
P
o
S
(
R
A
D
 
C
O
R
 
2
0
0
7
)
0
1
9

All-order symmetric subtraction of divergences for
massive Yang-Mills theory based on non linearly
realized gauge group

Andrea Quadri∗
Università di Milano & INFN, Sez. di Milano
E-mail: andrea.quadri@mi.infn.it

Daniele Bettinelli
Università di Milano & INFN, Sez. di Milano
E-mail: daniele.bettinelli@mi.infn.it

Ruggero Ferrari
Università di Milano & INFN, Sez. di Milano
E-mail: ruggero.ferrari@mi.infn.it

We review a recently proposed all-orders symmetric subtraction procedure for massive Yang-
Mills theory based on the nonlinearly realized gauge group. Physical unitarity is fulfilled order
by order in the loop expansion. The theory is defined in terms of a finite number of physical
parameters entering in the tree-level vertex functional. An outlook on future developments is also
given.

8th International Symposium on Radiative Corrections
October 1-5, 2007
Florence, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:andrea.quadri@mi.infn.it
mailto:daniele.bettinelli@mi.infn.it
mailto:ruggero.ferrari@mi.infn.it


P
o
S
(
R
A
D
 
C
O
R
 
2
0
0
7
)
0
1
9

All-order symmetric subtraction of divergences for nonlinearly realized massive Yang-Mills Andrea Quadri

The mass generation by the spontaneous symmetry breaking implemented via the Higgs mech-
anism is the last yet untested pillar of the Standard Model. A sharp prediction of this theoretical
scheme is the existence of (at least one) additional physical scalar particle.

In this connection it is a remarkable fact that an alternative spontaneous symmetry breaking
procedure has been known since a long time which avoids (perturbatively) the introduction of
any additional physical particle in the spectrum. This goes under the name of the Stückelberg
mechanism [1],[2] and is based on a nonlinearly realized representation of the non-Abelian gauge
group. However, a consistent formulation of this mechanism was known only at the classical
level, and the issue of how to define the nonlinearly realized massive Yang-Mills theory at the
quantum level has remained up to now an unsettled question. The reason is that the nonlinearly
realized theory, unlike its linear counterpart, is not power-counting renormalizable and therefore
the standard subtraction procedures, developed in the context of gauge theories during the last
quarter century, cannot be applied.

Recently a consistent theoretical framework for the all-orders subtraction of nonlinearly real-
ized massive SU(2) Yang-Mills theory has been achieved in [3]. In this formulation one introduces
the SU(2) element

Ω =
1
v
(φ0 + iτaφa) , Ω

†
Ω = 1 , det Ω = 1 ,

φ
2
0 +φ

2
a = v2 , (1)

where v is the spontaneous symmetry breaking parameter. φa are the pseudo-Goldstone fields.
The gauge group flat connection is defined by

Fµ = iΩ∂µΩ
† = Faµ

τa

2
, (2)

where τa are the Pauli matrices. The SU(2)L gauge transformation on Ω and the gauge connection
Aµ = Aaµ

τa
2 is

Ω
′ = ULΩ ,

F ′
µ = ULFµU†

L + iUL∂µU†
L ,

A′µ = ULAµU†
L + iUL∂µU†

L . (3)

The gauge-invariant Stückelberg mass term can be parameterized in D dimensions as (we follow
the conventions of [3])

ΛD−4

g2

∫
dDx

M2

2
(Aaµ −Faµ)2 . (4)

Λ is the scale of the radiative corrections, g is the gauge coupling constant and M is the mass of the
vector mesons.

The resulting model is not renormalizable by power-counting, due to the couplings arising in
eq.(4) from the nonlinear constraint φ0 entering in Faµ . In fact severe UV divergences occur in the
sector spanned by the pseudo-Goldstone fields, since already at one loop level there is an infinite
number of divergent amplitudes with external pseudo-Goldstone legs. However it turns out that
such a wild behaviour can be tamed by imposing a local functional equation [5] which encodes
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the invariance of the SU(2) Haar measure under local left multiplication. This equation was first
studied for the SU(2) nonlinear sigma model in [5]-[9]. It gives rise to a bilinear local functional
identity for the vertex functional Γ yielding a powerful hierarchy among Green functions. The
Green functions involving at least one pseudo-Goldstone field (descendant amplitudes) are fixed by
the local functional equation once the amplitudes with no external pseudo-Goldstone legs (ancestor
amplitudes) are known.

At each order in the loop expansion only a finite number of ancestor amplitudes are divergent.
This result holds as a consequence of the weak power-counting theorem [3], [6]. The pole part of
any amplitude can be reconstructed once one knows the pole part of the ancestor amplitudes either
by directly solving the local functional equation or by making use of the cohomological methods
discussed in [6] for the one loop approximation and in [9] at arbitrary order in the loop expansion.

These methods have been used in [4] in order to provide a compact representation of the one-
loop counterterms of the nonlinearly realized massive Yang-Mills theory in terms of a suitable
linear combination of invariants compatible with all the symmetries of the model.

In addition to the local functional equation a number of other identities exist in the case of the
nonlinearly realized massive Yang-Mills theory.

The Slavnov-Taylor (ST) identity must be imposed in order to fulfill the requirement of phys-
ical unitarity [3]. The proof of the latter in the perturbative expansion has been given both in an
operatorial approach based on the existence of a conserved BRST charge and in a diagrammatic
approach based on the cutting rules [1]. It is worth noticing that the ST identity does not give rise to
the hierarchy among Green functions required in order to control the divergences in the nonlinear
theory. This important point is discussed at length in [3]. The local functional equation cannot be
discarded in the program of subtracting the divergences of the nonlinearly realized massive Yang-
Mills. On the other hand, it is not a substitute for the ST identity as far as physical unitarity is
addressed. Both of them are essential tools in achieving a consistent formulation of the theory at
the quantum level.

The Landau gauge-fixing has been used in [3],[4]. The ghost equation and the Landau gauge
equation allow to control the dependence on the gauge-fixing also in the nonlinearly realized case.
The extension to an arbitrary ’t Hooft gauge requires some care in the nonlinear theory. The ap-
propriate procedure is outlined in [10]. In the latter reference it is also shown that the gauge-
independent vector bosons self mass can be computed in the nonlinearly realized theory as the zero
of the two-point vector bosons 1-PI function (unlike in the linear model where the inclusion of the
tadpoles is required in order to fulfill the gauge independence). The explicit evaluation of the self
mass for the nonlinear theory has been given in [4].

The subtraction procedure is based on the subtraction of the poles in D−4 of the amplitudes,
in dimensional regularization, after a suitable normalization has been performed. The latter is
essential in order to guarantee the fulfillment of the symmetries of the model.

The question of the number of physical parameters within the present approach has been ad-
dressed in [8]. The problem can be stated as follows. The removal of the divergences is controlled
at each loop order by a set of invariants (with divergent coefficients in the limit D→ 4) compatible
with the symmetries of the theory. These invariants are finite in number at each order in the loop
expansion. The issue arises of whether a finite number of new independent physical parameters can
be introduced order by order in the loop expansion in correspondence to the coefficients of such
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invariants. It turns out that this is not possible in the present approach, since these invariants cannot
be inserted back into the tree-level vertex functional without violating either the symmetries or the
weak power-counting theorem.

We wish to make some more comments on the violation of the weak power-counting. The
presence of the flat connection allows to trivialize the SU(2)L left symmetry, since the following
bleached combination

aµ = Ω
†AµΩ− iΩ†

∂µΩ = aaµ

τa

2
(5)

is invariant under the gauge transformations in eq.(3). Therefore any polynomial in aaµ and its
derivatives is allowed by the nonlinearly realized gauge symmetry. However, the imposition of the
validity of the weak power-counting strongly constraints the dynamics of the gauge fields. In fact
the most general classical action compatible with the nonlinearly realized SU(2)L gauge symmetry
and the weak power-counting theorem is [3]

S =
Λ(D−4)

g2

∫
dDx

(
− 1

4
Gaµν [A]Gµν

a [A]+
1
2

Mabaaµaµ

b

)
, (6)

where Gaµν [A] is the field strength of Aaµ and Mab is an arbitrary symmetric mass matrix. Therefore
the standard Yang-Mills term is recovered by the requirement of the validity of the weak power-
counting. By imposing the global SU(2)R symmetry, the mass term in eq.(6) reduces to the diagonal
Stückelberg term in eq.(4).

On the other hand, if the interaction terms of the gauge bosons are modified w.r.t. the standard
Yang-Mills term by adding monomials in aaµ and its derivatives, the weak power-counting is max-
imally violated (an infinite number of one-loop divergent ancestor amplitudes involving the gauge
field Aaµ arise [3]) and the theory can never be made finite already at one loop.

The theory has two physical parameters: the gauge boson mass M and the gauge coupling
constant g. A change in Λ cannot be compensated by a shift in M and g. Λ should be fitted against
the comparison with the experimental data and plays the rôle of a further parameter setting the
scale of the physical observables. v is not a physical parameter [3].

The theoretical framework we have outlined is being developed by successive steps. It provides
a consistent and theoretically robust set of tools for dealing with nonlinearly realized gauge theories
at the quantum level. There are many important questions that could be addressed in the future.
Among them we wish to mention the running of the coupling constants and the associated problem
of the resummation, as well as the compatibility of the perturbation expansion with the Froissart
bounds. With reference to the latter issue, the fulfillment of physical unitarity order by order in the
loop expansion might imply an improvement in the range of energies where perturbation theory is
reliable w.r.t. naive estimates based on dimensional arguments.

A somehow related but independent issue is the application of the present approach to the
electroweak group SU(2)xU(1). The subtraction procedure we have described would provide one
consistent way to evaluate the radiative corrections driven by the nonlinearly realized gauge group,
and eventually compare them with the results obtained in the linear model and with the experi-
ments. This might become in the future an interesting option, given that, at the moment, there are
no compelling experimental data in favour of a linearly realized spontaneous symmetry breaking
mechanism.
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