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1. Introduction

Analogue models of General Relativity (GR) [1, 2] provide specific and clear examples in
which effective spacetime structures ultimately emerge from (non-relativistic) quantum many-body
systems. For certain (semiclassical) configurations and low levels of resolution, one can appropri-
ately describe the physical behaviour of the system by means of a classical (or quantum) field
theory in a curved (Lorentzian) background geometry. However, when one probes the system with
higher and higher resolution, the geometrical structure progressively dissolves into a purely quan-
tum regime [3]. Therefore, although analogue models cannot be considered at this stage complete
models of quantum gravity (they do not lead to the Einstein equations in any regime or approx-
imation), they provide specific and tractable models that reproduce many aspects of the overall
scenario expected in the realm of real gravity.

The main objective of this and similar studies is to obtain specific indications aboutthe type
of deviations from the GR behaviour to be expected when quantum gravitational effects become
important. All, under the assumption that the underlying structure to GR is somewhat similar to
that in condensed matter systems. In particular, in this work we are interestedin the behaviour of
gravity-like configurations containing horizons within Bose–Einstein condensates (BECs). (See,
e.g., Refs. [4, 5, 6] and [3, 7, 8] for reviews on BECs and for their usefulness as analogue models
respectively). A nice feature of these systems is that their theoretical description in terms of the
Gross-Pitaevskii (GP) equation can be interpreted as incorporating, from the start, the first “quan-
tum” corrections to the behaviour of the system. Linear perturbations over abackground BEC
configuration satisfy an equation which is a standard wave equation over acurved effective space-
time plus corrections containinḡh. These corrections cause the dispersion relations in BEC to be
“superluminal” (strictly speaking, supersonic): some perturbations can travel faster than the speed
of sound in the system. The effects of these corrections in the linearized dynamical evolution of a
configuration are especially relevant in the presence of horizons as their one-way-membrane nature
simply disappears. This is in tune with the idea that a horizon can serve as a magnifying glass of
the physics at high energies (see, e.g., Ref. [9]).

The specific objective of this work is to analyze the dynamical behaviour of(effectively) one-
dimensional BECs with density and velocity profiles containing one or two sonichorizons. In
particular, we search for the presence of dynamical instabilities and analyze how their existence is
related to the occurrence of these horizons and to specific choices of boundary conditions. This
analysis suplements previous works in the literature [10, 11, 7, 8].

We will consider one-dimensional profiles that are piecewise uniform with either one or two
step-like discontinuities. As has been discussed in Ref. [8], in terms of dynamical (in)stability,
there seems to be no crucial qualitative difference between the present case and a profile with
smooth transitions between regions with an (asymptotically) uniform density distribution. There-
fore the idealized case that we consider here should contain all the essential information relevant
to more complicated profiles as well. The specific way to examine the kind of instability we are
interested in, consists basically in seeking whether, under appropriate boundary conditions, there
are complex eigenfrequencies of the system which lead to an exponential increase with time of the
associated perturbations, i.e. a dynamical instability. Throughout the paper we will use a language
and notation as close to GR as possible. In particular, we will use boundaryconditions similar to

2



P
o
S
(
Q
G
-
P
h
)
0
0
7

Probing effects of modified dispersion relations with Bose–Einstein condensates Carlos Barceló

those imposed in the standard quasi-normal mode analysis of black holes in GR[12]. One of the
main results of our analysis is to highlight the fundamental importance of the boundary conditions
in determining whether a configuration is stable or unstable.

The structure of this contribution is the following. In the next section we will review the basic
ingredients of gravitational analogies in BECs. At the same time, we will set up the conceptual
framework for our discussion, based on a parametrization well adapted for an acoustic interpreta-
tion. Section 3 contains a detailed formulation of our specific problem. This includes the mode
expansion in uniform sections, a derivation of the matching conditions at each discontinuity and a
discussion of the various boundary conditions to be applied. Then, in section 4 we proceed case by
case, analyzing different situations and presenting the results we have obtained for each of them.
This includes a brief description of the numerical algorithm we have used. Finally, in section 5
we discuss our results, compare them with other results available in the literature, and draw some
conclusions.

2. Preliminaries

In second quantization, a dilute gas of interacting bosons can be described by a quantum field
Ψ̂ satisfying the equation

ih̄
∂
∂ t

Ψ̂ =

(
− h̄2

2m
∇2 +Vext(x)+gΨ̂†Ψ̂

)
Ψ̂, (2.1)

wherem is the boson mass,Vext the external potential andg the coupling constant which is re-
lated to the corresponding scattering lengtha throughg = 4πh̄2a/m. In this manner all quantum
effects can, in principle, be taken into account. Once the Bose-Einstein condensation has taken
place, the quantum field can be separated into a macroscopic wave functionψ (the corresponding
order parameter) and a field operatorϕ̂ describing quantum fluctuations over it:̂Ψ = ψ + ϕ̂. The
macroscopic wave function satisfies the Gross-Pitaevskii (GP) equation

ih̄
∂
∂ t

ψ(t,x) =

(
− h̄2

2m
∇2 +Vext(x)+g |ψ |2

)
ψ(t,x), (2.2)

while for the linear quantum perturbation we have the Bogoliubov equation

ih̄
∂
∂ t

ϕ̂ =

(
− h̄2

2m
∇2 +Vext(x)+g 2|ψ |2

)
ϕ̂ +g ψ2 ϕ̂†. (2.3)

Adopting the Madelung representation for the order parameter

ψ =
√

neiθ/h̄e−iµt/h̄ (2.4)

(heren is the condensate density,µ the chemical potential andθ a phase factor which is related to
the velocity potential), and substituting in (2.2) we arrive at

∂tn = − 1
m

∇ · (n∇θ), (2.5a)

∂tθ = − 1
2m

(∇θ)2−g n−Vext−µ −Vquantum, (2.5b)
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where the so-called “quantum potential” is defined as

Vquantum= − h̄2

2m
∇2√n√

n
. (2.6)

In most situations the quantum potential in Eq. (2.5b) can be neglected (see below). The resulting
equations (2.5a) and (2.5b) are then equivalent to the continuity equation and the Bernoulli equation
for a classical fluid. In this case, it is well known that the propagation of acoustic waves in the
system can be described by means of an effective metric, thus providing the analogy with the
propagation of fields in curved spacetimes [13, 14]. Given a background configuration (n0 andθ0),
this metric can be written as

(gµν) =
m
g

c

(
v2−c2 −vT

−v I

)
, (2.7)

wherec2 ≡ gn0/m andv ≡ ∇θ0/m. These magnitudes,c andv, represent the local velocity of
sound and the local velocity of the fluid flow respectively.

The functionsc(t,x) andv(t,x) completely characterize the acoustic metric. In GR any metric
has to be obtained by solving the Einstein equations. Here, however, the magnitudesc(t,x) and
v(t,x), and so the acoustic metric, are those satisfying the continuity and Bernoulli equations of
hydrodynamics [Eqs. (2.5) without the quantum potential]. Thus, these equations play a role
analogous to the vacuum Einstein equations in GR. Of course, at the globalnon-linear level these
equations are completely different from the real Einstein equations. But their way of acting when
linearized around a background solution captures the essence of a proper linearized GR behaviour.

There exist, however, situations in which the quantum potential in Eq. (2.5) cannot be ne-
glected. This is evidently the case if the characteristic length of the spatial variations of the con-
densate density is much smaller than the so-called healing length:ξ ≡ h̄/(mc). But this case is not
the only one. To illustrate this point, let us consider the dispersion law obtainedfor a homogeneous
BEC (see below):

(ω −vk)2 = c2k2 +
1
4

c2ξ 2k4. (2.8)

This is a “superluminally modified” dispersion relation due to the presence of the term withk4. For
ξk≪ 1 we can rewrite this expression as

ω =

(
v±c

√
1+

1
4

ξ 2k2

)
k≃ (v±c)k+

1
8

cξ 2k3 +O(ξ 4k5). (2.9)

Here we clearly see that the (relative) importance of the term∝ k3, given by c
8(v±c)ξ 2k2, depends

not only on the ratio between the corresponding wavelength and the healinglength,ξk, but also
on the specific features of the background magnitudes [note that the factor c/(v±c) may be quite
large]. In other words, the smallness of the corresponding wavelength isa necessary condition in
order to neglect the contribution of the quantum potential, but it is not a sufficient condition. One
has to bear this issue in mind, especially when the system possesses horizons (i.e. points at which
c2 = v2).
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Summarizing, there are background configurations which, when probedwith sufficiently large
wavelengths, act as if they were effective Lorentzian geometries. But there are other configurations
for which this geometrical interpretation fails, irrespective of the probing wavelength. The latter
situation occurs when there are horizons in the configuration: strictly speaking, we cannot talk
about an “effective Lorentzian geometry” in the regions surrounding these horizons.

Without forgetting this subtlety, we will continue to call (2.7) the “effective metric” in the
system, even when analyzing the full GP equation. Then, we can considerthe equations (2.5) to
play the role of some sort of semiclassical vacuum Einstein equations. Theirtreatment is classical,
but they incorporate corrections containingh̄. Therefore, BECs’ standard treatment based on the
GP equation provides an example of a way of incorporating quantum corrections to the dynamics
of a system without recurring to the standard procedures of back-reaction. Again, although at the
global non-linear level these equations bear no relationship whatsoeverwith any sort of "semi-
classical" Einstein equations, at the linear level, that is, in terms of linear tendencies of departing
from a given configuration, equations (2.5) encode the essence of thelinearizedGR behaviour
(a Lorentzian wave equation in a curved background), semiclassically modified to incorporate a
superluminal dispersion term, as we have already discussed.

We will now proceed to describe the details of our specific calculations.

3. Dynamical analysis

As a first step in our calculations, let us linearize the Eqs. (2.5). Let us write

n(x, t) = n0(x)+g−1ñ1(x, t), (3.1a)

θ(x, t) = θ0(x)+θ1(x, t), (3.1b)

whereñ1 andθ1 are small perturbations of the density and phase of the BEC. The Eqs. (2.5) then
separate into two time-independent equations for the background,

0 = −∇ · (c2v), (3.2a)

0 = −1
2

mv2−mc2−Vext−µ +
h̄2

2m
∇2c

c
, (3.2b)

plus two time-dependent equations for the perturbations,

∂t ñ1 = −∇ ·
(
ñ1v+c2∇θ1

)
, (3.3a)

∂tθ1 = −v ·∇θ1− ñ1 +
1
4

ξ 2∇ ·
[
c2∇

(
ñ1

c2

)]
. (3.3b)

We will restrict ourselves to work in (1+1) dimensions. This means that we consider per-
turbations propagating in a condensate in such a way that the transverse degrees of freedom are
effectively frozen. In other words, the only allowed motions of both the perturbations and the
condensate itself are along thex-axis.

We will examine two types of one-dimensional background profiles. The first type consists of
two regions each with a uniform density and velocity, connected through a step-like discontinuity.
The second type of profiles consists of three homogeneous regions, and hence two discontinuities.
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We wish to know whether these profiles do or do not present dynamical instabilities. The under-
lying question is the relation between the presence of horizons and these dynamical instabilities.
At each discontinuity, matching conditions apply that connect the magnitudes describing the con-
densate at both sides of the discontinuity. Furthermore, we need a set of boundary conditions,
which determine what happens at the far ends of the condensate. Finally,in the uniform sections
of the condensate, the regime can either be subsonic or supersonic, andof course there will be an
acoustic horizon at each transition between a subsonic and a supersonicregion. All these elements
determine the characteristics of the system, and hence its eigenfrequencies.

We will now describe these elements one by one in detail.

3.1 Plane-wave expansion in uniform regions

In order to study the dynamics of the system, let us first consider a region inwhich the con-
densate is homogeneous (withc andv constant), and seek for solutions of Eqs. (3.3) in the form of
plane waves:

ñ1(x, t) = Aei(kx−ω)t , (3.4a)

θ1(x, t) = Bei(kx−ω)t , (3.4b)

whereA andB are constant amplitude factors. Our aim is to elucidate about the possible instabilities
of the system, so the frequencyω and the wavevectork in these expressions will be considered as
complex hereafter [the existence of solutions with Im(ω) > 0 would indicate the instability of the
system]. Substituting into Eqs. (3.3) we find




i(ω −vk) c2k2

1+ 1
4ξ 2k2 −i(ω −vk)







A

B


= 0. (3.5)

For a non-trivial solution to exist, the determinant of the above matrix must vanish. This condition
gives the dispersion law (2.8) and since this is a fourth order polynomial ink, its roots will, in
general, give four independent solutions for the equations of motion in theform (3.4).

3.2 Matching conditions at a discontinuity

Let us takex = 0 to be a point of discontinuity. The values ofv andc both undergo a finite
jump when crossing this point. These jumps have to satisfy the background constraintvc2 = const
[see Eq. (3.2a)]. The solutions of Eqs. (3.3) in the regionsx < 0 andx > 0 have the form of plane
waves which are then subject to matching conditions atx = 0. It is not difficult to see thatθ1 has to
be continuous at the jump but with a discontinuous derivative, while the function ñ1 has to undergo
a finite jump. The exact conditions can be obtained by integrating Eqs. (3.3) about an infinitesimal
interval containing the pointx = 0. This results in the following four independent, generally valid
matching conditions:

[θ1] = 0, [vñ1 +c2∂xθ1] = 0, (3.6a)
[

ñ1

c2

]
= 0,

[
c2∂x

(
ñ1

c2

)]
= 0. (3.6b)
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The square brackets in these expressions denote, for instance,[θ1] = θ1|x=0+ − θ1|x=0− . We can
simplify the second condition in Eq.(3.6a) to[c2∂xθ1] = 0 by noting that[vñ1] = 0 because of the
background continuity equation (3.2a), while for our choice of a homogeneous background the last
condition becomes simply[∂xñ1] = 0.

For a given frequencyω , the general solution of Eqs. (3.3) can be written as

ñ1 =





4

∑
j=1

A je
i(k j x−ωt) (x < 0),

8

∑
j=5

A je
i(k j x−ωt) (x > 0),

θ1 =





4

∑
j=1

A j
ω −vLk j

ic2
Lk2

j

ei(k j x−ωt) (x < 0),

8

∑
j=5

A j
ω −vRk j

ic2
Rk2

j

ei(k j x−ωt) (x > 0),

(3.7)

where{k j} are the roots of the corresponding dispersion equations (four roots for each homoge-
neous region), and the constantsA j have to be such that the matching conditions (3.6) are satisfied.
The subscriptsL and R indicate the values ofc and v in the left-hand-side (lhs) and the right-
hand-side (rhs) region respectively. We can write down these conditions in matrix formΛi j A j = 0,
where

(Λi j ) =




ω−vLk1
c2

Lk2
1

ω−vLk2
c2

Lk2
2

ω−vLk3
c2

Lk2
3

ω−vLk4
c2

Lk2
4

−ω−vRk5
c2

Rk2
5

−ω−vRk6
c2

Rk2
6

−ω−vRk7
c2

Rk2
7

−ω−vRk8
c2

Rk2
8

ω
k1

ω
k2

ω
k3

ω
k4

− ω
k5

− ω
k6

− ω
k7

− ω
k8

1
c2

L

1
c2

L

1
c2

L

1
c2

L
− 1

c2
R

− 1
c2

R
− 1

c2
R

− 1
c2

R

k1 k2 k3 k4 −k5 −k6 −k7 −k8




. (3.8)

Furthermore, these conditions have to be complemented with conditions at the boundaries of the
system and then we will obtain the solution of a particular problem.

3.3 Boundary conditions

In order to extract the possible intrinsic instabilities of a BEC configuration, wehave to ana-
lyze whether there are linear mode solutions with positive Im(ω) that satisfy outgoing boundary
conditions. By “outgoing” boundary conditions we mean that the group velocity is directed out-
wards (toward the boundaries of the system). The group velocity for a particulark-mode is defined
as

vg ≡ Re

(
dω
dk

)
= Re

(
c2k+ 1

2ξ 2c2k3

ω −vk
+v

)
, (3.9)

where we have used the dispersion relation (2.8). The physical idea behind this outgoing boundary
condition is that only disrupting disturbances originated inside the system canbe called instabilities.

To illustrate this assertion, let us look at the classical linear stability analysis ofa Schwarzschild
black hole in GR. When considering outgoing boundary conditions both at the horizon and in the
asymptotic region at infinity [12], only negative Im(ω) modes (the quasi-normal modes) are found,
and thus the black hole configuration is stable. If the presence of ingoing waves at infinity were al-
lowed, there would also exist positive Im(ω) solutions. In other words, the Schwarzschild solution
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in GR is stable when considering only internal rearrangements of the configuration. If instead the
black hole were allowed to absorb more and more energy coming from infinity,its configuration
would continuously change and appear to be unstable.

The introduction of modified dispersion relations adds an important difference with respect
to the traditional boundary conditions used in linearized stability analysis in GR.Consider for
example a black hole configuration. In a BEC black hole, one boundary is the standard asymptotic
region, just like in GR. For an acoustic (quadratic) dispersion relation, nothing can escape from the
interior of a sonic black hole (the acoustic behaviour is analogous to linearized GR). But due to
the superluminal corrections, information from the interior of the acoustic black hole can escape
through the horizon and affect its exterior. Therefore, since we are taking this permeability of
the horizon into consideration, the other boundary is not the black hole horizon itself (usually
described in GR by an infinite value of the “tortoise” coordinate; see for example [12]), but the
internal singularity. The outgoing boundary condition at such a singularityreflects the fact that no
information can escape from it.

There is another complication that deserves some attention. In the case of a phononic disper-
sion relation, the signs ofvg ≡ v±c and Im(k)≡ (v±c)Im(ω) coincide for Im(ω) > 0. For exam-
ple, in an asymptoticx→ +∞ subsonic region, an outgoingk-mode hasvg > 0, so that Im(k) > 0
and, therefore, the mode is damped towards this infinity (giving a finite contribution to its norm).
Owing to this fact, in the linear stability analysis of black hole configurations, it isusual to assume
that stable modes correspond to non-normalizable perturbations (think of the standard quasi-normal
modes), while unstable modes correspond to normalizable perturbations.

When considering modified dispersion relations, however, this associationno longer holds. In
particular, with the BEC dispersion relation, in an asymptoticx→ +∞ region, among the unstable
(Im(ω) > 0) outgoing (vg > 0) k-modes, there are modes with Im(k) > 0 as well as modes with
Im(k) < 0. An appropriate interpretation of these two possibilities seems to be the following. The
unstable outgoing modes that are convergent at infinity (those with Im(k) > 0) are associated with
perturbations of the system that are initiated in an internal compact region ofthe system. Unstable
outgoing modes that are divergent at infinity are associated with initial perturbations acting also at
the boundary at infinity itself.

Take for example a black hole-like configuration of the form described in Fig. 1. The right
asymptotic region, which can be interpreted as containing a “source” of BEC gas in our analogue
model, simulates the asymptotic infinity outside the black hole in GR. The convergence condition at
the rhs then implies that the perturbations are not allowed to affect this asymptotic infinity initially.
However, for the left asymptotic region, this condition is less obvious. In our BEC configuration,
this left asymptotic region can be seen as representing a “sink”. It corresponds to the GR singularity
of a gravitational black hole. The fact that in GR this singularity is situated at afinite distance
(strictly speaking, at a finite amount of proper time) from the horizon, indicates that it might be
sensible to allow the perturbations to affect this left asymptotic region from thestart. We will
therefore consider two possibilities for the boundary condition atx → −∞. (a) Either we impose
convergence in both asymptotic regions, thereby eliminating the possibility that perturbations have
an immediate initial effect on the sink, or (b) we allow the perturbations to affect the sink right from
the start, i.e. we don’t impose convergence at the left asymptotic region. The option of imposing
the convergence at the left asymptotic region could be interpreted as excluding the influence of the

8
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Figure 1: Flow and sound velocity profiles with step-like discontinuities simulating a black hole-like con-
figuration. The negative value ofv indicates that the fluid is left-moving. At the rhs, the fluid is subsonic
sincec > |v|. At the lhs it has become supersonic. Atx = 0, there is a sonic horizon.

singularity on the stability of the system. In other words, condition (b) would then be equivalent
to examining the stability due to the combined influence of the horizon and the singularity, while
under condition (a) only the stability of the horizon would be taken into account.

As a final note to this discussion, since we are interested in the analogy with gravity, we have
assumed an infinite system at the rhs. In a realistic condensate other boundary conditions could
apply, for example taking into account the reflection at the ends of the condensate (see e.g. [7, 8]).

4. Case by case analysis and results

We will now briefly describe the general calculation method which we have used, and then
discuss case by case the specific configurations we have analyzed.

4.1 Numerical method

We first consider background flows and sound velocity profiles with onediscontinuity. We
will always assume left-moving flows.

We are seeking for possible solutions of the linearized Eqs. (3.3) with Im(ω) > 0. We use the
following numerical method:

1. For each frequencyω in a grid covering an appropriate region of the upper-half complex
plane, we calculate its associatedk-roots [by solving the dispersion relation (2.8)] and their
respective group velocities (3.9) at both the lhs and the rhs of the configuration.

2. We then take the four equationsΛi j A j = 0, whereΛ is the 4× 8 matrix (3.8) determined
by the matching conditions at the discontinuity. For each modek j that does not satisfy
the boundary conditions in the relevant asymptotic region, we add an equation of the form
A j = 0. Thus we have a total set of equations which can be written asΛ̃i j A j = 0, whereΛ̃
is now a(4+N)×8 matrix the numberN of forbidden modes can in principle vary between
0 and 8). Numerically it is convenient to normalizẽΛ in such a way that its rows are unit
vectors.

3. We can then define a non-negative functionF(ω), whereF(ω) = 0 means that the frequency
ω is an eigenfrequency of the system, in the following way.

9
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• If N < 4, thenF(ω) = 0. Indeed, we have 8 variablesA j and 4+N equations. Then, it
is obvious that there will always exist a non-trivial solution{A j}.

• If N = 4, thenF(ω) = |det(Λ̃)|. In this case there will be a non-trivial solution only if
the determinant of the matrix̃Λ vanishes.

• If N = 5, thenF(ω) is taken to be the sum of the modulus of all possible determinants
that are obtained from̃Λ by eliminating one row. Notice that in this caseΛ̃ is a non-
square 9×8 matrix because there are more conditions than variables. In this situation
it is highly unexpectable to find zeros inF as this would mean a double degeneracy.

• If N > 5, F(ω) is defined by a straightforward generalization of the procedure for
N = 5.

4. We plot the functionF(ω) in the upper half of the complex plane, and look for its zeros.
Each of these zeros indicates an unstable eigenfrequency, and so the presence (or absence)
of these zeros will indicate the instability (or stability) of the system.

In all our numerical calculations we have chosen values for the speed ofsound and the fluid
velocity close to unity. Moreover, we setvc2 = 1 and choose units such thatξ c = 1. The typical
values of the velocity of sound in BECs range between 1mm/s–10mm/s, while the healing length
lies between 10−3mm – 10−4mm. In consequence, our numerical results can be translated to re-
alistic physical numbers by using nanometres and microseconds as naturalunits. For example,
the typical lifetime for the development of an instability with Im(ω) ≃ 0.1 would be about 10 mi-
croseconds. We have checked that our results do not depend on the particular values chosen for the
velocities of the system.

4.2 Black hole configurations

Consider a flow accelerating from a subsonic regime on the rhs to a supersonic regime on
the lhs, see Figure 1. For rhs observers this configuration possessesa black hole horizon. For
such configurations with a single black hole-like horizon, when requiring convergence in both
asymptotic regions [case (a)], there are no zeros (see Figure 2), except for two isolated points on
the imaginary axis (see Figure 3, which is a zoom of the relevant area in Figure 2). (We always
check the existence of a zero by zooming in on the area around its location upto the numerical
resolution of our program.) These points are of a very special nature. They are located at the
boundary between regions with different numberN of forbidden modes in the asymptotic regions.
The zeros that we will find for other configurations are of a totally different nature: they are sharp
vanishing local minima ofF(ω) living well inside an area with a constant value ofN (N = 4 to be
precise). We discuss the meaning of these special points in Appendix A. For now, let it suffice to
mention that points of this kind are always present in any flow, independently of whether it reaches
supersonic regimes or not. Hence it seems that they do not correspond toreal physical instabilities,
since otherwise any type of flow would appear to be unstable. Accordingly, in the following, we
will not take these points into consideration. When we assert that a figure isdevoid of instabilities,
we will mean that the functionF(ω) has no zeros except for the special ones just mentioned.

Figure 2 also shows that the system remains stable even when eliminating the condition of
convergence at the lhs [case (b)].
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To sum up, configurations possessing a (single) black hole horizon arestable under the general
boundary conditions that we have described, i.e. outgoing in both asymptotic regions and conver-
gent in the upstream asymptotic region, independently of whether convergence is also fulfilled in
the downstream asymptotic region or not.

4.3 White hole configurations

Let us now consider flows decelerating from a supersonic regime (rhs)to a subsonic one (lhs).
From the point of view of lhs observers, the geometric configuration possesses a white hole hori-
zon. In GR, a white hole corresponds to the time reversal of a black hole. Therefore, unstable
modes of a white hole configuration would correspond to stable (quasinormal) modes of the black
hole. However, when modified dispersion relations are present, the precise definition of quasinor-
mal modes cannot be based only upon the outgoing character of the modes,but their divergent or
convergent character also has to be taken into account. Having in mind thatin the acoustic approx-
imation (proper Lorentzian behaviour) the outgoing character of a quasinormal mode implies that
this mode diverges at the boundaries at infinity, it is reasonable to impose divergence as an addi-
tional defining requirement (apart from being outgoing) for a quasinormal mode in the presence of
modified dispersion relations. Using this definition, we have checked (by analyzing the lower-half
complexω plane), that black hole configurations do not show any quasinormal (stable) eigenfre-
quency. Thus, we can conclude thatone-dimensionalwhite holes are stable. We emphasize here
the word one-dimensional because we do not expect this situation to remain true in higher dimen-
sions. We know for example that standard GR black holes in 3+1 dimensions possess quasinormal
modes. We expect these quasinormal modes to subsist when taking into account departures from
the acoustic (Lorentzian) dispersion relation; we only expect them to acquire modified eigenfre-
quencies. These quasinormal modes would then identify instabilities of the corresponding white
hole configuration. We leave the analysis of the quasinormal modes in different analogue gravita-
tional configurations in BECs for future work, since this analysis has its own subtleties.

The boundary conditions appropriate for the analysis of white hole-like configurations corre-
spond to only having ingoing waves (due to time reversal) at the boundaries. But from the point of
view of acoustic models in a laboratory, the analysis of the intrinsic stability of theflow (under the
outgoing boundary conditions described above) is also interesting. This analysis also has particular
relevance with regard to configurations with two horizons (see below).

In Fig. 2 we see that under outgoing boundary conditions the flow is stable when convergence
is required in both asymptotic regions [case (a)], but exhibits a continuousregion of instabilities at
low frequencies when convergence is fulfilled only at the rhs [case (b)]. Indeed, in this continuous
regionN = 3, in other words the algebraic system̃Λi j Ai j = 0 is underdetermined and any frequency
is automatically an eigenfrequency.

When looking at the case of a completely subsonic flow suffering a deceleration (see Fig. 2),
we find something similar. The system is clearly stable when convergence is imposed at the lhs,
i.e. in case (a). Without convergence at the lhs, case (b), there is a continuous strip of instabilities
which corresponds, as in the white hole case, to a region whereN = 3. However, this region is
localized at relatively high frequencies and so disconnected fromω ∼ 0. We can say that part of
the continuous region of instabilities found in the white hole configuration has itsorigin merely in
the deceleration of the flow (giving rise to this high frequency strip). But there is still a complete
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Black hole White hole
csuper= 0.7, csub= 1.8. csub= 1.8, csuper= 0.7.

(a)

(b)

Accelerating subsonic flow Decelerating subsonic flow
csub1= 1.8, csub2= 1.9. csub1= 1.9, csub2= 1.8.

(a)

(b)

Figure 2: Stability analysis under outgoing boundary conditions forprofiles with one discontinuity. Rep-
resented is the relevant portion of the upper-half complex frequency plane. From top to bottom and left to
right: black hole and white hole configurations, accelerating and decelerating subsonic flows (the speed of
soundc is indicated for each region and the velocityv is then obtained from the constrainvc2 = 1; c > 1
corresponds to a subsonic region,c < 1 to a supersonic region; in addition, we useξ c = 1 in all our cal-
culations). The lhs pictures represent the numberN of forbidden modes in the asymptotic regions. The
rhs pictures represent the functionF(ω) (to enhance the contrast, we have drawn the logarithm), and white
points or regions, whereF(ω) = 0, represent instabilities. In the upper pictures [case (a)], convergence has
been imposed in both asymptotic regions. In the lower pictures [case (b)], convergence has been imposed
only in the upstream asymptotic region. It is seen that blackhole configurations are stable in both case (a)
and (b), as are accelerating subsonic flows. White hole configurations are stable in case (a), but develop a
huge continuous region of instabilities in case (b). Only a small strip of instabilities subsists in the decel-
erating subsonic flow, indicating that the major part of thisunstable region is a genuine consequence of the
existence of the white hole horizon. Note that continuous regions of instability correspond toN < 4.
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Figure 3: Two special zeros of the functionF(ω) appear in the stability analysis of a black hole configu-
ration (this plot is a zoom of the corresponding plot in Fig. 2). They are located at the boundary between
regions with different numberN of prohibited modes. These points do not seem to represent real instabilities
of the system (see appendix A).

region of instabilities that is genuine of the existence of a white hole horizon. In fact, by decreasing
the healing length parameterξ , the strip moves up to higher and higher frequencies, becoming
less and less important as one approches the acoustic limit. However, the continuous region of
instabilities associable with the horizon does not change its character in this process.

We can therefore conclude the following with regard to decelerating configurations. When
convergence is fulfilled downstream, the configuration is stable, regardless of whether it contains
a white hole horizon or not. When this convergence condition is dropped, there is a tendency to
destabilization. In the presence of a white hole horizon, the configuration actually becomes dra-
matically unstable, since there is a huge continuous region of instabilities, and even perturbations
with arbitrarily small frequencies destabilize the configuration. In the absence of such a horizon,
only a small high-frequency part of this unstable region subsists.

4.4 Black hole–white hole configurations

Consider flows passing from being subsonic to supersonic and then back to subsonic (Fig-
ure 4). The numerical algorithm we have followed to deal with this problem is equivalent to the
one presented above, but with a larger set of equations. In this case wehave 12 arbitrary constants
A j , which have to satisfy 8+N equations: 4 matching conditions at each discontinuity andN(0−8)

additional conditions of the formA j = 0, corresponding to modes that do not fulfill the boundary
conditions in a particular asymptotic region.

When convergence is imposed at the lhs, we do not find any instabilities, regardless of whether
the fluid is globally accelerating or decelerating [the final lhs fluid velocity is larger or smaller than
the initial rhs one respectively, see Figure 5 cases (a)]. Also when replacing the intermediate
supersonic region by a subsonic one, thereby removing the acoustic horizons, the fluid is stable,
independently of whether it is globally accelerating or decelerating.
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Figure 4: Flow and sound velocity profiles with step-like discontinuities simulating a black hole–white hole
configuration.

When dropping the convergence condition at the lhs the situation changes completely. When
the intermediate region is supersonic, i.e. in a black hole–white hole configuration, a discrete set
of instabilities appears at low frequencies [Fig. 5 cases (b)]. It is worthmentioning that, when
carefully looking at plots of type (a)-cases, we observe some traces ofthese zeros in the form of
local minima which can be understood as particularly soft regions. These regions, although very
close to zero in some situations, never give rise to real zeros, as we havecarefully checked by
zooming in. Notice that these local minima appear in regions withN = 5 where a zero would
mean a double degeneracy within the row vectors in the corresponding matrixΛ̃i j . When the
fluid is globally decelerating, additionally there is a continuous region of instabilities at higher
frequencies. Indeed, in this region, as in the case of the white hole configuration, N < 4, and so
every frequency in this region automatically represents an instability. When the intermediate region
is subsonic, the discrete set of local minima at low frequencies disappears, but the continuous strip
of instabilities at higher frequencies persists in the case of a globally decelerating fluid. The discrete
set of instabilities is therefore a genuine consequence of the existence ofhorizons.

We have also seen that the number of discrete zeros we find in the black hole–white hole con-
figuration increases with the sizeL of the supersonic region while their Im(ω) decreases. This
suggests that the region between the horizons acts as a sort of well discretizing some of the in-
stabilities found for the white hole configurations. The larger the well, the larger the amount of
instabilities, but the longer-lived these instabilities.

To summarize, when requiring convergence in both asymptotic regions, all thetypes of con-
figurations with two discontinuities that we have discussed are stable. When not requiring conver-
gence at the lhs, discretized instabilities appear associated with the presence of horizons.

4.5 Black hole configurations with modified boundary conditions

We have seen in section 4.2 that configurations with a single black hole horizon do not possess
instabilities in any situation. However, as we have just discussed, when theyare continued into a
white hole configuration, some instabilities can show up. Here, we would like to point out that the
same happens if instead of extending the black hole configuration we introduce a wall (or sink) at
a finite distance inside the supersonic region, described by other boundary conditions than the ones
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Black hole–white hole Black hole–white hole
(globally accelerating) (globally decelerating)

csub-lhs= 1.8, csuper= 0.7, csub-rhs= 1.9. csub-lhs= 1.9, csuper= 0.7, csub-rhs= 1.8.

(a)

(b)

Globally accelerating subsonic flow Globally decelerating subsonic flow
csub-lhs= 1.7, csub= 1.8, csub-rhs= 1.9. csub-lhs= 1.9, csub= 1.8, csub-rhs= 1.7.

(a)

(b)

Figure 5: Stability analysis for profiles with two discontinuities. From top to bottom and left to right:
globally accelerating and decelerating black hole–white hole configurations, globally accelerating and de-
celerating subsonic configurations. In all these plots we have usedL = 2.5 as the size of the intermediate
region (see also caption under Fig. 2). When convergence is imposed in the asymptotic regions [case (a)],
all the configurations are stable. When convergence is only imposed upstream [case (b)], the configurations
with sonic horizons present a discrete set of instabilitiesat low frequencies, while the decelerating configu-
rations show a small continuous unstable strip at high frequencies. The decelerating configuration with sonic
horizons combines both types of instabilities.

we have considered so far. For example, by replacing the lhs boundaryconditions byθ |x=−L = 0,
we obtain Fig. 6. We can perfectly see how a set of discrete unstable modesappears.

5. Discussion and conclusions

Let us start by discussing the stability of configurations with a single black hole-like hori-
zon in analogue systems that incorporate superluminal dispersion relations. We have seen that by
requiring purely outgoing and convergent boundary conditions in both asymptotic regions, these
configurations do not show any signs of instability. The same applies when dropping the conver-
gence condition downstream (i.e. on the lhs). This seems to contradict the results in Ref. [8].
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Figure 6: A discrete set of instabilities appears in a black hole configuration when the lhs asymptotic region
representing the singularity is replaced by a wall or sink. In this plot we have usedcsub= 1.9 andcsuper= 0.7
(with their correspondingv = 1/c2); in addition we have takenL = 6 as the size of the, now finite, internal
region.

There, the existence of a future (spacelike) singularity inside the black hole, from which no infor-
mation is allowed to escape, was implemented by introducing a sink in the supersonic region at
a finite distance from the horizon. Then, it was found that there were discrete instabilities in the
system. However, these instabilities correspond to the following particular set of boundary con-
ditions: i) At the asymptotic region, only convergent boundary conditions were imposed, without
any condition about the direction of propagation (in- or outgoing) of the perturbations; ii) At the
sink, two types of boundary conditions were required, specifically designed for dealing with sym-
metric and anti-symmetric configurations. In our language these boundary conditions correspond
to {θ ′|sink = 0,n′|sink = 0} and{θ |sink = 0,n|sink = 0} respectively. In comparing this result with
ours we have checked two important facts. On the one hand, their unstablemodes have ingoing
contributions at the asymptotic region. On the other hand, the boundary conditions at the sink
are such that they combine outgoing and ingoing contributions – their sink implementation makes
waves reaching the sink bounce back towards the horizon. These two facts are responsible for the
unstable behaviour of these black hole-like configurations. If no energy is introduced into the sys-
tem from the asymptotic region (in other words, if only outgoing perturbationsare allowed) and
moreover any bouncing at the sink is eliminated, then these configurations are stable. This is in
agreement with the result found in Ref. [11].

In the case of configurations with a single white hole horizon, we have seenthat with out-
going and convergent boundary conditions in both asymptotic regions, there are no instabilities in
the system. However, when eliminating the convergence condition in the downstream asymptotic
region, one finds a continuous region of instabilities surroundingω = 0. Thus, we see that these
white hole configurations are stable only when the boundary conditions aresufficiently restrictive.

When analyzing configurations connecting two different subsonic regions, we have also seen
that, again, when convergence is required at the lhs, they are stable. But when this convergence
condition is relaxed, globally decelerating configurations tend to become unstable, whereas glob-
ally accelerating ones remain stable. The instabilities of these decelerating configurations without
horizons (i.e. purely subsonic ones) show up, however, in a small strip at high frequencies. In
contrast, white hole configurations present instabilities for a wide range offrequencies, starting
from arbitrarily small values. This points out that the presence of a white hole horizon drastically
stimulates the instability of the configuration.

With regard to the black hole–white hole configurations, we have seen that, as before, with
outgoing and convergent boundary conditions, they are stable. However, when relaxing the con-
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vergence condition downstream, they develop a discrete set of unstable modes.
In the analysis of the black hole laser instability in Ref. [10], the authors found that these

black hole–white hole configurations were intrinsically unstable. However,they did not analyze
what happens to the modes at the lhs infinity. Our analysis shows that by restricting the possible
behaviour of the modes in the downstream asymptotic region, one can eliminate the unstable be-
haviour of the black hole laser. This is in agreement with the results in Refs. [7, 8]. There, the
instabilities can in some cases be removed by requiring periodicity, that is, by imposing additional
boundary conditions to the modes.

To sum up, we have shown the high sensibility of the stability not only on the typeof con-
figuration (the presence of a single horizon or of two horizons, the accelerating or decelerating
character of the fluid), but particularly on the boundary conditions. With outgoing boundary condi-
tions, when requiring convergence at the downstream asymptotic region,both black hole and white
hole configurations are stable (and also the combination of both into a black hole–white hole con-
figuration). When relaxing this convergence condition at the lhs, configurations with a single black
hole horizon remain stable, whereas white hole and black hole–white hole configurations develop
instabilities not present in (subsonic) flows without horizons.

Looking at all these analysis leads to the overall picture that under superluminal dispersion
relations white-hole horizons have an intrinsic tendency to instability, while black hole configura-
tions can become easily unstable if only there exist superluminal modes travelling upstream in the
ergoregion.
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A. Zeros at the boundaries of the regions inN(ω)

Given anω , one can find its four associatedk roots,{k j}. If instead ofω one takesω̃ = −ω∗,
it can be seen that the new roots{k̃ j} are just{−k∗j }. For this reason the functionF(ω) is mirror
symmetric with respect to the imaginary axis (this is seen in all our figures). Now, whenω is pure
imaginary (ω = −ω∗), the set{k j} has to be equal to the set{−k∗j }. There are three posibilities.
Either all four roots are pure imaginary, two are imaginary and the other two complex satisfying
k j = −k∗l , with j 6= l , or there are two pairs of complex roots satisfyingk j = −k∗l . When moving
through the imaginaryω axis, there are points at which there is a transition from one of these
possibilities to another. At any transition point there has to be a pair of imaginary roots with equal
value. Definingω ′′ ≡ Im(ω) andκ ≡−ik, the dispersion equation (2.8) can be written as

(ω ′′−vκ)2−
(

c2− 1
4

c2ξ 2κ2
)

κ2 = 0. (A.1)
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This is a fourth order polynomial inκ with real coefficients. If this polynomial has two equal real
roots then we know that the derivative with respect toκ of the polynomial has to be zero at that
point. It is not difficult to see that this also implies that the derivative with respect toκ of the
function

(w−vκ)∓
(

c2− 1
4

c2ξ 2κ2
)1/2

κ (A.2)

has to be zero at this same point. But this derivative coincides with the definition of the group
velocity given in (3.9) (whenω and k are pure imaginary,dω/dk is directly real). Therefore,
we conclude that at any transition point on the imaginaryω-axis we have degeneracy: at least
two imaginaryk roots with equal value. At the same time, the group velocity associated with them
becomes zero. This is why these points are located at the boundary between regions with a different
number of forbidden modes: these are places in which outgoing modes transform into ingoing ones.
The zero that appears in the functionF(ω) at these points is due to the degeneracy and does not tell
us anything about the existence or not of a real instability there. To know whether a real instability
appears, one first has to find the actual four independent solutions ofequations (3.3) at the point
that led to the degeneracy. Let us check under which circumstances onecan find a solution of the
form

ñ1(x, t) = A1xei(kx−ω)t , (A.3a)

θ1(x, t) = B1xei(kx−ω)t +B2ei(kx−ω)t . (A.3b)

For these expressions to be a solution of Eqs. (3.3), the following conditions have to be satisfied:




i(ω −vk) c2k2

1+ 1
4ξ 2k2 −i(ω −vk)







A1

B1


= 0, (A.4)




i(ω −vk) c2k2

1+ 1
4ξ 2k2 −i(ω −vk)







0

B2


+




−v −2ic2k

−1
2 iξ 2k v







A1

B1


= 0. (A.5)

From the first condition we obtain that the dispersion relation (2.8) has to be fulfilled. As a conse-
quence we also find thatB1 = A1(ω −vk)/(ic2k2). Now, from the second condition we obtain




−c2k2

i(ω −vk)


=

A1

B2




−v −2ic2k

−1
2 iξ 2k v







1

(ω−vk)
ic2k2


 (A.6)

This is a system of two equations from which, eliminatingA1/B2 and after some rearranging, we
obtain:

c2k+
1
2

c2ξ 2k3 +v(ω −vk) = 0. (A.7)
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This is exactly the condition for a vanishing group velocity (3.9). Therefore, when functions in
the form of plane waves do not lead to four linearly independent solutions, but for example two
are “degenerate”, then we can use the previous solution (A.3) avoiding this degeneracy. Once we
have the actual four independent solutions of the problem, they have to bematched with the four
solutions in the other region (typically these will have the form of plane waves, unless we are in a
very special situation in which degeneracy occurs in both regions at the same time) and see whether
there is a combination satisfying all the boundary conditions.

Although we haven’t made such a full detailed calculation, the fact that this kind of situa-
tion occurs in any type of flow indicates that it is safe to assume that they do not represent real
instabilities, as already mentioned.
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