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1. Introduction

Braneworld cosmological models, by realizing the four-dimensional universe entirely in a hy-
persurface of a higher dimensional space, are intrinsically dimensionally asymmetric. The emer-
gence of the difference between the parallel and the orthogonal directions to this hypersurface
seems to reverberate the Goldstone mechanism, where massless multiplets are imparted with a
mass in the direction along which symmetry is spontaneouslybroken. Here we propose to use
spontaneous symmetry breaking (SSB) of bulk scalar fields torelate the mass measured on the
brane to a bulk mechanism and thus look for signatures of extra dimensions. This is the oppo-
site idea to the Dvali-Shifman mechanism, where a non-confinement Higgs (spontaneously broken
symmetry) phase is found on the brane, whereas a confinement (restored symmetry) phase is pre-
served in the bulk [1]. Moreover, we couple the bulk scalar fields non-minimally to the Ricci scalar.
This is the simplest interaction which yields a canonical kinetic term. Furthermore, it reduces to
Brans-Dicke up to a field transformation for a vanishing vacuum expectation value (vev). Recently,
a variation of the Dvali-Shifman mechanism triggered by thegeometry of five-dimensional anti-de
Sitter was applied to the study of the dynamics along the direction normal to the brane of a scalar
field non-minimally coupled to gravity [2].

This contribution reports on a recent study where we consider both real and complex scalar
fields in the bulk space and examine their implication in the mechanism of SSB on the brane upon
acquiring a non-vanishing bulk vev [3]. Furthermore, when studying the case of the complex scalar
field, we also consider a minimally coupledU(1) gauge field so that spontaneous breaking of the
gauge symmetry can take place. After establishing how bulk quantities induce quantities on the
brane, we compute the equations of motion induced on the brane starting from a bulk action. The
resulting Einstein equations provide the relations between the induced geometry on the brane and
the matter fields therein. Furthermore, we observe that matter a priori localized on the brane, such
as the brane tension, will only interact gravitationally with the bulk matter fields induced on the
brane when a non-minimal coupling exists. Otherwise, braneand bulk matter fields do not see
each other. The non-minimal coupling also reinforces the canonical mechanism of spontaneous
symmetry breaking at very high energies via the interactionof the brane tension with the scalar
fields. Moreover, we discuss whether the SSB mechanism couldsuffice to generate masses on the
brane and thus provide a localization mechanism. The four-dimensional masses, both of the scalar
and the gauge fields, induced on the brane are found to be of order the four-dimensional Planck
mass. Taking the inverse of the mass as a measure of the confinement to the brane [4], it follows
that the range of the induced interaction is short about the brane, which suggests the localization of
the bulk fields about the position of the brane.

In this contribution we consider a real scalar field in the bulk and non-minimally coupled to
gravity via the Ricci scalar. [For the case of the complex scalar field, we refer the reader to Ref. [3].]
Following the procedure described in the Appendix, we derive the induced equations on the brane
from the bulk action. In particular, we derive the effectivepotential on the brane and compute the
effective mass of the scalar field induced on the brane upon taking a non-vanishing vev in the bulk.
Finally, we analyse the implications of our results for a mechanism of localization of matter on the
brane. We keep the number of space dimensionsd arbitrary, rendering the results valid for any
codimension-one brane.
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2. Real Scalar Field Non-minimally Coupled in the Bulk

In this section we study the case of a bulk, real scalar fieldφ . In addition to the Einstein-
Hilbert term and the canonical kinetic and potential terms of φ , we consider an interaction term
with a non-minimal coupling ofφ to the Ricci scalar

L =
1

κ2
(5)

R−2Λ+ ξ φ2R−
1
2

gµν(∇µφ)(∇ν φ)−V(φ2). (2.1)

Here,κ2
(5) = 8πGN(5) = 1/M3

Pl is the five-dimensional gravitational coupling constant and ξ is a
dimensionless coupling constant which measures the non-minimal interaction. In the cosmological
constant termΛ = Λ(5) + Λ(4) we have included both the bulk vacuum valueΛ(5) and that of the
braneΛ(4), described by a brane tensionσ localized at the position of the brane,Λ(4) = σδ (N).

2.1 The induced dynamics on the brane

First we derive the equations of motion for both the scalar field and the graviton as measured by
an observer localized on and confined to the brane. This procedure follows closely the techniques
developed in Ref. [5] for a vector field and in particular usesthe results derived therein, which for
completion are included in an appendix.

By varying the action with respect to the metric, we obtain the Einstein equation in the bulk
(

1

κ2
(5)

+ ξ φ2

)

Gµν + Λgµν =
1
2

T(φ)
µν + ξ Σ(φ)

µν , (2.2)

where

T(φ)
µν = (∇µφ)(∇ν φ)+gµν

[

−
1
2

gαβ (∇αφ)(∇β φ)−V(φ2)

]

(2.3)

is the stress-energy tensor associated withφ and

Σ(φ)
µν = ∇µ∇νφ2−gµνgαβ ∇α∇β φ2 (2.4)

is the contribution from the interaction term. We note theφ–dependence of the five-dimensional
gravitational coupling constant akin to that of the Brans-Dicke formulation. For the equation of
motion for theφ field, obtained by varying the action with respect toφ , we find that

gµν∇µ∇νφ −
∂V
∂φ

+2ξ φR= 0 . (2.5)

We now proceed to project the equations in the directions parallel (denoted byA) and orthog-
onal (denoted byN) to the surface of the brane, finding for the stress-energy tensorT(φ) that

T(φ)
AB = (∇Aφ)(∇Bφ)+gAB

[

−
1
2

[

(∇Cφ)2 +(∇Nφ)2]−V(φ2)

]

,

T(φ)
AN = (∇Aφ)(∇Nφ) ,

T(φ)
NN = (∇Nφ)(∇Nφ)+gNN

[

−
1
2

[

(∇Cφ)2 +(∇Nφ)2]−V(φ2)

]

, (2.6)
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and similarly for the source tensorΣ(φ)
µν that

Σ(φ)
AB = (∇A∇B +KAB∇N)φ2−gAB

(

∇2
C + ∇2

N +K∇N
)

φ2 ,

Σ(φ)
AN =

(

∇A∇N −KA
B∇B

)

φ2 ,

Σ(φ)
NN = ∇N∇Nφ2−gNN

(

∇2
C + ∇2

N +K∇N
)

φ2 . (2.7)

Equating the(AB) components of the decomposition of the Einstein tensor and of the source terms
from the scalar fieldφ , we find for the Einstein equation parallel projected on to thebrane that

(

1

κ2
(5)

+ ξ φ2

)

[

G(ind)
AB +2KACKB

C−KABK −KAB,N−
1
2

gAB
(

−KCDKCD−K2−2K,N
)

]

=
1
2
(∇Aφ)(∇Bφ)+

1
2

gAB

[

−
1
2

[

(∇Cφ)2 +(∇Nφ)2]−V(φ2)

]

−gABΛ

+ ξ
[

(∇A∇B +KAB∇N)φ2−gAB
(

∇2
C + ∇2

N +K∇N
)

φ2] . (2.8)

To obtain the matching condition for the extrinsic curvature across the brane, we integrate the
(AB) component of the Einstein equation in the coordinate normalto the brane. For aZ2–symmetric
brane, we obtain for the(AB) matching condition across the brane

∫ +δ

−δ
dN

(

1

κ2
(5)

+ ξ φ2

)

(−KAB,N +gABK,N)

=
∫ +δ

−δ
dN

[

−gABΛ(4) + ξ
(

(KAB−gABK)∇Nφ2−gAB∇2
Nφ2)

]

, (2.9)

which yields
(

1

κ2
(5)

+ ξ φ2

)

(−KAB+gABK) = gAB

(

−
σ
2
−ξ ∇Nφ2

)

(2.10)

for φ2 even about the position of the brane. These provide boundaryconditions for ten of the fifteen
degrees of freedom. Five additional boundary conditions are provided by the matching conditions
from the(AN) and(NN) components of the projected Einstein equations. From inspection of the
(AN) components we note that on the brane

GAN = KA
B

;B−K;A = −∇B

(

∫

dN GA
B
)

= −∇BTA
B(φ) = 0 , (2.11)

which must vanish in order to preserve conservation of the induced stress-energyT (φ)
AB on the

brane, as read off of the right-hand side of Eq. (2.10). This condition constrains four degrees of
freedom. The(NN) component of the Einstein equation

(

1

κ2
(5)

+ ξ φ2

)

[

−R(ind) −KCDKCD +K2
]

+ Λ(5)

=
1
2

[

1
2

(∇Nφ) (∇Nφ)−
1
2

(∇Cφ) (∇Cφ)−V(φ2)

]

−ξ
(

∇2
C +K∇N

)

φ2 (2.12)

consists of the remaining constraint.
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Similarly, we expand the equation of motion for the scalar field φ

[

gAB(∇A∇B +KAB∇N)+ ∇N∇N
]

φ −
∂V
∂φ

+ 2ξ φ
(

R(ind) −KABKAB−K2−2K,N

)

= 0 . (2.13)

To obtain the matching condition forφ across the brane, we integrate in theN coordinate discarding
all derivatives other than alongN

∫ +δ

−δ
dN[K∇Nφ + ∇N∇Nφ −4ξ φK,N] = 0 . (2.14)

If we assumeZ2-symmetry across the brane, the matching condition forφ becomes

∇Nφ −4ξ Kφ = 0 . (2.15)

Substituting Eq. (2.15) back into Eq. (2.13), we obtain for the propagation ofφ on the brane that

gAB∇A∇Bφ −
∂V
∂φ

+2ξ φ
[

R(ind) −KABKAB+(1+8ξ )K2
]

= 0 . (2.16)

Moreover, equating the matching conditions for the extrinsic curvature, Eq. (2.10), and for the
scalar fieldφ , Eq. (2.15), we can solve forKAB and∇Nφ to find that

KAB = −
1
2

gAB σ
1/(d−1)

1/κ2
(5) + ξ φ2[1+8ξ d/(d−1)]

|N=0 , (2.17)

∇Nφ |N=0 = −2ξ φ σ
d/(d−1)

1/κ2
(5) + ξ φ2[1+8ξ d/(d−1)]

|N=0 . (2.18)

We substitute Eq. (2.15) for∇Nφ and Eq. (2.16) for∇2
Cφ in the (NN) component of the Einstein

equation, Eq. (2.12), to find forR(ind) that
(

1

κ2
(5)

+ ξ φ2(1+4ξ )

)

R(ind) =

(

1
4

+2ξ
)

(∇Cφ)2 +
1
2

V +2ξ φ
∂V
∂φ

+ Λ(5)

− KCDKCD

(

1

κ2
(5)

+ ξ φ2(1−4ξ )

)

+K2

(

1

κ2
(5)

+ ξ φ2(1−32ξ 2)
)

. (2.19)

Similarly, from Eq. (2.8) we find for the Einstein equation induced on the brane that

G(ind)
AB =

(

1

κ2
(5)

+ ξ φ2

)−1
[(

1
2

+2ξ
)

(∇Aφ)(∇Bφ)+2ξ φ∇A∇Bφ
]

− gAB

[

R(ind) +K2−d2 +d+4
2d2

]

, (2.20)

with R(ind) given by Eq. (2.19).
Using the equations derived above, we realize the case wherethe scalar field acquires a non-

vanishing vev〈φ〉 which minimizes the effective potential. This can induce spontaneous symmetry
breaking when the scalar field is coupled to a gauge field, thusendowing the latter with a mass,

5
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as discussed in Ref. [3]. Here, however, a non-vanishing vevwill entail a change in the effective
cosmological constant and in the effective mass of the scalar field. Moreover, once the scalar
field acquires a vev, no direction on the brane can be selected, which implies that∇A〈φ〉 = 0.

Consequently, Lorentz symmetry breaking cannot take placein the presence of a bulk scalar field
only. [See Ref. [5] for the case of an explicit violation of Lorentz symmetry due to a non-vanishing
vev for a vector field.]

We can read off of the induced Einstein equation the effective cosmological constant, which
would comprise all the terms proportional to the induced metric which do not vanish when all the
contributions from the matter fields vanish. However, in thecase that the matter fields acquire a
non-vanishing vev, the effective cosmological constant will contain the contribution of the matter
fields at the corresponding non-vanishing value. It followsthat

Λe f f

(

1

κ2
(5)

+ ξ 〈φ〉2(1+4ξ )

)

=
1
2
V(〈φ〉2)+2ξ 〈φ〉

∂V
∂φ

∣

∣

∣

∣

∣

φ=〈φ〉

+ Λ(5)

+ K2|φ=〈φ〉

[(

1

κ2
(5)

+ ξ 〈φ〉2

)

d2−d+4
2d2 +(2ξ 〈φ〉)2

(

−d2 +3d+4
2d2 −8ξ

)

]

. (2.21)

We thus observe that a non-vanishing vev in the bulk generates in the gravitational sector a contri-
bution to the cosmological constant on the brane.

2.2 The effective potential on the brane

Whether a non-vanishing vev for the scalar field can be observed on the brane depends on
the form of the effective potentialVe f f(φ2). The parameters of the potential will influence the
magnitude of its minimum and consequently the mass of the scalar field φ measured on the brane,
defined as the value of the second derivative of the effectivepotential evaluated at the vev of the
scalar field,〈φ〉. We first determine the effective potential measured on the brane and then proceed
to study the conditions for a non-vanishing vev.

The evolution ofφ on the brane, as described by Eq. (2.16) and withR(ind) given by Eq. (2.19),

gAB∇A∇Bφ −
∂Ve f f

∂φ
+

(

1
4

+2ξ
)

(∇Cφ)2 2ξ φ
1/κ2

(5) + ξ φ2(1+4ξ )
= 0 (2.22)

is determined by a damping term as well as by the effective potential induced on the brane. Here,

−
∂Ve f f

∂φ
=

1

1/κ2
(5) + ξ φ2(1+4ξ )

{

−
∂V
∂φ

(

1

κ2
(5)

+ ξ φ2

)

+ 2ξ φ
[

1
2
V + Λ(5)

]

+ 2ξ φK2

[

1

κ2
(5)

(

−
2
d

+2+8ξ
)

+ ξ φ2
(

−
2
d

+2+12ξ
)

]}

, (2.23)

whereV(φ2) is the bulk potential, which is assumed to have a Higgs type formV(φ)= µ2
(5)(φ

2/2)+

λ(5)(φ4/4) with λ(5) > 0. We computeVe f f by integrating Eq. (2.23) to find that

Ve f f(φ2) = φ2

[

µ2
(5)

2
1

1+4ξ
−

µ2
(5)

4
1

1+4ξ
+ λ(5)

1

ξ κ2
(5)

1
2(1+4ξ )2

(

1
4

+4ξ
)

]

6
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+ φ4 λ(5)

4

[

1
1+4ξ

−
1

4(1+4ξ )

]

+ ln
[

1+ ξ κ2
(5)φ

2(1+4ξ )
]

×

×

[

µ2
(5)

1

ξ κ2
(5)

1
2(1+4ξ )2

(

1
2

+4ξ
)

−λ(5)
1

(ξ κ2
(5))

2

1
2(1+4ξ )3

(

1
4

+4ξ
)

−
1

1+4ξ
Λ(5)

]

+
σ2

16
d2

(d+1)(d−1)
×

×

[

[−2/d+2(1+4ξ )](8d/(d−1))−4
1+8ξ d/(d−1)

1

1/κ2
(5)

+ ξ φ2[1+8ξ d/(d−1)]

−
κ2

(5)

ξ
d−1
d+1

(

−
2
d

+1+8ξ
)

ln

[

1+ ξ κ2
(5)φ

2(1+4ξ )

1+ ξ κ2
(5)φ2[1+8ξ d/(d−1)]

]]

(2.24)

for ξ 6= −1/4. Notice that, in the limit whenξ → 0, one recovers the original bulk potential with
an extra term on the brane tension,V(φ2)+(3/4)σ2κ2

(5)d
2/[(d+1)(d−1)]. It is natural to expect

that there exists a hierarchy of scales depending on whetherthe vev〈φ〉 is related to the Standard
Model (SM) scale or the grand unified theory scale. Thus, for|ξ φ2| � 1/κ2

(5), we can expand the

denominator of the first term inσ about 1/κ2
(5), keeping terms up to order six inφ , (ξ φ2)3. The

effective potential can thus be written as

Ve f f(φ2) = φ2

{

µ2
(5)

2
1

1+4ξ
−

µ2
(5)

4
1

1+4ξ
+ λ(5)

1

ξ κ2
(5)

1
2(1+4ξ )

(

1
4

+4ξ
)

−
1
16

σ2κ2
(5)(ξ κ2

(5))
d2

(d+1)(d−1)

[(

−
2
d

+2(1+4ξ )

)

8d
d−1

−4

]

}

+ φ4

{

λ(5)

4
1

1+4ξ
−

λ(5)

4
1

4(1+4ξ )

+
1
16

σ2κ2
(5)

1
2
(ξ κ2

(5))
2 d2

(d+1)(d−1)

[(

−
2
d

+2(1+4ξ )

)

8d
d−1

−4

](

1+ ξ
8d

d−1

)

}

− O[φ6]
1
16

σ2κ2
(5)

1
6
(ξ κ2

(5))
3

+ ln
[

1+ ξ κ2
(5)φ

2(1+4ξ )
]

×

×

[

µ2
(5)

1

ξ κ2
(5)

1
2(1+4ξ )2

(

1
2

+4ξ
)

−λ(5)
1

(ξ κ2
(5))

2

1
2(1+4ξ )3

(

1
4

+4ξ
)

−
1

1+4ξ
Λ(5)

]

+
1
16

σ2κ2
(5)

d2

(d+1)(d−1)
×

×

[

[−2/d+2(1+4ξ )](8d/(d−1))−4
1+8ξ d/(d−1)

7
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−
1
ξ

d−1
d+1

(

−
2
d

+1+8ξ
)

ln

[

1+ ξ κ2
(5)φ

2(1+4ξ )

1+ ξ κ2
(5)φ2[1+8ξ d/(d−1)]

]]

. (2.25)

We thus observe that, up to sub-dominant logarithmic terms,the effective potential is of the form
Ve f f = µ2

e f f(φ2/2)+ λe f f(φ4/4)+O[φ6], where

µ2
e f f ∼ µ2

(5) + λ(5)
1

ξ κ2
(5)

−σ2ξ κ4
(5) , (2.26)

λe f f ∼ λ(5) + σ2ξ 2κ6
(5) . (2.27)

If µ2
e f f < 0 andλe f f > 0, then one expects a non-vanishing vev for the scalar field. The first condi-

tion guarantees that a non-vanishing minimum exists, whereas the second condition guarantees that
such minimum is finite. Conversely, ifµ2

e f f > 0 andλe f f > 0, then symmetry is always unbroken.
Thus, imposing thatλe f f > 0, it follows that λ(5) > −σ2ξ 2κ6

(5). Consequently, in order to verify

the conditionµ2
e f f < 0, we must have thatµ2

(5) < −2σ2ξ κ4
(5).

We notice that the bulk scalar fieldφ , being a five-dimensional field, has dimension[φ ] = M3/2.
Accordingly,µ(5) has dimension of mass andλ(5) dimensions of inverse of mass. In order to recover
characteristically four-dimensional quantities, we define the four-dimensional scalar fieldΦ as the
rescaling ofφ by an appropriate mass scaleMφ . In the mode expansion of a bulk field, this mass
can be identified with the mode function dependent on the direction N evaluated at the position of
the brane in the bulk. Thus, forφ = M1/2

φ Φ, the induced equation of motion forΦ on the brane
becomes

gAB∇A∇BΦ−
1

Mφ

∂Ve f f

∂Φ
+

(

1
4

+2ξ
)

(∇CΦ)2 2ξ Mφ Φ
1/κ2

(5) + ξ MφΦ2(1+4ξ )
= 0 . (2.28)

Consequently, the parameters of the effective potential will scale as

1
Mφ

Ve f f(Φ2) = µ2
e f f

Φ2

2
+ λe f fMφ

Φ4

4
+M2

φO[Φ6] . (2.29)

with equations (2.26) and (2.27) becoming

µ2
e f f ∼ µ2−2σ2ξ κ4

(5) , (2.30)

Mφ λe f f ∼ λ +Mφ σ2ξ 2κ6
(5) , (2.31)

whereµ = µ(5) andλ = Mφ λ(5). Here, forξ > 0 we have two possible mechanisms for the gener-
ation of a non-vanishing vev: the canonical way, via the potential associated with the scalar field,
and the braneworld way, via the interaction of the scalar field with the brane tension. For the latter
to be viable in the context of the SM, then

∣

∣

∣

∣

∣

µ2
e f f

Mφ λe f f

∣

∣

∣

∣

∣

∼
1

ξ Mφ

1

κ2
(5)

(2.32)

must be of orderTeV2, and〈Φ〉 = 246 GeV. However, in order to recover the four-dimensional
gravitational coupling constant in Eq. (2.20), we find from theφ contribution thatM−2

Pl(4) = κ2
(5)Mφ ,

and hence that

M3
Pl ≡

1

κ2
(5)

= M2
Pl(4)Mφ . (2.33)

8
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This implies that
∣

∣

∣

∣

∣

µ2
e f f

Mφ λe f f

∣

∣

∣

∣

∣

∼
1
ξ

M2
Pl(4) � TeV2, (2.34)

which renders the brane mediated mechanism of SSB unviable for phenomenological reasons. This
means that the phenomenological hierarchy between the SM typical energy scale of orderTeV and
the Planck scale of the gravitational effects of the physicson the brane cannot be accounted by the
SSB brane mechanism, since the characteristic scale of the induced dynamics of the scalar field
is the Planck scale. It is easy to see that〈Φ〉 ∼ MPl(4). Thus, the scalar field becomes a short
range field about the brane and therefore strongly localizedtherein. However, it is the non-minimal
coupling that, upon spontaneous symmetry breaking, allowsthe matter localized on the brane to
interact with bulk matter fields with typically gravitational strength.

Moreover, from the expression for the five-dimensional cosmological constant in the case
of a vanishing effective cosmological constant, we find thatΛ(5) ∼ −MφV(〈Φ〉2)−σ2κ2

(5), and
consequently that

σ2 ∼ M2
Pl(4)Mφ

[

−Λ(5) −MφV(〈Φ〉2)
]

. (2.35)

2.3 The effective potential as a measure of the thickness of the brane

In what follows we argue that the mass scale generated by the SSB mechanism sets the range
of the fields on the brane and hence the thickness of the brane.In order to understand the role of the
massMφ , we expand the vev ofΦ observed on the brane about the value expected in its absence.
Defining

µ2
σ = 2σ2ξ κ4

(5), λσ = Mφ σ2ξ 2κ6
(5), (2.36)

then equations (2.30) and (2.31) become

µ2
e f f ∼ µ2

(5) + µ2
σ , (2.37)

Mφ λe f f ∼ Mφ λ(5) + λσ . (2.38)

It follows that

−〈Φ〉2 =
µ2

e f f

Mφ λe f f
∼ (µ2

(5) + µ2
σ )

1
Mφ λ(5)

(

1−
λσ

Mφ λ(5)
+O

[

(

λσ

Mφ λ(5)

)2
])

∼
µ2

(5)

Mφ λ(5)
−

µ2
σ

Mφ λ(5)

λσ

Mφ λ(5)
+

µ2
σ

Mφ λ(5)
+O

[

(µ2
σ )2,λ 2

σ
]

(2.39)

keeping only the lowest power in the parameters indexedσ . We can now distinguish between two
cases, depending on whichσ -indexed term on the right hand side dominates.

For the case when the second term dominates over the third, then

µ2
e f f

Mφ λe f f
>

µ2
(5)

Mφ λ(5)
⇒

∣

∣

∣

∣

∣

µ2
e f f

Mφ λe f f

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

µ2
(5)

Mφ λ(5)

∣

∣

∣

∣

∣

. (2.40)
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For an increasingly important contribution of the brane tension, both the minimum and the inflexion
point of the effective potential converge to〈Φ〉 → 0, whereasVe f f → λe f f(Φ4/4).

For the case when the third term dominates over the second, then the opposite relation holds
and the minimum and the inflexion points become larger with anincreasing brane contribution. We
observe that the presence of the brane affects the characteristics of the potential and consequently
the SSB mechanism and the scales generated thereby. Thus, itis in order to compare〈Φ〉 with the
inverse of the thickness of the brane, estimated to be of order the effective massµe f f. We find that
Mφ λe f f ∼ 1. From Eq. (2.34), this also implies thatµ2

e f f ∼ M2
Pl(4).

The present analysis can be extended to a complex scalar fieldΨ, coupled to aU(1) gauge,
resulting quite similar conclusions [3]. Both the complex scalar field and theU(1) vector field
acquire, upon SSB and through a non-minimal coupling of the form ΨΨ̄R, masses of order the
Planck mass as well.

3. Discussion

In this contribution we have examined the mechanism of spontaneous symmetry breaking due
to a scalar field in the bulk spacetime coupled non-minimallyto gravity. We have shown that a
non-minimal coupling can be a source of symmetry breaking onthe brane but only at very high
energies. We derived the conditions which allow for the existence of a non-vanishing bulk scalar
field vacuum configuration and demonstrated that the scales of the induced masses are of order the
four-dimensional Planck scale, thus failing to accommodate on the brane the typical scales of the
Standard Model. We notice, however, that this implies that the bulk scalar fields become very short
range about the position of the brane and thus strongly localized therein.

Furthermore, we observe that in the absence of the non-minimal coupling of the bulk scalar
fields to gravity, i.e. forξ = 0, the effective potential on the brane of a bulk scalar field reduces in
both cases toVe f f = µ2

(5)(φ
2/2)+λ(5)(φ4/4)+(3/4)σ2κ2

(5)d
2/[(d+1)(d−1)]. The realization of

a braneworld universe as a codimension-one surface of localized matter contributes a constant term
proportional to the brane tensionσ to the effective potential. The brane tension does not, however,
contribute to the mechanism of spontaneous symmetry breaking observed on the brane unless the
bulk scalar fields are non-minimally coupled to gravity. This is observed in the dependence on the
coupling parameterξ of the parametersµ2

e f f andλe f f. Moreover, the mixing of the discontinuity in
the extrinsic curvature with the discontinuity in the normal derivative of the scalar field, as encom-
passed by the corresponding matching conditions, is alsoξ –dependent. Such mixing is switched
off whenξ = 0, as already noticed in Ref. [6] and also found in Ref. [5]. These observations seem
to suggest that the matter localized on the brane will interact with bulk matter fields through gravity
only if a non-minimal coupling exists. We have also argued that the characteristics of the potential,
and in particular the vev of the scalar field, can be related tothe estimated thickness of the brane,
given that the former sets the effective range of the fields. This suggests that the SSB mechanism
is closely related to the localization process of fields on the brane.

On the technical side, our approach goes a step further in setting up the framework for studying
the brane induced physics which arises from the presence of matter fields in the bulk. The case of
a vector field coupled non-minimally to gravity was previously considered and its implications for
Lorentz symmetry on the brane studied in Ref. [5]. The case ofthe scalar field, both real and
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complex, coupled non-minimally to gravity is treated in Ref. [3]. Our approach allows to relate the
cosmological constant problem and the scale of gravity to the mechanism of origin of mass, which
suggests to relate to the process of localization of bulk fields on the brane by setting the nature of
the interaction between brane and bulk fields to be essentially gravitational.
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A. Geometry and Matter Sources

In this section we systematize the procedure that we used to derive the equations of motion on
a codimension-one brane from a given bulk action.

We begin to parametrize the worldsheet in terms of coordinatesxA = (tb,xb) intrinsic to the
brane [7]. Using the chain rule, we may express the brane tangent and normal unit vectors in terms
of the bulk basis as follows:

êA =
∂

∂xA = Xµ
A

∂
∂xµ = Xµ

A êµ ,

êN =
∂

∂n
= Nµ ∂

∂xµ = Nµ êµ , (A.1)

with

gµνNµNν = 1, gµνNµXν
A = 0, (A.2)

whereg is the bulk metric

g = gµν êµ ⊗ êν = gAB êA⊗ êB +gAN êA⊗ êN +gNB êN ⊗ êB +gNN êN ⊗ êN. (A.3)

To obtain the metric induced on the brane we expand the bulk basis vectors in terms of the co-
ordinates intrinsic to the brane and keep the doubly brane tangent components only. It follows
that

gAB = Xµ
A Xν

B gµν (A.4)

is the(3+1)-dimensional metric induced on the brane by the(4+1)-dimensional bulk metricgµν .

The induced metric with upper indices is defined by the relation

gAB gBC = δA
C. (A.5)

It follows that we can write any bulk tensor field as a linear combination of mutually orthogonal
vectors on the brane, ˆeA, and a vector normal to the brane, ˆeN. We illustrate the example of a vector

11
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Bµ and a tensorTµν bulk fields as follows

B = BA êA +BN êN, (A.6)

T = TAB êA⊗ êB +TAN êA⊗ êN +TNB êN ⊗ êB +TNN êN ⊗ êN. (A.7)

Derivative operators decompose similarly. We write the derivative operator∇ as

∇ = (Xµ
A +Nµ)∇µ = ∇A + ∇N. (A.8)

Choosing Fermi normal coordinates for the neighborhood of apoint on the brane, all the Christoffel
symbols of the metric on the boundary are zero. The partial derivatives, however, do not vanish
in general. The continuation of the coordinates off the boundary is given by the Gaussian normal
prescription. The non-vanishing connection coefficients are thus

∇AêB = −KAB êN,

∇AêN = +KAB êB,

∇NêA = +KAB êB,

∇NêN = 0. (A.9)

For the derivative operator∇∇ we find that

∇∇ = gµν∇µ∇ν

= gAB[(Xµ
A ∇µ)(Xν

B ∇ν)−Xµ
A (∇µXν

B )∇ν
]

+gNN[(Nµ∇µ)(Nν∇ν)−Nµ(∇µNν)∇ν
]

= gAB[∇A∇B +KAB∇N]+ ∇N∇N. (A.10)

We can now decompose the Riemann tensor,Rµνρσ , along the tangent and the normal directions to
the surface of the brane as follows

RABCD = R(ind)
ABCD+KADKBC−KACKBD, (A.11)

RNBCD = KBC;D −KBD;C, (A.12)

RNBND = KBCKDC−KBD,N, (A.13)

from which we find the decomposition of the Einstein tensor,Gµν , obtaining the Gauss-Codacci
relations

GAB = G(ind)
AB +2KACKB

C−KABK−KAB,N−
1
2

gAB
(

−KCDKCD−K2−2K,N
)

, (A.14)

GAN = KA
B

;B−K;A, (A.15)

GNN =
1
2

(

−R(ind)−KCDKDC +K2
)

. (A.16)

We have now the tools to express the bulk equations of motion derived from the bulk action as a
decomposition along the parallel and orthogonal directions to the brane as defined by the Gaussian
normal prescription.

Next we define the boundary conditions compatible with the presence of the brane. We regard
the brane as shell of thickness 2δ in the limit δ → 0 and separating the bulk into two mirroring
regions. Two consequences follow. Derivatives of quantities discontinuous across the brane gen-
erate singular distributions on the brane. The integrationof these terms in the coordinate normal
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to the brane relates the induced geometry with the localization of the induced stress-energy in the
form of matching conditions. Moreover, theZ2-symmetry establishes the continuity conditions for
the fields across the brane. From the continuity of the quantities on the brane, it follows that the
parallel components must be even inN and consequently that the orthogonal components must be
odd in N, with each additional orthogonal component reverting the parity. [See Ref. [8] for odd
fields about the brane.] In particular, for a scalar fieldφ and a vector fieldB we have that

φ(−δ ) = +φ(+δ ), (∇Nφ)(−δ ) = −(∇Nφ)(+δ ),

BA(−δ ) = +BA(+δ ), (∇NBA)(−δ ) = −(∇NBA)(+δ ),

BN(−δ ) = −BN(+δ ), (∇NBN)(−δ ) = +(∇NBN)(+δ ). (A.17)

Similarly, we have for the metric thatgAB(N = −δ ) = +gAB(N = +δ ), which implies that

KAB(N = −δ ) = −KAB(N = +δ ). (A.18)

After extracting the singular terms from the projected equations and into the matching condi-
tion, we obtain the equations of motion induced on the brane.Since the original equations were
derived from a bulk action, the induced ones will be expressed in terms of bulk parameters, which
must be rescaled in order to reproduce the observed characteristically four-dimensional parameters.
The rescaling parameter is expected to be related to a measure of the thickness of the brane.
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