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1. Introduction

At the modern level of analytic calculations in elementary particle physics one needs to eval-
uate thousands and millions of multiloop Feynman integrals. To evaluate a family of Feynman
integrals which have the same structure of the integrand and differ by powers of propagators (in-
dices) the standard strategy is to apply integration-by-parts (IBP) relations and solve the problem in
two steps: a reduction of any given Feynman integral to so-called master integrals and the evalua-
tion of the master integrals. In this contribution we describe the computation of Feynman integrals
needed for the evaluation of the three-loop corrections to the static QCD quark potential. In par-
ticular we describe the use of the Mellin–Barnes technique to evaluate master integrals and the
application of Gröbner bases to solve the IBP relations.

In Section 2 we present a brief review of the method of Mellin–Barnes (MB) representation
and exemplify it by the evaluation of a non-trivial integral contributing to the three-loop potential.
Afterwards we explain in Section 3 the main features of the algorithm called FIRE (Feynman Inte-
gral REduction) which is based on an extension of the classical Buchberger algorithm to construct
Gröbner bases (see, e.g., Ref. [1]). In FIRE Gröbner bases are naturally combined with the well-
known Laporta algorithm. Finally, in Section 4 we present the first results of this evaluation: the
contributions proportional to n3

l and n2
l , where nl is the number of massless quarks.

2. Mellin–Barnes technique

The MB representation

1

(X +Y )λ =
∫ +i∞

−i∞

Y z

Xλ+z

Γ(λ + z)Γ(−z)
Γ(λ )

dz
2πi

(2.1)

can be applied to replace a sum of two terms raised to some power by their products in some powers.
For planar diagrams, experience shows that a minimal number of MB integrations is achieved if
one introduces them loop by loop, i.e. one derives a MB representation for a one-loop subintegral,
inserts it into a higher two-loop integral, etc. Consider, for example, the dimensionally regularized
Feynman integral of Fig. 1 which we denote by F(a1, . . . ,a11). A straightforward implementation
of the loop-by-loop strategy leads to a six-fold MB representation which reads

F(a1, . . . ,a11) =

(
iπd/2

)3
(−q2)6−a1,...,8−a9,10,11/2−3ε2a9,11−2

(v2)a9,10,11/2√π ∏i=1,3,4,6,7,8,9,11 Γ(ai)Γ(4−a3,4,8,11 −2ε)Γ(4−a1,6,7,9 −2ε)

Figure 1: Feynman integral appearing in the calcula-
tion of the three-loop corrections to the static potential.
The straight and wiggled lines correspond to massless
scalar and static propagators, respectively. The num-
bers next to the lines refers to the corresponding index
ai.
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× 1
(2πi)6

∫ +i∞

−i∞

6

∏
j=1

(
Γ(−z j)dz j

) Γ(a4 + z1,2)Γ(a6 + z4,5)Γ(1/2− z3)Γ(1/2− z6)

Γ(a5 − z2,5)Γ(a1,2,3,4,6,7,8 +a9,11/2+ 2ε −4+ z1,...,6)

×Γ(a9/2+ z6)Γ(a11/2+ z3)Γ(2−a3,4 −a11/2− ε − z1 + z3)Γ(a11/2−2+a3,4,8 + ε + z1,2,3)
Γ(a10/2+ 1/2− z3,6)Γ(8−a1,...,8 −a9,10,11/2−4ε − z1,4 + z3,6)

×Γ(a1,...,8 +a9,10,11/2−6+ 3ε + z1,4)Γ(6−a1,2,3,4,6,7,8 −a9,10,11/2−3ε − z1,2,4,5)

×Γ(2−a4,8 −a11/2− ε − z2,3)Γ(2−a1,6 −a9/2− ε − z4 + z6)Γ(2−a5 −a10/2− ε + z2,3,5,6)

×Γ(2−a6,7 −a9/2− ε − z5,6)Γ(a1,6,7 +a9/2−2+ ε + z4,5,6) , (2.2)

where a3,4,8,11 = a3 + a4 + a8 + a11, z1,2,3 = z1 + z2 + z3, etc. By definition, any integration con-
tour over zi should go to the right (left) of poles of Gamma functions with +z-dependence (−z-
dependence).

There are two strategies for resolving the singularities in ε in MB integrals suggested in
Refs. [2, 3] (see also Chapter 4 of [4]). The second one was formulated algorithmically [5, 6],
and the corresponding public code MB.m [6] has become by now a standard way to evaluate MB
integrals in an expansion in ε . It can be combined with the program AMBRE [7] which can be
used to derive MB representations in the loop-by-loop approach. Using MB.m and evaluating the
resulting finite MB integrals by corollaries of Barnes lemmas we have obtained, for example, the
following result for one of the master integrals occuring in the reduction of F(a1, . . . ,a11)

F(1, . . . ,1,0,1) = − (iπd/2)3

(−q2)3+3εv2

[
56π4

135ε
+

112π4

135
+

16π2ζ (3)
9

+
8ζ (5)

3
+O(ε)

]
. (2.3)

At the three- and four-loop level, the method of MB representation was successfully applied
in [8, 9, 10, 11].

The loop-by-loop approach becomes problematic for non-planar diagrams. A typical phe-
nomenon is that factors such as (−1)zi arise. This means that the convergence of MB integrals at
large values of Im(zi) is no longer guaranteed. Moreover, poles in ε arise not only due to “glu-
ing” of poles of different nature (a typical example is the product Γ(ε + z)Γ(−z); there is no space
between the first poles of the two gamma functions if ε → 0) but also from the integration over
large Im(zi). A safe way to proceed with non-planar diagrams is to start from an alpha (Feynman)
parametric representation and apply (2.1) to the two basic functions in this representation. (See
also Ref. [12] for a discussion of this problem.)

3. FIRE: Feynman Integral REduction

There are three approaches to solve IBP relations [13] in a systematic way: Laporta’s algo-
rithm[14], Baikov’s method [15] and two approaches using Gröbner bases which are described
in Refs. [16] and [17, 18, 19, 20], respectively. To solve the reduction problems arising in the
evaluation of the three-loop potential we use the latter algorithm whose computer implementation
is called FIRE. It is based on a generalized Buchberger algorithm for constructing Gröbner-type
bases associated with polynomials of shift operators. This method was recently used to evaluate a
family of nontrivial three-loop Feynman integrals [21]. Let us in the following describe some new
features of this algorithm.
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Similarly to Laporta’s algorithm, in our approach we work in a given sector, i.e. a domain
of integer indices ai where some indices are positive and the rest of the indices are non-positive.
The aim is to express any integral from the sector in terms of master integrals of this sector and
integrals from lower sectors, where at least one more index is non-positive. It turns out that in the
higher sectors (with a small number of non-positive indices) the corresponding s-basis [18, 20, 19]
(a kind of a Gröbner basis) can be constructed easily (and, in most cases, even automatically).

In the opposite situation where a lot of non-positive indices occur, s-bases are constructed
not so easily. Usually there is the possibility to explicitly perform an integration over some loop
momentum for general value of ε with results in terms of gamma functions. A straightforward
way to do this leads to multiple summations and turns out to be impractical. However, there is
an alternative approach which can be illustrated using the example of diagram of Fig. 1: consider
the region a2,a5,a10 ≤ 0 and a7,a8 > 0 (i.e. the union of the sectors with such restrictions). In
this situation one can integrate over the middle loop momentum l which enters the propagators
of the central subgraph with five lines. By constructing an s-basis for this region, it turns out
possible to solve the IBP relations for the corresponding subintegral over l in order to express any
such subintegral in terms of master integrals. In other words, the indices a2,a5,a10,a7,a8 can be
reduced to their boundary values, i.e. a2,a5,a10 = 0, a7,a8 = 1, up to integrals that drop out
from this region. Then, after using this reduction procedure, it will be sufficient to use explicit
integration formulae only for the boundary values of the indices. This replacement is very simple,
without multiple summations.

It turned out possible to implement the solution of the recursive problem for the subgraph in
terms of the Feynman integrals for the whole graph. In this reduction, pure powers of the parame-
ters which are external for the subgraph transform naturally into the corresponding shift operators
and their inverse. Integrals which are obtained from initial integrals by an explicit integration over
a loop momentum in terms of gamma function usually involve a propagator with an analytic regu-
larization by an amount proportional to ε (and, sometimes, 2ε). After this integration we obtain a
two-loop reduction problem with seven indices which is then solved by FIRE.

After using Gröbner bases in higher sectors and an explicit integration in lower sectors, it is
still necessary to solve the reduction problem in a relatively small number of intermediate sectors.
In these cases we turn to Laporta’s algorithm implemented as part of FIRE.

4. Evaluating three-loop static quark potential

The QCD potential between a static quark and its antiquark can be cast in the form

V (|�q|) = −4πCF αs

�q2

[
1+

αs

4π
a1 +

( αs

4π

)2
a2 +

( αs

4π

)3
(

a3 + 8π2C3
A ln

µ2

�q2

)
+ · · ·

]
, (4.1)

where the renormalization scale of αs is set to �q2. The one-loop contribution a1 is known since
almost 30 years and also the two-loop term has already been computed end of the nineties. Fur-
thermore logarithmic contributions are known at three- and four-loop level. Explicit results and the
references are nicely summarized in the review [22]. The non-logarithmic third-order term, a3, is
still unknown. It is conveniently be parametrized in the form

a3 = a(3)
3

n3
l +a(2)

3
n2

l +a(1)
3

nl +a(0)
3

, (4.2)
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where nl denotes the number of massless quarks. Using the techniques described above we evalu-
ated the coefficients a(3)

3
and the CAT 2

F part of a(2)
3

which read

a(3)
3

= −
(

20
9

)3

T 3
F , a(2)

2

∣∣∣
CAT 2

=
(

12541
243

+
368ζ (3)

3
+

64π4

135

)
CAT 2

F . (4.3)
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