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1. INTRODUCTION

In two recent papers [1], we proposed a reduction method @ Rrbitrary one-loop sub-
amplitudes athe integrand level [2]. The method is based on idea of expressing the integrand
of the one-loop amplitude in terms of the propagators thpedds on the integration momentum.
The solution of this equation can proceed in an hierarchiggl, by exploiting numerically the set
of kinematical equations for the integration momentumresgonding to the so-called quadruple,
triple and double cuts used in the unitarity-cut method [%]4 The method requires a minimal
information about the form of the one-loop (sub-)amplituate therefore it is well suited for a
numerical implementation. The method works for any set tdrimal and/or external masses, so
that one is able to study the full electroweak model, witHmihg limited to massless theories.

2. The OPP method

The starting point of the OPP reduction method is the gema@miession for théntegrand of
a generian-point one-loop (sub-)amplitude

N(q)

(@:m7 Di = (a+p)®—n¥, po#0. (2.1)

In the previous equation, we use a bar to denote objectglivim = 4+ ¢ dimensions, and
® = o + 6%, wherec? is e-dimensional andg-q) = 0. N(q) is the 4-dimensional part of the
numerator function of the amplitude. If needed, thdimensional part of the numerator should
be treated separately, as explained laifq) depends on the 4-dimensional denominafys=
(q+ pi)2 — m? as follows
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Inserted back in Eg. (2.1), this expression simply statesnhlti-pole nature of angn-point one-

loop amplitude, that, clearly, contains a pole for any pgatar in the loop, thus one has terms
ranging from 1 tom poles. The coefficients of the poles can be further split io pleces. A
piece that still depend oq (the termsd, & b, &), that vanishes upon integration, and a piece that
do not depend on q (the termsc,b,a). Such a separation is always possible and the latter set of
coefficients is immediately interpretable as the ensembilkeocoefficients of all possible 4, 3, 2,
1-point one-loop functions contributing to the amplitude.
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Once Eg. (2.2) is established, the task of computing thela@mg-amplitude is then reduced
to the algebraical problem of fitting the coefficientsc,b,a by evaluating the functioiN(q) a
sufficient number of times, at different valuesgfand then inverting the system. That can be
achieved quite efficiently by singling out particular creswfq such that, systematically, 4, 3, 2 or
1 among all possible denominatdds vanishes. Then the system of equations is solved itergtivel
First one determines all possible 4-point functions, the® 3-point functions and so on. For
example, callingﬁ the two solutions (in general complex) for which

Do=D; =D, =D3=0, (2.3)

(there are 2 solutions because of the quadratic nature gfrtpagators) and since the functional
form of J(q;0123) is known, one directly finds the coefficient of the box diagremmtaining the
above 4 denominators through the two simple equations

N(dg) = [d(0123 +d(q5;0123] [] Di(%g)- (2.4)
i#0,1,2,3
This algorithm also works in the case of complex denomirgatoamely with complex masses.
Notice that the described procedure can be perforatebe amplitude level. One does not need
to repeat the work for all Feynman diagrams, provided tha&in & known: we just suppose to be
able to comput&(q) numerically.

The described procedure works in 4 dimensions. Howeven, when starting from a perfectly
finite tensor integral, the tensor reduction may eventuatyl to integrals that need to be regular-
ized (we use dimensional regularization). Such tensorgigite, but tensor reduction iteratively
leads to rankn m-point tensors with X m < 5, that are ultraviolet divergent whem< 4. For this
reason, we introduced, in Eq. (2.1), ttielimensional denominatoi3;, that differs by an amount
¢ from their 4-dimensional counterparts

D; = Di + &°. (2.5)

The result of this is a mismatch in the cancellation ofdhdimensional denominators of Eq. (2.1)
with the 4-dimensional ones of Eqg. (2.2). The rational pathe amplitude, calledr; [7], comes
from such a lack of cancellation. A different source of RagibTerms, called?,, can also be
generated from the-dimensional part oN(q) (that is missing in Eq. (2.1)). For the time being, it
should be added by hand by looking at the analytical straadfithe Feynman Diagrams or via a
dedicated set of Feynman Rules. Examples on how to confippuaee reported in [7] and [8]. The
Rational TermdR; are generated by the following extra integrals, introduodgd]

e & i (pi — pj)?
/d DDJ__7[m2+mJZ_T}+ﬁ(E)’
i i
1/ qDD[h::_7f+@) (/d 950,00 ~ 6 17 (2.6)

The coefficients of the above integrals can be computed tyrigat the implicit mass dependence
(namely reconstructing the# dependence) in the coefficieritsc, b of the one-loop functions, once
G is reintroduced through the mass shift — m? — . One gets

b(ij; &%) = b(ij)+ &b (ij), clijkd) = clijk)+Gc?(ijk). (2.7)
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Furthermore, by defining

m-1 m-1 _
7M(@P)= S [dioirisis &) +d(grioiniziz )] [ Di, (2.8)
in<i1<liz<is i#i07ilyi27i3
the following expansion holds
m . .
7M@) =3 a5 9d% ), (2.9)
J:

where the last coefficient is independent gnd®™4)(q) = d®™4. In practice, once the 4-
dimensional coefficients have been determined, one canthediits for different values of?;

in order to determind@(ij), c@(ijk) andd®™4. Such three quantities are the coefficients of
the three extra scalar integrals listed in Eq. (2.6), respdyg. Therefore, the OPP method allows
an easy and purely numerical computation of the Rationah$af typeR;.

3. Cut Tool s and the problem of the Numerical Inaccuracies

A FORTRAN9O program Cut Tool s) implementing the OPP method can be found in [6],
to which we refer for more details. We would like to stresd th& only information needed by
the code is the number and type of contributing propagatmigtze numerator functioN(q) (and
its maximum rank). A particularly interesting feature o t®PP technique, also implemented in
Cut Tool s, is that it allows a natural numerical check of the accuraicthe whole procedure.
Given the paramount importance of this issue in practicigutations, we describe it here in some
detail.

During the fitting procedure to determine the coefficientsparical inaccuracies may occur
due to appearance of Gram determinants in the solutionsHimhw, 3, 2 or 1 denominators vanish;
due to the vanishing of some of the remaining denominatohg&mcomputed at a given solution;
and to instabilities occurring when solving systems ofdinequations.

In principle, each of these three sources of instabilitis loe cured by performing a proper
expansion around the problematic (iezceptional) Phase-Space point. However, this often results
in a huge amount of work that, in addition, spoils the geritgralf the algorithm. Furthermore,
one is anyway left with the problem of choosing a separatiger@n to identify the region where
applying the proper expansion rather than the generalitigor

The solution implemented iGut Tool s is, instead, of a purely numerical nature and relies
on a unique feature of the OPP method: the fact that the reduist performed at the integral
level. In detail, the OPP reduction is obtained when, as in(Eq), the numerator functioN(q)
is rewritten in terms of denominators. Therefdtéq) computed for some arbitrary value gby
using the I. h. s. of Eq. (2.2) should alwaysrgnerically equal to the result obtained by using the
expansion in the r. h. s. This is a very stringent test thappied in Cut Tool s for any Phase-
Space point. When, in axceptional Phase-Space point, these two numbers differ more than a user
defined quantity, the coefficients of the loop functidosthat particular point are recomputed by
using multi-precision routines [9] (with up to 2000 digitx)ntained inCut Tool s. Finally, one
should mention that, usually, only very few points are ptiédly dangerous, namelgxceptional,
so that a limited fraction of addition&PUtime is used to cure the numerical instabilities, therefore
compensating the fact that the multi-precision routinessémwer than the normal ones.
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4. pp— ZZZ at NLO

The calculation is composed of two parts: the evaluationifi®l corrections, hamely one-
loop contributions obtained by adding a virtual particlette tree-order diagrams, and corrections
from the real emission of one additional massless particm finitial and final states, which is
necessary in order to control and cancel infrared singidari The virtual corrections are com-
puted using th€@PP reduction[1]. In particular, we make use @fit Tool s [6]. Concerning the
contributions coming from real emission we used the dipoldraction method [15] to isolate the
soft and collinear divergences and checked the resultg) tkanphase space slicing method [13]
with soft and collinear cutoffs, as outlined in [14].

These results have also been recently presented, folloavirary different approach, by La-
zopouloset al in Ref. [10]. A more complete study, that will also includestbase ofNV W~ Z,
W*ZZ, andW+W~-W= production, will be presented in a forthcoming publicat[af].

Let us begin with the evaluation of the virtual QCD correstido the procesgq — ZZZ. We
consider the process

a(p1) +a(p2) — Z(ps) +Z(pa) +Z(ps) (4.1)

At the tree-level, there are six contributions to this pes;@btained by permuting the final legs
in all possible ways. One-loop corrections are obtainedduljrey a virtual gluon to the tree-level
structures. Overall this calculation involves the redutiof 48 diagrams.

We perform a reduction to scalar integrals using @#P reduction method [1]. The co-
efficients determined in this manner should be multipliedthsy corresponding scalar integrals.
Since, in the process that we are studying,gralependent massive propagator appears, we will
only need massless scalar integrals. They are computed tisrpackagé&®nelL Cop written by
A. van Hameren [12].

The last step is the calculation of Rational Terms. As ergldiin Section 2, part of this
contribution, that we calRy, is automatically included by the to the reduction algarthThe
second ternR,, coming from the explicitlye-dimensional part of the amplitude, has been added
computed separately; it turns out that only three- and taiotdunctions contribute and the result
is proportional to the tree-order amplitude.

We checked that our results, both for poles and finite pagtgeawith the results obtained by
the authors of Ref. [10].

In what concerns the real emission, we only have to deal wittal state singularities, where
we distinguishgg andqg initial states. For theg initial state, no soft singularity is present because
the corresponding tree-level contribution vanishes. Wall¢hat the structure of the NLO partonic
cross sections is as follows:

GN_LO_ / do'q+d0q+d0q+/d /[do%—doc%—]
ALY, VVVg

oo — / [+do /d / [doft —dag] . (4.2)
A%Y VVVg

wheredo® doV,do®,doR do” are respectively the Born cross section, the virtual, siroun-
terterm, real and real-subtraction cross sections. Fogdheitial state two dipoles are needed as
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subtraction terms. Ipgs is the momentum which can become soft or collinear, the dipsim for
gluon emission off the quark is given by

= 8raC 1+ %2 .
bs.d2 — s“F B 2
% — P1-P2—P2-Ps—P1-Ps

P1- P2
where the{ 5} are redefined momentép;} = {p1se, P, P3, Psa, Ps}, Which are again on-shell and
go to{ps,...,ps} in the singular limit, e.g.pis = Xp1. The regularised real emission part then
reads

R A~A _
daqq do;

| = [CF | AG{ i })[? — 70 — 9&296’%] dPyvvg,

6N 25y,
where the factor A6 accounts for the three identical bosons in the final statereMetails can be
found in [15, 11].

The hadronic differential cross section with hadron moméhtand P> is the sum over all

partonic initial states convoluted with the parton disitibn functions
do(P,P,) = ;/dzldzzfa(zlvllF)fb(227UF)dUab(leleZP2)a (4.4)
where the sum runs over the partonic configuratigasg, gq, qd, 94, qg.

As an explicit example we present the numerical resultdi®caseiu — ZZZ for \/s= 14TeV
and using CTEQG6L1[16]. Tree-order cross section has bealuated using thédELAC event
generator[17]. In the following table the results in fb aregented for the tree-order cross section
0o, the ratio of the virtual to the tree-level cross sectiord #re real contribution, combining-5
and 6-point contributions, as described above, for all chann&lsuu, ug, gu, for different values
of the factorization(renomralization) scale € ur = UR).

scale (os) Gv/O'o OR ONLO
=My | 1.481(5)| 0.536(1)| 0.238(2)| 2.512(2)
U =2My | 1.487(5)| 0.481(1)| 0.232(2)| 2.434(2)
y=3My | 1.477(5)| 0.452(1)| 0.232(2)| 2.376(2)
U =4My | 1.479(5)| 0.436(1)| 0.232(2)| 2.355(2)
[ =5My | 1.479(5)| 0.424(1)| 0.237(2)| 2.343(2)

As is evident from these results, the-factor is quite sizeabl¢l.58— 1.69), whereas the
dependence on the scalds for both cases quite weak, due mainly to the electroweakacher of
the process.

5. Conclusions

In conclusion we have presented and successfully testeduméer of applications, a reduc-
tion method at the integrand level that is changing the wagpngdooking at the NLO calculations:
a full numerical but still algebraic method has been born.
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The efficiency of the OPP is quite good, the main factor belmegefficiency with which the
one-loop amplitude, at the integrand level, is computed.

Finally, taking into account the speed, precision and easitf the OPP method, a universal
NLO calculator/event-generator is feasible.
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