted in a textbook [3], where a complete discussion
of QED and introduction to the causal approach can be found. From 1989-1993, the Zürich group
led by Günter Scharf focused on, e.g., interacting fields in the causal approach [4], axial anomalies
[5] and gave a full discussion of the renormalizability of scalar QED [6]. During the period from
1993-1999, a complete discussion of perturbative QCD was worked out [7], and gauge theories
like the full standard model (including the phenomenon of spontaneous symmetry breaking) were
studied [8, 9], theories in dimensions other than four were considered [10] and analytic calculations
of multi-loop diagrams were carried out [11]. Quantum gravity and supersymmetric theories were
also considered, and other groups (Klaus Fredenhagen et al.) generalized the causal approach to
field theories on curved space-times. Finally, recent work of Ernst Werner and Pierre Grange in
connection with light cone quantum field theory should be mentioned, which will also be part of
the LC2008 proceedings (see also [13]).
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