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We propose a inference method to determine the luminosity spectrum precisely in a future high

luminosity electron positron linear collider. We introduce a statistical method recently developed

in the information technology. In the ordinal electron positron collides, colliding beam energy

is tuned with monocromatic energy, and luminosity can be measured by just counting the num-

ber of Bhabha events. However, the high luminositye+e− linear collider no more produces a

monochromatic energy spectrum, but a continuous and rather broad energy spectrum due to the

beamstrahlung. A precise knowledge of this energy spectrum alias the luminosity spectrum, the

precision experiment in the linear collider should be confronted with a crucial problem. The

proposed model is formulated as a mostly exact luminosity distribution function, and parameter

fitting is carried out for the data generated by simulation. This shows that the beam parameters

of colliding electrons and positrons can be determined with an uncertainty of several percents

by using 10k Bhabha events in an ideal detector condition, by which the luminosity spectrum is

described.
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1. Introduction

The high luminositye+e− collider has been studied as an energy frontier future project in high
energy physics, and is expected to be a good place for the precision experiments. It is well-known,
however, that the colliding beam energies of electrons and positrons have no more monochromatic
energy spectra at interaction point, but have broad energy spectra even if each beam was originally
tuned to have monochromatic energy spectrum. This is due to the beamstrahlung, where electrons
and positrons feel the field produced by the opposite beam with the large density, and loose their
energies by radiating photons before colliding. The collision of electron and positron beams with
such broad energy spectra makes a broad luminosity spectrum in the center of mass system, which
is called the luminosity spectrum. This broad luminosity spectrum gives a large defect to the
precision experiments[2]. A precise determination of the luminosity spectrum is indispensable for
experimental studies. In the ordinale+e− collider experiments, the luminosity could be measured
just by counting Bhabha events, since the beamstrahlung was negligible and it was reasonable to
assume that the event shape of Bhabha process is back-to-back. In a high luminosity linear collider,
however, Bhabha events are not always in the back-to-back event shape and must be identified by
measuring the finale+ ande− 4-momenta, by which the measured CM energy

√
s of the event is

calculated.
In this talk, which is in part based on Ref.[1], we propose a new method to determine the

luminosity spectrum. We introduce the statistical methods, especially based on the Bayesian statis-
tics. We derive an almost exact formula of the Bhabha event distribution fiction, which is de-
composed into the differential cross-section of Bhabha process, the error distribution function of
the 4-momentum measurement, and the luminosity spectrum function represented by the Yokoya-
Chen function. The luminosity spectrum is determined by inference of the beam parameters in the
Yokoya-Chen function. The numerical simulations are performed to generate Bhabha events at the
ILC, and the potentiality of the method is investigated.

2. Determination of luminosity spectrum by Bhabha event

2.1 Previous works

In thee+e− collider experiments the luminosity has been determined by using Bhabha events,
since it is a well known elementary process whose cross section can be precisely calculated by
using the perturbation theory. In the ordinal experiments, electrons and positrons are accelerated
to have monochromatic beam energy, and the colliding beams generates the luminosity with the
monochromatic energy spectrum. Therefore the luminosity can be measured just counting the
number of Bhabha events. The luminosity is calculated by

#(Bhabha events)= (cross section)× (luminosity), (2.1)

where it is assumed the cross section of Bhabha process can be calculated analytically with required
accuracy. However, in high luminosity linear collider, due to beamstrahlung the beam energy has
no more monochromatic spectrum but continuous board one. Fig.1, for example, shows beam
energy spectrum of electrons and positrons at the interaction point. Therefore, the Bhabha events

2



P
o
S
(
A
C
A
T
)
0
4
8

An inference method of luminosity spectrum ... Akihiro Shibata

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

100 120 140 160 180 200 220 240 260

b
e
a
m

 d
e
n
s
it
y

beam enegy (GeV)

electron

positron

Figure 1: A logalithmic plot of beam energy distributions of electrons and positron at the interaction point,
which is used in the simulation.

have energy dependency, and the luminosity must be determined as the function of
√

s parameter
by measuring the pair of 4-momenta of the electron and positron in Bhabha events.

Several pioneer works have been reported on the luminosity spectrum measurement for a high
luminosity linear collider[4][5][6][16]. Most of them proposed to use the Bhabha events and mea-
sure the accolinearity angle of the finale+ ande− momenta to calculate

√
sof the event. Here it is

assumed that the nominal beam energy is known from the beam parameter of the collider or from
the independent beam energy measurement. The accolinearity angle is used instead of measuring
their 4-momenta directly, since the energy measurement of a high energy electron or positron could
be suffered from a low precision while the accolinearity angle could be measured much more pre-
cise than the 4-momenta. (See Fig.2.) In the work of Ref.[5], the determination of the luminosity
spectrum by measuring the accolinearity angle of Bhabha events was studied. In a special case,
where the beam parameters of electrons and positrons are identical, they could extract the beam
parameters, namely, beam-energy spread, the topological beam size and the number of particles in
a bunch, from the measured CM energy spectrum by a likelihood fitting. Wherein the CM energy√

s is approximately calculated by
√

s =
√

s0 − |∆p|, where
√

s0 is the nominal CM energy ob-
tained from an independent energy measurement and∆p is the momentum difference between the
colliding electron and positron which is calculated with accolinearity angle.

However, there are several limitations in this method. For example,|∆p| is positive definite,
√

s
is always less than or equal to the nominal CM energy. Because of the beam-energy spread those
events each of which CM energy is above the nominal value are produced, while their calculated√

svalues are always less than the nominal value. Moreover, when the initial electron and positron
have lost their energies nearly by the same amount of energy,∆p becomes almost zero and the√

s value is nearly equal to
√

s0 regardless of the lost energy being large. The only source of
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Figure 2: The Bhabha process. Due to beamstraghlung, electrons and positrons colide no more in CM
system. Colliding electrons and positrons are boosted wth velocityβ .

these problems is to use the accolinearity angle for calculating the CM energy, but the most crucial
problem in this method is that when thee+ ande− beam parameters are different, though this is the
usual case, the beam parameters can not be estimated just from the measured CM energy spectrum
because of lack of information.

3. The formalism

3.1 Bhabha events as the distribution function

We derive the statistical model to measure the luminosity spectrum in terms of Bayesian statis-
tics. In this paper, the luminosity spectrum is represented by the beam parameter by using the em-
pirical formula of luminosity spectrum. The measurement of the luminosity spectrum can be repre-
sented by the conditional probability of model parameters under data:Pr

(
α+,α−|{

(
q′+,q′−

)}) ,where
(α+,α−) represents the parameters to describe the luminosity, andD = {(q′+,q′−

)} a set of 4-
momenta of Bhabha events. By the Bayes’ theorem, using a model distribution (or a likelihood)
l (D ;α+,α−) = Pr(D |α+,α−), the posterior distribution is written by

Pr(α+,α−|D) =
l (D;α+,α−)Pr(α+,α−)

Pr(D)
, (3.1)

where(α+,α−) denotes a hypothesis,Pr(α+,α−) the prior of the hypothesis. The denominator
Pr(D) represents a normalization factor of the posteriorPr(D)=

∫
dα+dα−l (D;α+,α−)Pr(α+,α−).

The model distribution function can be described by Bhabha event distribution,N(q′+,q′−) d4q′+d4q′−,

which is decomposed into the luminosity spectrum functionL(·), the cross-section of Bhabha pro-
cessdσ(·), and detection error functionG(·):

N (q′+,q′−) =C−1
∫

d4p+d4p−d4q−d4q+G(q′+,q′−;ωq,q+,q−)

×σ(q+,q−; p+, p−)L(p+, p−;α+,α−), (3.2)

where event distribution is the marginal distribution of three kinds of 4-momenta; those of colliding
beamp±, those of scatterede+e− from Bhabha process (theoretical and not observable)q±, and
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those of detected Bhabha eventq′±, respectively. C denotes the normalization factor to satisfy
C−1∫

N (q+,q−)d4q+d4q− = 1.

Before we derive the detailed distribution function, we rewrite the Bhabha events in terms of
the distribution functions. Using the total luminosity,L(·;α+,α−) :=

∫
dp+dp−L(p+, p−;α+,α−),

the normalized luminosity is defined as the probability function:

L̃(p+, p−;α+,α−) :=
L(p+, p−;α+,α−)

L(· ;α+,α−)
. (3.3)

For each pair of (p+, p−), we also obtain the normalized cross section:

σ̃(q+,q−; p+, p−) :=
σ(q+,q−; p+, p−)

σ(· ; p+, p−)
,

whereσ(·; p+, p−) :=
∫

dq+dq−σ(q+,q−; p+, p−) is total cross section for (p+, p−).

The noise distribution function can be reduced to the product of error functions

G(q′+,q′−;ωq,q+,q−) = G(q′+;q+,ωq+)G(q′−;q−,ωq−), (3.4)

since measurement of 4-momenta of electrons and positrons are independent. The detection errors
depend on position of the detectors, and 4-momenta of incident particle, and its error function can
be parametrize byG(q′;q,ωq) with condition

∫
dq′G(q′;q,ωq) = 1. Thus we rewrite (3.2) to

N (q′+,q′−) =
∫

dq−dq+dp+dp−N (q′+,q′−,q+,q−, p+, p−;ω,α+,α−) (3.5)

N (q′+,q′−,q+,q−, p+, p−;ω,α+,α−)

= G(q′+,q′−;ωq,q+,q−)σ̃(q+,q−; p+, p−)
σ(·; p+, p−)L(p+, p−;α+,α−)

N
(3.6)

whereN is total number of events,

N =
∫

dq′−dq′+dq−dq+dp+dp−G(q′+,q′−;ωq,q+,q−)σ(q+,q−; p+, p−)L(p+, p−;α+,α−)

=
∫

dp+dp−L(p+, p−;α+,α−)σ(·; p+, p−). (3.7)

ThereforeN (q′+,q′−,q+,q−, p+, p−;ω,α+,α−) can be considered as the universal distribution,
that is decomposed into conditional distributionG(q′+,q′−;ωq,q+,q−), σ̃(q+,q−; p+, p−) andσ(· ; p+, p−)
×L(p+, p−;α+,α−)/N. When we assume the priorPr(ω,α+,α−) = Pr(ω)Pr(α+)Pr(α−), we can
construct the Bayesian network for continuum variable. It should be notice that The Bhabha events
distribution function can be represented as the graphical model, and Figure 3 shows the graphical
representation of the Bhabha events distribution (3.6).

3.2 The details of the statistical model

We have derived the statistical model for the luminosity spectrum using Bhabha events. Next,
we discuss the details of distribution functions. Here, we consider the simplified model, since
we want to investigate the potential of our method. In general, detector error function can be
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Figure 3: The graphical representation of the beam energy spsctrum function.

represented by the multi-valuated gauss function of 4-momentumm, however, we consider the case
of no detection errors, i.e., zero variance case:

G±(q± ;q′±,ωq′) = δ (4)(q′±−q±). (3.8)

The cross section of Bhabha process is given by

dσ(q′+,q′−; p+, p−) =
∥∥M (q′+,q′−; p+, p−)

∥∥2
dΦ(q′+,q′−; p+, p−), (3.9)

dΦ(q′+,q′−; p+, p−) = δ (4)(q′+ +q′−− p+− p−)
d3q+

2E+

d3q−
2E−

, (3.10)

and the invariant amplitude is calculated using Feynman graphs of Bhabha process. In this paper,
the lowest order contribution from perturbation theory, i.e., one photon exchange process, is con-
sidered for the simplicity of analysis [17]. It should be noticed that higher order of corrections can
be included to our model straightforwardly. The integral in eq(3.2) can be calculated analytically
and is given by a simple form;

N(q+,q−) = C−1dσ(q+,q−; p+, p−)L(p+, p−;α+,α−), (3.11)

whereq± =
(
E±,qx±,qy

±,qz
±
)
, E± =

√
q⃗2± +m2

e, p± =(ε±,0,0,±ε±), ε± = 1
2(E++E−±(qz

+ +qz
−)),

qx
+ = −qx−, qy

+ = −qy
−, and sign (±) in p± should be read for the same order.

The luminosity spectrum functionL(p+, p−;α+,α−) can be represented by colliding beams,
and it is assumed to approximately obtained by product of the beam distribution functionB(p;α)
of the pair of the electron and positron,

L(p+, p−;α+,α−) = B(p+;α+)B(p−;α−), (3.12)

where the colliding electrons and positrons travel along the z-axis with zero crossing angle, i.e.,
p = (E,0,0,±E) (E ≫ me):

B(p;α) = δ (px)δ (py)δ (pE −|pz
±|)Y(pz;α). (3.13)
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As for the beam spectrum functionB(p;α), the Yokoya-Chen function is used, which gives the
empirical formula of the luminosity spectrum at interaction point afterbeamstrahlung [7][8]. In the
approximated luminosity spectrum function, the Yokoya-Chen functionY(pz;α) is modified by the
τ–averaged function in momentum space:

Y(E;α) = 〈ψ(E,τ ;α)〉τ :=
∫ 1

0
dτψ(E,τ;α), (3.14)

ψ(E,τ;α) ≅ e−Nγ τ
[

δ (E−E0)+
e−y

E0−E
h(τN1y1/3)

]
, (3.15)

h(x) ≅
√

3
8π

[ √
x/3

1+0.53x−5/6

]3/4

exp

(
4
(x

3

)3/4
)

, (3.16)

where new variablesy andN1 are introduced for the simplicity of notation;y = (E/E0−1)/ξ1,
N1 = Ncl/(1+ξ1y)+Nγξ1y/(1+ξ1y), respectively. The parametersNcl, Nγ , andξ1 are described
by the independent beam parametersα = (E0,σz,N/(σx +σy)), whereE0 is the nominal en-
ergy andN is the number of particles in a bunch with the size of (σx,σy,σz). (For the detail of
parametrization, please see the references [7][8]). Since the Yokoya-Chen function is described
by two parts, the nominal energy part,φ1(E,τ;α) := e−Nγ τ δ̂ (E−E0), and the beamstrahlung part,
φ2(E,τ ;α) := e−Nγ τ e−y

E0−E h(τN1y1/3), eq(3.14) can be described by mixed distribution;

Ỹ(E;α) =
2

∑
k=1

λk(α)φ̃k(E;α), (3.17)

φ̃k(E;α) :=
∫

dτφk(E,τ ;α)/
∫

dτdEφk(E,τ ;α), (3.18)

λ1,2(α) :=
∫

dτdEφ1,2(E,τ ;α)/
∫

dτdE[φ1(E,τ;α)+φ2(E,τ;α)] . (3.19)

Whereinsoever the mixed distribution is defined so as to satisfy the normalization condition,
∫

dEφ̃k(E;α)=
1 and λ1 + λ2 = 1, thus

∫
dEY(E ;α) = 1, such that Yokoya-Chen function eq(3.17) and both

λk(α) andφ̃k(E ;α) are treated as probability functions. Therefore the luminosity function eq(3.12)
is rewritten into decomposed formula as follows;

L(E+,E−;α+,α−) =
2

∑
k,l=1

λ (+)
k (α+)λ (−)

l (α−)φ̃k(E+;α+)φ̃l (E−;α−). (3.20)

Substituting the above equation into eq(3.11), and extracting the arguments of summations by
l ,k, the universal distribution of Bhabha events under the beamstrahlung is obtained in terms of
(q+,q−;k, l );

Ñ(q+,q−;k, l) =C̃−1dσ(q+,q−; p+, p−)

×λ (+)
k (α+)λ (−)

l (α−)φ̃k(E+;α+)φ̃l (E−;α−). (3.21)

The Bhabha distribution function in the mixed distribution eq(3.21) has been obtained as well
as the marginalized formula eq(3.11), the maximum likelihood method can be applied for the pa-
rameter estimation. Because of the efficiency the mixed distribution for parameter fitting is used in
this paper. The EM algorithm is introduced as some preparations for the parameter estimation with
missing observation (l , k).
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3.3 EM algorithm

The EM algorithm, which is one of the popular algorithms in learning of neural network,
parameter estimation Bayesian network and so on, is briefly reviewed. Consider the case where
the parametersθ of the modelm(z;θ) for the data setD = {z(k);k = 1, ..,N} is estimated but the
observed data is incomplete because of unobservable or missing. The data set can be represented
by D ={ z(k) = (x(k),y(k)); x(k) ∈ Do (observable),y(k) ∈ Dh (unobservable or hidden)}, which is
the case, for example, where the observable data is obtained as a marginal distribution of the full
data: m̃(x ;θ) = ∑y m(x,y;θ). The EM algorithm calculates the conditional probability function
of hidden variabley under the observed variablex and given parameterθ , Pr(y |x,θ). Using the
Bayes’ theoremPr(y|x,θ) can be written in terms of the model functionm(x,y ;θ),

Pr(y|x,θ) =
Pr(x,y|θ)
Pr(x|θ)

=
m(x,y ;θ)
m̃(x ;θ)

=
m(x,y ;θ)

∑y′ m(x,y′;θ)
. (3.22)

Algorithm 1. Initiate θ 0,ε (the convergence condition), and seti ← 0
do i ← i +1
E-step: compute

Q(θ ′;θ i) :=
1
N ∑

{(x,y)}

[
m(x,y ;θ)
m̃(x ;θ)

× ln
(
m(x,y ;θ ′)

)]
(3.23)

M-step:
θ i+1 ← argmax

θ

(
Q(θ ;θ i)

)
(3.24)

until convergenceQ(θ i+1;θ i)−Q(θ i ;θ i−1) ≤ ε
return θ̂ ← θ i+1

It should be noticed that the EM algorithm is reduce to the ordinal maximum likelihood method
in case that all variables are observable, sinceQ(θ ;θ i) is reduced to the log likelihood function
and M-step is nothing but maximization of log likelihood function. For more detail please see, for
examples, references [9],[10] and [11].

4. Estimation of the luminosity spectrum

Our method determining the luminosity spectrum is examined by using a numerical simula-
tion, since all experimental conditions can be controlled and the data under necessary condition
can be easily generated. In this paper, only the data without detection errors are considered in order
to investigate the potentialities of this method as well as to make everything as simple as possible.
The simulation environments is set up to create Bhabha events in the ILC linear collider. The pro-
file of the distributed data comes from the broad energy spectrum of colliding beams and the effect
of the scattering using the analytic expression. For the luminosity function Yokoya-Chen function
eq(3.12) is used for both event generation and parametric inference. One million Bhabha events
are generated by simulation for parameter fittings as explained below subsection.

The parameter estimation requires the CPU time, i.e., the integral of hidden variables in eval-
uating the EM algorithm and the multidimensional integration in evaluate the total cross section.

8
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simulation
ILC electron positron

Beam energy 250GeV 250GeV 250GeV

Charge per bunch 2×1010 2.2×1010 2×1010

X beam size at IP 554nm 554nm 554nm

Y beam size at IP 5nm 4.5nm 5nm

Bunch-length at IP 300µm 330µm 300µm

Table 1: ILC Beam paramaters, and the parameters for simltations.

We introduce the parallel computing techniques based on the message passing interface (MPI) to
accelerated them. Evaluation by the EM algorithm is independent for each event, pluralization
is straightforward. The multidimensional integral is carried by using the pearlized version of the
BASSES package.

4.1 Event generation

Bhabha events are generated usingGRACEsystem[12]. The numerical integration of the
Bhabha process cross section is calculated usingBASESand the equal-weighted event genera-
tion are carried out usingSPRING[13]. TheGRACEsystem is an automatic system for generating
Feynman diagram and aFORTRANsource-code to evaluate the amplitude. In theGRACEsystem,
the matrix elements are calculated numerically usingCHANEL[14] library based on the helicity am-
plitude formalism.CHANELcontains routines to evaluate such things as: wave-functions/spinors
at external states, interaction vertices, and particle propagator. Immediately after the numerical
integration of the matrix elements byBASES, event generation can be made usingSPRINGutility.
The beamstrahlung effect is taken into account usingLUMINUS[15]. The beam parameters are set
at those values taken from the TESLA design report[16] as ILC design parameter, which is shown
in table1. An expected luminosity with these beam parameters is2.94×1038/m2/s. The beam
energy spread is assumed to be zero for simplicity. The initial state radiative correction is also
omitted. The observed electrons and positrons are generated with the energy greater than10 GeV,
and within the angular range between 20 degree to 160 degree. The total cross section under these
conditions are calculated to be28.68±0.01pb, which corresponds to about3k events for one hour
data taking.

4.2 Luminosity spectrum measurements

We first focus on the beam spectrum in the ILC beam parameters. The luminosity spectrum
can be further decomposed into the mixed distribution function by the coefficientsλk in eq(3.20).
The contribution weights in eq(3.17) for the ILC beam parameters are obtained asλ1 = 0.725and
λ2 = 0.275, thus the effects of the beamstrahlung can be decomposed using coefficients as follows,
the nominal-nominal energy part,λ (+)

1 λ (−)
1 ≅ 0.525, the nominal-beamstrahlung partλ (+)

1 λ (−)
2 +

λ (+)
2 λ (−)

1 ≅ 0.399, and the beamstrahlung-beamstrahlung partλ (+)
2 λ (−)

2 ≅ 0.076. If high preci-
sion measurements were not required, the collision from the beamstrahlung–beamstrahlung part

9
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Figure 4: Contour plot of parameterθ in Q(θ ′;θ)) using 10k events.

could be negligible and the luminosity spectrum could be estimated by measuring only the ac-
colinearity angle. When we come back to the previous works, for example [5], it was assumed
that most of Bhabha events are contribution from the nominal-nominal part and from the nominal-
beamstrahlung part, i.e., at least one of the∆ε± is nearly zero1. Thus, more than 8% of estimation
error is contained in the previous methods using the acolinearity angle.

Figure 1 shows the beam energy spectrum distribution used in the simulations, where dis-
tribution is parametrized by the Yokoya-Chen function listed in table1. An asymmetric pa-
rameterization is selected to investigate whether our method can distinguish small difference be-
tween spectrums. The luminosity spectrum estimation is obtained by parameter fitting of indepen-
dent beam parameters in Yokoya-Chen function,θ =(η+, σ+

z , η−, σ−
z ), whereη is defined by

η = N/(σx +σy) for electron and positron. As discussed in the previous section, EM algorithm is
applied to maximize the likelihood function eq(3.21). In E-step, the estimation of the normaliza-
tion constantC in eq(3.21) requires the 4-dimensional integration, and the adaptive Monte Carlo
integration packageBASESis used. Figure4 shows the contour plot ofθ ′ in σ+

z –σ−
z , and an sin-

gle peak is obtained around the ILC beam parameters in the M-step in the EM algorithm. Since
the marginal likelihood functionQ(θ ′;θ) gives a single smooth peak in each M-step, the steepest
descent method in multi-dimensional space are used to obtain the peak of the likelihood function.

Thus, applying EM algorithm for one million Bhabha events, we have successfully obtained
the beam parameter of the simulation. We next study the errors of estimated beam parameters to
determine the required Bhabha events for luminosity measurements. The confidence level could be
a good measure for a statistical test for the likelihood function ofχ2 fitting, however, the likelihood
eq(3.21) is a even more general distribution function and the confidence level cannot be applica-
ble. Here, we apply the bootstrap method[18]. In the bootstrap method the bootstrap samplings

1It should be remined that
√

s and∆p values ware obtained by
√

s≅ √
s0− (∆ε+ + ∆ε−) and∆p = ∆ε+ −∆ε−,

where∆ε± ware the energy loss of positron and electron by beamstrahlung, respectively.
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D (b)(b = 1, ..,B) are prepared by resampling, where each of data-set consists of a certain number
of events sampled independently from the data. The bootstrap estimator such as variance of the
estimated parameters is calculated;

V(θ̂) =
1

B−1

B

∑
b=1

(
θ̂ ∗(b)− θ̂ ∗(.)

)(
θ̂ ∗(b)− θ̂ ∗(.)

)T
, (4.1)

using the estimated parametersθ̂ ∗(b) for eachD (b).Where θ̂ ∗(.) is the bootstrap average of the
estimates of parameters;θ̂ ∗(.) = 1

B ∑B
b=1 θ̂ ∗(b). ThisV(θ̂) is identified the errors of estimated pa-

rameters.
Since the typical event rate of the ILC linear collider is about 3k events per hour, we study two

kind of data-set; 1k Bhabha events and 10k events data. Two kind of hundred (B = 100) bootstrap
samplings are prepared from 1M events generated by simulation. The estimated parametersθ̂ ∗(b)

are shown in Figure5. Each plot shows the the scatter plots of estimated parameters, where the
4-dimensional estimated beam parameters are projected intoη–σz plain. The left parameters is the
plot for 1k Bhabha events. The resultant bootstrap estimator can be read asθ̂ ∗(.) =(759×1014m−1,
317µm, 688×1014m−1, 286µm), standard deviationσ (.) =(29×1014m−1, 18µm, 35×1014m−1,
23µm) and the correlation:

ρ1k =


1 0.46 −0.092 −0.053

0.46 1 0.12 0.08
−0.092 0.12 1 0.54
−0.053 0.08 0.54 1

 ,

where the indices of correlationρi, j stand for (i, j = (e−η) , (e−z) , (e+η) ,(e+z)). The right
panel shows the plot of the estimated parameter for 10k events data-set. The result of bootstrap
estimator isθ̂ ∗(.) =(765×1014m−1, 317µm, 694×1014m−1, 290µm), σ (.) =(13×1014m−1, 85µm,
92×1014m−1, 49µm),

ρ10k =


1 0.70 −0.40 0.10

0.70 1 −0.50 0.020
−0.40 −0.50 1 0.15
0.10 0.020 0.15 1

 .

These result suggest that the beam parameter estimation is achieved even for small data-set of 1k
events, and the difference of beam parameters are distinguished. By using 10k events, the beam
parameters are estimated within a few percent.

5. Conclusion and discussion

We have proposed a statistical method to determine luminosity spectrum using Bhabha events.
It was for the first time to introduce statistical method to measurement of luminosity. First and
foremost the exact formula of the Bhabha event distribution function has been formulated in terms
of the differential cross section, the error distribution function and the luminosity spectrum func-
tion. The luminosity function is expressed by Yokoya-Chen function, and is parametrized by beam
parameters. Secondary by applying the EM algorithm to the parameter fitting the beam parameters
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Figure 5: Estimated beam parameters 100 boostrap resampling data-set. The 4-dimensional estimated
parameters(η+,σ+

z ,η−,σ−
z ) are plotted in sigle(η ,σz) plain. The left panel shows the plot for data-set of

1k Bhabha events, and the right panel for data-set of 10k events,

are successfully determined with an error of a few percents using 10k events of Bhabha process by
the “ideal” detector with no detection error. This strongly suggests that our method can determine
the luminosity spectrum in the future ILC linear collider.

In order to apply this method to a realistic experiment, several points in this study should be
improved. First, the model have to be extended to include the detection errors in measurement of
4-momentum,which can be made straightforwardly as it has been shown in the formulation, and the
EM algorithm should work well. This extension causes inclusion of estimation errors by several
percent, and the expected number of Bhabha events for the parameter fitting will be increased. The
second point to be studied further is the effect of the background processes against Bhabha process,
especially two photon process, which may produce more fake events than Bhabha process. If the
case the event distribution function must be extended to include the two photon process since no
discrimination between Bhabha process and two photon process will be found in the event shape
in the high luminositye+e− linear collider. The third point is the inclusion of the other effects of
beam dynamics such as an initial state radiation and a beam spread, which make the beam energy
more broad spectrum and change the Bhabha events distribution. For the purpose of precision
determination of luminosity and of luminosity monitoring, the modeling of the beam spectrum
function in terms of the beam parameters will be a key issue in data modeling.

In addition to the extension and improvement of data modeling, study in computation algo-
rithms are indispensable. For examples, inclusion of the detector errors causes to increase several
hidden variables in EM algorithms, and expected high-dimensional integration for hidden vari-
ables. Within this study, we have introduced parallel processing algorithms, e.g., parallel Monte
Carlo integration, however, further improvements is expected.
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