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We analyze the linear stability of various configurationshwgonic horizons in Bose-Einstein
condensates (BECs). These configurations are chosen imggnaith gravitational systems with
a black hole horizon, a white hole horizon and a combinatibbhath. The physics of acoustic
perturbations in BECs provides an specific example of theagmce of modified dispersion re-
lations of “superluminal” nature beyond an effective risiatic regime. Thus, we study BECs as
a way of analyzing the effects that superluminal dispersitations might have in quantum grav-
itational scenarios that incorporate them. We discussdteeaf different boundary conditions in
this stability analysis, paying special attention to threganing in gravitational terms. The sta-
bility of a given configuration, not only depends on its sfiegeometry, but especially on these
boundary conditions. Our analysis suggests that the pcessisuperluminal modes travelling
upstream in an ergoregion causes the appearance of ift&abil
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1. Introduction

Analogue models of General Relativity (GR) [1, 2] provide specific aledrcexamples in
which effective spacetime structures ultimately emerge from (non-relativégiEntum many-body
systems. For certain (semiclassical) configurations and low levels of tiesglane can appropri-
ately describe the physical behaviour of the system by means of a cla@sicuantum) field
theory in a curved (Lorentzian) background geometry. Howevernvame probes the system with
higher and higher resolution, the geometrical structure progressiigdpldes into a purely quan-
tum regime [3]. Therefore, although analogue models cannot be coedidethis stage complete
models of quantum gravity (they do not lead to the Einstein equations in ampeeg approx-
imation), they provide specific and tractable models that reproduce maeygtasyf the overall
scenario expected in the realm of real gravity.

The main objective of this and similar studies is to obtain specific indications dbmetype
of deviations from the GR behaviour to be expected when quantum gramaihffects become
important. All, under the assumption that the underlying structure to GR is soatesivhilar to
that in condensed matter systems. In particular, in this work we are inteiestesl behaviour of
gravity-like configurations containing horizons within Bose—Einstein cosdies (BECs). (See,
e.g., Refs. [4, 5, 6] and [3, 7, 8] for reviews on BECs and for the#fulsess as analogue models
respectively). A nice feature of these systems is that their theoreticatiplgsn in terms of the
Gross-Pitaevskii (GP) equation can be interpreted as incorporatorg,tfre start, the first “quan-
tum” corrections to the behaviour of the system. Linear perturbations obaickground BEC
configuration satisfy an equation which is a standard wave equation aweved effective space-
time plus corrections containirfy These corrections cause the dispersion relations in BEC to be
“superluminal” (strictly speaking, supersonic): some perturbations eaeltfaster than the speed
of sound in the system. The effects of these corrections in the linearizedrdgal evolution of a
configuration are especially relevant in the presence of horizonsiastigeway-membrane nature
simply disappears. This is in tune with the idea that a horizon can serve asrayimagglass of
the physics at high energies (see, e.g., Ref. [9]).

The specific objective of this work is to analyze the dynamical behavio(effectively) one-
dimensional BECs with density and velocity profiles containing one or two dumizons. In
particular, we search for the presence of dynamical instabilities andznlabw their existence is
related to the occurrence of these horizons and to specific choicesunfiy conditions. This
analysis suplements previous works in the literature [10, 11, 7, 8].

We will consider one-dimensional profiles that are piecewise uniform vitkieeone or two
step-like discontinuities. As has been discussed in Ref. [8], in terms afrdigal (in)stability,
there seems to be no crucial qualitative difference between the prememtaod a profile with
smooth transitions between regions with an (asymptotically) uniform densitybditiem. There-
fore the idealized case that we consider here should contain all thetieksgormation relevant
to more complicated profiles as well. The specific way to examine the kind of ilistale are
interested in, consists basically in seeking whether, under appropriateléy conditions, there
are complex eigenfrequencies of the system which lead to an exponeatedse with time of the
associated perturbations, i.e. a dynamical instability. Throughout the pepsill use a language
and notation as close to GR as possible. In particular, we will use boundadjtions similar to
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those imposed in the standard quasi-normal mode analysis of black holes[t2{zFROne of the
main results of our analysis is to highlight the fundamental importance of thedaoy conditions
in determining whether a configuration is stable or unstable.

The structure of this contribution is the following. In the next section we wiliew the basic
ingredients of gravitational analogies in BECs. At the same time, we will seteipdhceptual
framework for our discussion, based on a parametrization well adaptethfacoustic interpreta-
tion. Section 3 contains a detailed formulation of our specific problem. Thisdaslthe mode
expansion in uniform sections, a derivation of the matching conditionscataiacontinuity and a
discussion of the various boundary conditions to be applied. Then, tios&cwe proceed case by
case, analyzing different situations and presenting the results we htaieexd for each of them.
This includes a brief description of the numerical algorithm we have usewllys in section 5
we discuss our results, compare them with other results available in the lisgrabd draw some
conclusions.

2. Preliminaries

In second quantization, a dilute gas of interacting bosons can be dekbyilzequantum field

Y satisfying the equation
in o Q. (-ﬁzmz+vext(x)+gﬁﬂ®> 0 (2.1)

ot 2m ’
wherem is the boson mas3/e the external potential and the coupling constant which is re-
lated to the corresponding scattering lengtthroughg = 4nh?a/m. In this manner all quantum
effects can, in principle, be taken into account. Once the Bose-Einstedtensation has taken
place, the quantum field can be separated into a macroscopic wave fugidfibbe corresponding
order parameter) and a field operafpdescribing quantum fluctuations over i = Y+d. The
macroscopic wave function satisfies the Gross-Pitaevskii (GP) equation

0 h?

7 5000 = (g D+ Vet + W12 ) 0., 2.2
while for the linear quantum perturbation we have the Bogoliubov equation

=0 R 2 2 ot

lﬁﬁfﬁ: —%D +Vext(X) +92/¢|” | §+gy . (2.3)

Adopting the Madelung representation for the order parameter
Y = /ne®/Me-int/h (2.4)

(heren is the condensate density,the chemical potential an@l a phase factor which is related to
the velocity potential), and substituting in (2.2) we arrive at

an= —%D-(nDG), (2.5a)

1
00 = —%(De)z—gn—vext—ﬂ—unantum (2.5b)
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where the so-called “quantum potential” is defined as

v h? 0%,/n
quantum=— _fn \m .

(2.6)

In most situations the quantum potential in Eq. (2.5b) can be neglecteddles® bThe resulting
eguations (2.5a) and (2.5b) are then equivalent to the continuity equatich@Bernoulli equation
for a classical fluid. In this case, it is well known that the propagationcoliatic waves in the
system can be described by means of an effective metric, thus providingnddogy with the
propagation of fields in curved spacetimes [13, 14]. Given a backgroanfigurationiy and ),
this metric can be written as

2 2 T
(Quv) = gc (V ¢ Y )a (2.7)

-V I

wherec? = gno/m andv = 06p/m. These magnitudes, andv, represent the local velocity of
sound and the local velocity of the fluid flow respectively.

The functionsc(t, x) andv(t,x) completely characterize the acoustic metric. In GR any metric
has to be obtained by solving the Einstein equations. Here, however, thetaessc(t,x) and
v(t,x), and so the acoustic metric, are those satisfying the continuity and Bernguiltiens of
hydrodynamics [Egs. (2.5) without the quantum potential]. Thus, thesetieqs play a role
analogous to the vacuum Einstein equations in GR. Of course, at the glmdihear level these
equations are completely different from the real Einstein equations. Butvlay of acting when
linearized around a background solution captures the essence qfex firearized GR behaviour.

There exist, however, situations in which the quantum potential in Eq. (2rf)at be ne-
glected. This is evidently the case if the characteristic length of the spatiativas of the con-
densate density is much smaller than the so-called healing lefgth/(mc). But this case is not
the only one. To illustrate this point, let us consider the dispersion law obtéanachomogeneous
BEC (see below):

(w—Vk)? = c2k? + %czfzk“. (2.8)

This is a “superluminally modified” dispersion relation due to the presencesdétim withk*. For
¢k < 1 we can rewrite this expression as

w= (vi c\/1+ ié2k2> k=~ (vc)k+ %c52k3+ O(E%). (2.9)

Here we clearly see that the (relative) importance of the tarkd, given bys(vic) £2Kk?, depends
not only on the ratio between the corresponding wavelength and the hésigidn, £k, but also
on the specific features of the background magnitudes [note that the ¢i¢tat c) may be quite
large]. In other words, the smallness of the corresponding wavelengthésessary condition in
order to neglect the contribution of the quantum potential, but it is not acgarificondition. One
has to bear this issue in mind, especially when the system possesses$reomoints at which

c? =\2).
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Summarizing, there are background configurations which, when pretiedufficiently large
wavelengths, act as if they were effective Lorentzian geometries. Brg Hre other configurations
for which this geometrical interpretation fails, irrespective of the probimgelength. The latter
situation occurs when there are horizons in the configuration: strictlykémgpawe cannot talk
about an “effective Lorentzian geometry” in the regions surroundiegethorizons.

Without forgetting this subtlety, we will continue to call (2.7) the “effective nwétin the
system, even when analyzing the full GP equation. Then, we can cotis&leguations (2.5) to
play the role of some sort of semiclassical vacuum Einstein equations. tidegiment is classical,
but they incorporate corrections containihg Therefore, BECs’ standard treatment based on the
GP equation provides an example of a way of incorporating quantumctioms to the dynamics
of a system without recurring to the standard procedures of baditioea Again, although at the
global non-linear level these equations bear no relationship whatsegVeany sort of "semi-
classical" Einstein equations, at the linear level, that is, in terms of linearnerdeof departing
from a given configuration, equations (2.5) encode the essence tih#agized GR behaviour
(a Lorentzian wave equation in a curved background), semiclassically eadifiincorporate a
superluminal dispersion term, as we have already discussed.

We will now proceed to describe the details of our specific calculations.

3. Dynamical analysis
As afirst step in our calculations, let us linearize the Eqgs. (2.5). Let ite wr

n(x,t) = no(x) + g My (x,t), (3.1a)
6(X7t) = GO(X) + el(xat)v (31b)

wheren; and8; are small perturbations of the density and phase of the BEC. The EqgstHerb
separate into two time-independent equations for the background,

0=—-0-(c%), (3.2a)
1 h? O2%c

plus two time-dependent equations for the perturbations,
oy = —0- (Myv+c?06y), (3.3a)
491=—V-591—ﬁ1+%1525- [CZD <$>] - (3.3b)

We will restrict ourselves to work in (1+1) dimensions. This means that wesider per-
turbations propagating in a condensate in such a way that the transegreesl of freedom are
effectively frozen. In other words, the only allowed motions of both theupkations and the
condensate itself are along thexis.

We will examine two types of one-dimensional background profiles. ThEtjipe consists of
two regions each with a uniform density and velocity, connected througgpdige discontinuity.
The second type of profiles consists of three homogeneous regiahbeane two discontinuities.
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We wish to know whether these profiles do or do not present dynamidabifises. The under-

lying question is the relation between the presence of horizons and theamidal instabilities.

At each discontinuity, matching conditions apply that connect the magnitwdesilbing the con-

densate at both sides of the discontinuity. Furthermore, we need a setiiodldry conditions,

which determine what happens at the far ends of the condensate. Fimalfig, uniform sections
of the condensate, the regime can either be subsonic or supersonif, @dse there will be an
acoustic horizon at each transition between a subsonic and a supeegpait All these elements
determine the characteristics of the system, and hence its eigenfrequencies

We will now describe these elements one by one in detail.

3.1 Plane-wave expansion in uniform regions

In order to study the dynamics of the system, let us first consider a regiwhigh the con-
densate is homogeneous (witndv constant), and seek for solutions of Egs. (3.3) in the form of
plane waves:

fip(x,t) = AdkK@t. (3.4a)
B1(x,t) = Bd (K@)t (3.4b)

whereA andB are constant amplitude factors. Our aim is to elucidate about the possibkilitieta

of the system, so the frequenayand the wavevectds in these expressions will be considered as
complex hereafter [the existence of solutions with{don > O would indicate the instability of the
system]. Substituting into Egs. (3.3) we find

i(w—Vk) c2k? A
—0. (3.5)
1+ 3822 —i(w—VvKk ) \B

For a non-trivial solution to exist, the determinant of the above matrix musskaihis condition
gives the dispersion law (2.8) and since this is a fourth order polynomik) its roots will, in
general, give four independent solutions for the equations of motion ifothe(3.4).

3.2 Matching conditions at a discontinuity

Let us takex = 0 to be a point of discontinuity. The valueswandc both undergo a finite
jump when crossing this point. These jumps have to satisfy the backgronstt@iatvc> = const
[see Eg. (3.2a)]. The solutions of Egs. (3.3) in the regiors0 andx > 0 have the form of plane
waves which are then subject to matching conditions=a0. It is not difficult to see thal; has to
be continuous at the jump but with a discontinuous derivative, while theituma; has to undergo
a finite jump. The exact conditions can be obtained by integrating Eqgs. {88} an infinitesimal
interval containing the point = 0. This results in the following four independegtnerally valid
matching conditions:

[61] =0,  [viy+C%0461] =0, (3.6a)

[2] =0, [czdx (2)} =0. (3.6b)



Probing effects of modified dispersion relations with B&&estein condensates Carlos Barcel6

The square brackets in these expressions denote, for ins{éhqfce, 61|, o — 61|,_o . We can
simplify the second condition in Eq.(3.6a) [ifdx0:] = 0 by noting thatfvii;] = 0 because of the
background continuity equation (3.2a), while for our choice of a homeges background the last
condition becomes simplyyn;] = 0.

For a given frequencww, the general solution of Egs. (3.3) can be written as

u j(kjx—at) W—VLKj ix—a)

ZAje' j (x<0), ZA, 22 éki (x<0),
=11t 0, = 0 ijk (3.7)

S Al (x> 0), ZAJT;Jék'X “@ (x> 0),

=5

where{k;} are the roots of the corresponding dispersion equations (four rootsafth homoge-
neous region), and the constaAjshave to be such that the matching conditions (3.6) are satisfied.
The subscriptd. andR indicate the values of andv in the left-hand-side (lhs) and the right-
hand-side (rhs) region respectively. We can write down these conglitiamatrix formA;A; = 0,
where

w—V ki w—v ik w—viks w—vi kg wW—VRks  w—VRrke w—VRrKk7 w—VRrKg

T dE K @k @k Gk Rk
w W W w _w _w _w _w
k1 k2 k3 k4 k5 k6 k7 k8
(Nij) = . (3.8
1 1 1 1 1 1 _1 _1
k ko ks ka —ks —ke —k7 —kg

Furthermore, these conditions have to be complemented with conditions atthddsies of the
system and then we will obtain the solution of a particular problem.

3.3 Boundary conditions

In order to extract the possible intrinsic instabilities of a BEC configurationhawe to ana-
lyze whether there are linear mode solutions with positivédinthat satisfy outgoing boundary
conditions. By “outgoing” boundary conditions we mean that the groupcitglés directed out-
wards (toward the boundaries of the system). The group velocity fortipiar k-mode is defined

as
B dw) c?k+ 25202k3
Vg = Re(dk) = Re(ka v) ) (3.9)

where we have used the dispersion relation (2.8). The physical idézdtéls outgoing boundary
condition is that only disrupting disturbances originated inside the systelveczalled instabilities.
To illustrate this assertion, let us look at the classical linear stability analyaiSafiwarzschild
black hole in GR. When considering outgoing boundary conditions bottedidhizon and in the
asymptotic region at infinity [12], only negative () modes (the quasi-normal modes) are found,
and thus the black hole configuration is stable. If the presence of ing@mgsaat infinity were al-
lowed, there would also exist positive (m) solutions. In other words, the Schwarzschild solution
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in GR is stable when considering only internal rearrangements of the coafign. If instead the
black hole were allowed to absorb more and more energy coming from infitsitgpnfiguration
would continuously change and appear to be unstable.

The introduction of modified dispersion relations adds an important differevith respect
to the traditional boundary conditions used in linearized stability analysis in@Rsider for
example a black hole configuration. In a BEC black hole, one boundarg stéimdard asymptotic
region, just like in GR. For an acoustic (quadratic) dispersion relaticthjmgpcan escape from the
interior of a sonic black hole (the acoustic behaviour is analogous to lirea@GR). But due to
the superluminal corrections, information from the interior of the acoustickbifele can escape
through the horizon and affect its exterior. Therefore, since we &iagahis permeability of
the horizon into consideration, the other boundary is not the black holedmoitself (usually
described in GR by an infinite value of the “tortoise” coordinate; see fampte [12]), but the
internal singularity. The outgoing boundary condition at such a singulailgcts the fact that no
information can escape from it.

There is another complication that deserves some attention. In the casbafi@ni disper-
sion relation, the signs af = v+ cand Imk) = (v£c)Im(w) coincide for In{w) > 0. For exam-
ple, in an asymptoti® — +oc0 subsonic region, an outgoirgmode has/g > 0, so that Infk) > 0O
and, therefore, the mode is damped towards this infinity (giving a finite comitribto its norm).
Owing to this fact, in the linear stability analysis of black hole configurations uisisal to assume
that stable modes correspond to hon-normalizable perturbations (think stithdard quasi-normal
modes), while unstable modes correspond to normalizable perturbations.

When considering modified dispersion relations, however, this assocraitomger holds. In
particular, with the BEC dispersion relation, in an asymptatie +o region, among the unstable
(Im(w) > 0) outgoing {4 > 0) k-modes, there are modes with (k) > 0 as well as modes with
Im(k) < 0. An appropriate interpretation of these two possibilities seems to be the fofjowire
unstable outgoing modes that are convergent at infinity (those witk) lm0) are associated with
perturbations of the system that are initiated in an internal compact regitwe sf/stem. Unstable
outgoing modes that are divergent at infinity are associated with initialppations acting also at
the boundary at infinity itself.

Take for example a black hole-like configuration of the form describeddn E. The right
asymptotic region, which can be interpreted as containing a “source” 6f g5 in our analogue
model, simulates the asymptotic infinity outside the black hole in GR. The conwergendition at
the rhs then implies that the perturbations are not allowed to affect this asyeripfmity initially.
However, for the left asymptotic region, this condition is less obvious. B&C configuration,
this left asymptotic region can be seen as representing a “sink”. Itsqorels to the GR singularity
of a gravitational black hole. The fact that in GR this singularity is situatedfatite distance
(strictly speaking, at a finite amount of proper time) from the horizon, indg#hat it might be
sensible to allow the perturbations to affect this left asymptotic region fronstdue. We will
therefore consider two possibilities for the boundary conditior -at —. (a) Either we impose
convergence in both asymptotic regions, thereby eliminating the possibilityehatiations have
an immediate initial effect on the sink, or (b) we allow the perturbations to&fiecsink right from
the start, i.e. we don't impose convergence at the left asymptotic regianoption of imposing
the convergence at the left asymptotic region could be interpreted aslmghhe influence of the
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Figure 1: Flow and sound velocity profiles with step-like disconttieg simulating a black hole-like con-
figuration. The negative value ofindicates that the fluid is left-moving. At the rhs, the flugdsubsonic
sincec > |v|. At the |hs it has become supersonic.)At 0, there is a sonic horizon.

singularity on the stability of the system. In other words, condition (b) would thesequivalent
to examining the stability due to the combined influence of the horizon and thdagiiguvhile
under condition (a) only the stability of the horizon would be taken into adcoun

As a final note to this discussion, since we are interested in the analogy ititygwe have
assumed an infinite system at the rhs. In a realistic condensate otherabpendditions could
apply, for example taking into account the reflection at the ends of theeosate (see e.g. [7, 8]).

4. Case by case analysis and results

We will now briefly describe the general calculation method which we haed,usnd then
discuss case by case the specific configurations we have analyzed.

4.1 Numerical method

We first consider background flows and sound velocity profiles with diseontinuity. We
will always assume left-moving flows.

We are seeking for possible solutions of the linearized Egs. (3.3) wittw)m» 0. We use the
following numerical method:

1. For each frequency in a grid covering an appropriate region of the upper-half complex
plane, we calculate its associatedoots [by solving the dispersion relation (2.8)] and their
respective group velocities (3.9) at both the lhs and the rhs of the coaffiigo.

2. We then take the four equationgjA; = 0, whereA is the 4x 8 matrix (3.8) determined
by the matching conditions at the discontinuity. For each migdthat does not satisfy
the boundary conditions in the relevant asymptotic region, we add an eqditibe form
Aj = 0. Thus we have a total set of equations which can be writteh ;@ = 0, whereA
is now a(4+ N) x 8 matrix the numbeN of forbidden modes can in principle vary between
0 and 8). Numerically it is convenient to normali2ein such a way that its rows are unit
vectors.

3. We can then define a non-negative functidiw), whereF (w) = 0 means that the frequency
w is an eigenfrequency of the system, in the following way.
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e If N <4, thenF(w) = 0. Indeed, we have 8 variablés and 4+ N equations. Then, it
is obvious that there will always exist a non-trivial solutiph; }.

e If N =4, thenF (w) = |det{A)|. In this case there will be a non-trivial solution only if
the determinant of the matriX vanishes.

e If N =05, thenF (w) is taken to be the sum of the modulus of all possible determinants
that are obtained from by eliminating one row. Notice that in this cadeis a non-
square % 8 matrix because there are more conditions than variables. In this situation
it is highly unexpectable to find zeros nhas this would mean a double degeneracy.

e If N > 5, F(w) is defined by a straightforward generalization of the procedure for
N =5.

4. We plot the functiorF (w) in the upper half of the complex plane, and look for its zeros.
Each of these zeros indicates an unstable eigenfrequency, and seskaqe (or absence)
of these zeros will indicate the instability (or stability) of the system.

In all our numerical calculations we have chosen values for the spesouof and the fluid
velocity close to unity. Moreover, we set?> = 1 and choose units such that = 1. The typical
values of the velocity of sound in BECs range between 1mm/s—10mm/s, whiledhegength
lies between 16°mm — 10*“mm. In consequence, our numerical results can be translated to re-
alistic physical numbers by using nanometres and microseconds as natitsal For example,
the typical lifetime for the development of an instability with (lem) ~ 0.1 would be about 10 mi-
croseconds. We have checked that our results do not depend aarticellar values chosen for the
velocities of the system.

4.2 Black hole configurations

Consider a flow accelerating from a subsonic regime on the rhs to a saperegime on
the Ihs, see Figure 1. For rhs observers this configuration possaedsdask hole horizon. For
such configurations with a single black hole-like horizon, when requirmgvergence in both
asymptotic regions [case (a)], there are no zeros (see Figure 2pteior two isolated points on
the imaginary axis (see Figure 3, which is a zoom of the relevant area imeFxju (We always
check the existence of a zero by zooming in on the area around its locatitstie numerical
resolution of our program.) These points are of a very special natuhey @re located at the
boundary between regions with different numbeof forbidden modes in the asymptotic regions.
The zeros that we will find for other configurations are of a totally diffémature: they are sharp
vanishing local minima oF (w) living well inside an area with a constant valueNd{N = 4 to be
precise). We discuss the meaning of these special points in AppendixrAolo let it suffice to
mention that points of this kind are always present in any flow, indepélydefrwhether it reaches
supersonic regimes or not. Hence it seems that they do not correspaad physical instabilities,
since otherwise any type of flow would appear to be unstable. Accordimgtize following, we
will not take these points into consideration. When we assert that a figdewdéd of instabilities,
we will mean that the functiof (w) has no zeros except for the special ones just mentioned.

Figure 2 also shows that the system remains stable even when eliminating thigocoaf
convergence at the lhs [case (b)].

10
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To sum up, configurations possessing a (single) black hole horizatadie under the general
boundary conditions that we have described, i.e. outgoing in both asympgitns and conver-
gent in the upstream asymptotic region, independently of whether camezgs also fulfilled in
the downstream asymptotic region or not.

4.3 White hole configurations

Let us now consider flows decelerating from a supersonic regimetffas$ubsonic one (Ihs).
From the point of view of |hs observers, the geometric configurationqeses a white hole hori-
zon. In GR, a white hole corresponds to the time reversal of a black hdierefore, unstable
modes of a white hole configuration would correspond to stable (quasifamodes of the black
hole. However, when modified dispersion relations are present, thesgmefinition of quasinor-
mal modes cannot be based only upon the outgoing character of the rbatddwir divergent or
convergent character also has to be taken into account. Having in mirid thatacoustic approx-
imation (proper Lorentzian behaviour) the outgoing character of a gosal mode implies that
this mode diverges at the boundaries at infinity, it is reasonable to impeseeince as an addi-
tional defining requirement (apart from being outgoing) for a quasiamode in the presence of
modified dispersion relations. Using this definition, we have checked (@yzng the lower-half
complexw plane), that black hole configurations do not show any quasinormalé€$twigenfre-
guency. Thus, we can conclude tlmate-dimensionalvhite holes are stable. We emphasize here
the word one-dimensional because we do not expect this situation to renmin tnigher dimen-
sions. We know for example that standard GR black holes in 3+1 dimensigss$s quasinormal
modes. We expect these quasinormal modes to subsist when taking intmedepartures from
the acoustic (Lorentzian) dispersion relation; we only expect them toirecouodified eigenfre-
guencies. These quasinormal modes would then identify instabilities of thesponding white
hole configuration. We leave the analysis of the quasinormal modes inatiffanalogue gravita-
tional configurations in BECs for future work, since this analysis has its swbtleties.

The boundary conditions appropriate for the analysis of white hole-likéiguarations corre-
spond to only having ingoing waves (due to time reversal) at the boundBri¢&rom the point of
view of acoustic models in a laboratory, the analysis of the intrinsic stability dialae(under the
outgoing boundary conditions described above) is also interesting. faligsés also has particular
relevance with regard to configurations with two horizons (see below).

In Fig. 2 we see that under outgoing boundary conditions the flow is stdtde wsonvergence
is required in both asymptotic regions [case (a)], but exhibits a contimegien of instabilities at
low frequencies when convergence is fulfilled only at the rhs [cadelfeed, in this continuous
regionN = 3, in other words the algebraic syste?mAij = 0 is underdetermined and any frequency
is automatically an eigenfrequency.

When looking at the case of a completely subsonic flow suffering a datieler(see Fig. 2),
we find something similar. The system is clearly stable when convergence iséahpo the lhs,
i.e. in case (a). Without convergence at the lhs, case (b), there idiawmus strip of instabilities
which corresponds, as in the white hole case, to a region wkere3. However, this region is
localized at relatively high frequencies and so disconnected toom0. We can say that part of
the continuous region of instabilities found in the white hole configuration hasigs merely in
the deceleration of the flow (giving rise to this high frequency strip). Betdhs still a complete
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Black hole White hole
Csuper: 0.7, Csub: 18 Csub: 18, Csuper: 0.7

N(w) log [F(e)] N(w) log [F(a)]

2|

(a)
(b)
Accelerating subsonic flow Decelerating subsonic flow
Csub1= 1.8, Csup2=1.9. Csub1= 1.9, Cgupo= 1.8.
log [F(w)] N(w) log [F(w)]
(a) D a
(b) “
-4 -2 2 4 ‘

2 ] 2 2 0 2 0 2 0 2
Re(w) Re(@) Re(w) Re(w)

Figure 2: Stability analysis under outgoing boundary conditionsgmfiles with one discontinuity. Rep-
resented is the relevant portion of the upper-half complegdency plane. From top to bottom and left to
right: black hole and white hole configurations, accele@tind decelerating subsonic flows (the speed of
soundc is indicated for each region and the velocitys then obtained from the constran® = 1; ¢ > 1
corresponds to a subsonic regi@ 1 to a supersonic region; in addition, we use= 1 in all our cal-
culations). The |hs pictures represent the numWesf forbidden modes in the asymptotic regions. The
rhs pictures represent the functibriw) (to enhance the contrast, we have drawn the logarithm), driigkw
points or regions, where (w) = 0, represent instabilities. In the upper pictures [cask ¢anvergence has
been imposed in both asymptotic regions. In the lower pésticase (b)], convergence has been imposed
only in the upstream asymptotic region. It is seen that blagk configurations are stable in both case (a)
and (b), as are accelerating subsonic flows. White hole canfigns are stable in case (a), but develop a
huge continuous region of instabilities in case (b). Onlyrak strip of instabilities subsists in the decel-
erating subsonic flow, indicating that the major part of tnstable region is a genuine consequence of the
existence of the white hole horizon. Note that continuoggores of instability correspond td < 4.
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Figure 3: Two special zeros of the functidf(w) appear in the stability analysis of a black hole configu-
ration (this plot is a zoom of the corresponding plot in Fiyy. Zhey are located at the boundary between
regions with different numbeX of prohibited modes. These points do not seem to represaiihstabilities

of the system (see appendix A).

region of instabilities that is genuine of the existence of a white hole horindiact, by decreasing
the healing length parametér, the strip moves up to higher and higher frequencies, becoming
less and less important as one approches the acoustic limit. However, tiuoas region of
instabilities associable with the horizon does not change its character in dlissst

We can therefore conclude the following with regard to decelerating amafiigns. When
convergence is fulfilled downstream, the configuration is stable, regardlewhether it contains
a white hole horizon or not. When this convergence condition is droppeck th a tendency to
destabilization. In the presence of a white hole horizon, the configuratiomaleyy becomes dra-
matically unstable, since there is a huge continuous region of instabilitiesyancperturbations
with arbitrarily small frequencies destabilize the configuration. In the alessefsuch a horizon,
only a small high-frequency part of this unstable region subsists.

4.4 Black hole—white hole configurations

Consider flows passing from being subsonic to supersonic and théntdwacibsonic (Fig-
ure 4). The numerical algorithm we have followed to deal with this problengisvalent to the
one presented above, but with a larger set of equations. In this casawed 2 arbitrary constants
A;, which have to satisfy 8 N equations: 4 matching conditions at each discontinuityNtt- 8)
additional conditions of the form; = 0, corresponding to modes that do not fulfill the boundary
conditions in a particular asymptotic region.

When convergence is imposed at the |hs, we do not find any instabilitiesdiegs of whether
the fluid is globally accelerating or decelerating [the final Ihs fluid velocity gdaor smaller than
the initial rhs one respectively, see Figure 5 cases (a)]. Also whdaciag the intermediate
supersonic region by a subsonic one, thereby removing the acousizommrthe fluid is stable,
independently of whether it is globally accelerating or decelerating.
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x=—L/2 x=L/2 X

Figure 4: Flow and sound velocity profiles with step-like discontiies simulating a black hole—white hole
configuration.

When dropping the convergence condition at the Ihs the situation chaoggdetely. When
the intermediate region is supersonic, i.e. in a black hole—white hole cortfgura discrete set
of instabilities appears at low frequencies [Fig. 5 cases (b)]. It is wothtioning that, when
carefully looking at plots of type (a)-cases, we observe some trache®sé zeros in the form of
local minima which can be understood as particularly soft regions. Tleggens, although very
close to zero in some situations, never give rise to real zeros, as wechaesfelly checked by
zooming in. Notice that these local minima appear in regions Wits 5 where a zero would
mean a double degeneracy within the row vectors in the corresponding rﬁ@trixWhen the
fluid is globally decelerating, additionally there is a continuous region of iflgted at higher
frequencies. Indeed, in this region, as in the case of the white hole catf@uN < 4, and so
every frequency in this region automatically represents an instability. Wieantifrmediate region
is subsonic, the discrete set of local minima at low frequencies disappeathe continuous strip
of instabilities at higher frequencies persists in the case of a globally datiatefluid. The discrete
set of instabilities is therefore a genuine consequence of the existehoezuins.

We have also seen that the number of discrete zeros we find in the blaekvhdtie hole con-
figuration increases with the sizeof the supersonic region while their () decreases. This
suggests that the region between the horizons acts as a sort of wedltidiegy some of the in-
stabilities found for the white hole configurations. The larger the well, theefaige amount of
instabilities, but the longer-lived these instabilities.

To summarize, when requiring convergence in both asymptotic regions, dilfgbe of con-
figurations with two discontinuities that we have discussed are stable. Wieequiring conver-
gence at the lhs, discretized instabilities appear associated with the meddmrizons.

4.5 Black hole configurations with modified boundary conditions

We have seen in section 4.2 that configurations with a single black hole halizoot possess
instabilities in any situation. However, as we have just discussed, wheratbeyntinued into a
white hole configuration, some instabilities can show up. Here, we would likeitd put that the
same happens if instead of extending the black hole configuration we ing@dwall (or sink) at
a finite distance inside the supersonic region, described by other bgwatalitions than the ones
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Figure 5: Stability analysis for profiles with two discontinuities.rdf top to bottom and left to right:
globally accelerating and decelerating black hole—whike ltonfigurations, globally accelerating and de-
celerating subsonic configurations. In all these plots weshesedL = 2.5 as the size of the intermediate
region (see also caption under Fig. 2). When convergencepesed in the asymptotic regions [case ()],
all the configurations are stable. When convergence is onpp#ed upstream [case (b)], the configurations
with sonic horizons present a discrete set of instabiliiglew frequencies, while the decelerating configu-
rations show a small continuous unstable strip at high #egies. The decelerating configuration with sonic
horizons combines both types of instabilities.

we have considered so far. For example, by replacing the lhs boundadjtions byf|x-_ =0,
we obtain Fig. 6. We can perfectly see how a set of discrete unstable mpplears.

5. Discussion and conclusions

Let us start by discussing the stability of configurations with a single blatéIie@ hori-
zon in analogue systems that incorporate superluminal dispersion relaiiensave seen that by
requiring purely outgoing and convergent boundary conditions in bsymatotic regions, these
configurations do not show any signs of instability. The same applies wiog@pidg the conver-
gence condition downstream (i.e. on the lhs). This seems to contradictdhiésran Ref. [8].
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log[F()]

0
Re (o)

Figure 6: A discrete set of instabilities appears in a black hole caméiion when the lhs asymptotic region
representing the singularity is replaced by a wall or simkthis plot we have usetl,,= 1.9 andcsyper= 0.7
(with their corresponding = 1/c?); in addition we have takeb = 6 as the size of the, now finite, internal
region.

There, the existence of a future (spacelike) singularity inside the bldek fnom which no infor-
mation is allowed to escape, was implemented by introducing a sink in the suicersgion at
a finite distance from the horizon. Then, it was found that there wereatésistabilities in the
system. However, these instabilities correspond to the following particulaf $®undary con-
ditions: i) At the asymptotic region, only convergent boundary conditioegevimposed, without
any condition about the direction of propagation (in- or outgoing) of théugeations; ii) At the
sink, two types of boundary conditions were required, specifically desidor dealing with sym-
metric and anti-symmetric configurations. In our language these boundadjtions correspond
to {0'|sink = 0,N|sink = 0} and{ Bsink = O, n|sink = O} respectively. In comparing this result with
ours we have checked two important facts. On the one hand, their unstaldies have ingoing
contributions at the asymptotic region. On the other hand, the boundadjtioms at the sink
are such that they combine outgoing and ingoing contributions — their sink imptation makes
waves reaching the sink bounce back towards the horizon. Thesed¢safe responsible for the
unstable behaviour of these black hole-like configurations. If no gristigtroduced into the sys-
tem from the asymptotic region (in other words, if only outgoing perturbataresallowed) and
moreover any bouncing at the sink is eliminated, then these configuratierstadrie. This is in
agreement with the result found in Ref. [11].

In the case of configurations with a single white hole horizon, we have the¢nwvith out-
going and convergent boundary conditions in both asymptotic regiorns, éne no instabilities in
the system. However, when eliminating the convergence condition in the tteamsasymptotic
region, one finds a continuous region of instabilities surrounding 0. Thus, we see that these
white hole configurations are stable only when the boundary conditiorsufreiently restrictive.

When analyzing configurations connecting two different subsonic msgiwe have also seen
that, again, when convergence is required at the lhs, they are stalievhBo this convergence
condition is relaxed, globally decelerating configurations tend to beconehlaswhereas glob-
ally accelerating ones remain stable. The instabilities of these deceleratifigucations without
horizons (i.e. purely subsonic ones) show up, however, in a small $thgh frequencies. In
contrast, white hole configurations present instabilities for a wide randeegfiencies, starting
from arbitrarily small values. This points out that the presence of a white harizon drastically
stimulates the instability of the configuration.

With regard to the black hole—white hole configurations, we have seen thhgfare, with
outgoing and convergent boundary conditions, they are stable. Howeken relaxing the con-
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vergence condition downstream, they develop a discrete set of unstabés mod

In the analysis of the black hole laser instability in Ref. [10], the authoraddhat these
black hole—white hole configurations were intrinsically unstable. Howekiey, did not analyze
what happens to the modes at the |hs infinity. Our analysis shows thatthgtneg the possible
behaviour of the modes in the downstream asymptotic region, one can elimipaiagtable be-
haviour of the black hole laser. This is in agreement with the results in R&f8].[ There, the
instabilities can in some cases be removed by requiring periodicity, that is, lmsingpadditional
boundary conditions to the modes.

To sum up, we have shown the high sensibility of the stability not only on thedfpgen-
figuration (the presence of a single horizon or of two horizons, thelaeting or decelerating
character of the fluid), but particularly on the boundary conditions. Witigaing boundary condi-
tions, when requiring convergence at the downstream asymptotic régiimblack hole and white
hole configurations are stable (and also the combination of both into a blésk#tate hole con-
figuration). When relaxing this convergence condition at the Ihs, cordiguns with a single black
hole horizon remain stable, whereas white hole and black hole—white hdigwations develop
instabilities not present in (subsonic) flows without horizons.

Looking at all these analysis leads to the overall picture that underlsuiaal dispersion
relations white-hole horizons have an intrinsic tendency to instability, whilekliiate configura-
tions can become easily unstable if only there exist superluminal modes trgughtream in the
ergoregion.
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A. Zeros at the boundaries of the regions ifN(w)

Given anw, one can find its four associatkdoots,{k; }. If instead ofw one takeso = —w"*,

it can be seen that the new rodis } are just{ -k }. For this reason the functidf(w) is mirror
symmetric with respect to the imaginary axis (this is seen in all our figures), Wbenw is pure
imaginary (= —w"), the set{kj} has to be equal to the set-kj}. There are three posibilities.
Either all four roots are pure imaginary, two are imaginary and the other bmgptex satisfying

k; = —ki', with j # |, or there are two pairs of complex roots satisfykjg= —ki". When moving
through the imaginaryw axis, there are points at which there is a transition from one of these
possibilities to another. At any transition point there has to be a pair of imagioats with equal

value. Definingw” = Im(w) andk = —ik, the dispersion equation (2.8) can be written as
1
(' —vKk)?— <c2 — 4c262K2) k2 =0. (A.1)
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This is a fourth order polynomial ir with real coefficients. If this polynomial has two equal real
roots then we know that the derivative with respecktof the polynomial has to be zero at that
point. It is not difficult to see that this also implies that the derivative with eespo k of the
function

12
(W—VK) F <c2 - iCZfZK2> K (A.2)

has to be zero at this same point. But this derivative coincides with the defitithe group
velocity given in (3.9) (wherw andk are pure imaginarydw/dk is directly real). Therefore,

we conclude that at any transition point on the imaginaraxis we have degeneracy: at least
two imaginaryk roots with equal value. At the same time, the group velocity associated with them
becomes zero. This is why these points are located at the boundary bebagems with a different
number of forbidden modes: these are places in which outgoing modetranmsto ingoing ones.
The zero that appears in the functiBiw) at these points is due to the degeneracy and does not tell
us anything about the existence or not of a real instability there. To krtwsther a real instability
appears, one first has to find the actual four independent soluticeguations (3.3) at the point
that led to the degeneracy. Let us check under which circumstancesnoriind a solution of the
form

fip(x,t) = Ag xRt (A.3a)
B1(x,t) = By xd-@t gkt (A.3b)

For these expressions to be a solution of Eqgs. (3.3), the following corslitiave to be satisfied:

i(w— VK) c?k? AL
=0, (A.4)
1+ 3822 —i(w—vk | \By
i(w— VK) c2k? 0 —v  =2ic’k\ [A
n —0. (A5)
1+ 2822 —i(w—vk) | \B; —1iE%k v B:

From the first condition we obtain that the dispersion relation (2.8) has tolfilkefl. As a conse-
quence we also find th& = A;(w — vk)/(ic’k?). Now, from the second condition we obtain

—c2k? A v —2ic%k 1
=1 (A.6)

vy]
N

1i —vk
~ligzk v (fizz':/Z)

i(w—VK)

This is a system of two equations from which, eliminatiygy B, and after some rearranging, we
obtain:

2k + %0252k3 +Vv(w—vk) =0. (A7)
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This is exactly the condition for a vanishing group velocity (3.9). Theefarhen functions in
the form of plane waves do not lead to four linearly independent solytlartsfor example two
are “degenerate”, then we can use the previous solution (A.3) avoidsdelgeneracy. Once we
have the actual four independent solutions of the problem, they havertmtohed with the four
solutions in the other region (typically these will have the form of plane wauwdgsss we are in a
very special situation in which degeneracy occurs in both regions aathe 8me) and see whether
there is a combination satisfying all the boundary conditions.

Although we haven’'t made such a full detailed calculation, the fact that this &f situa-

tion occurs in any type of flow indicates that it is safe to assume that they hepm@sent real
instabilities, as already mentioned.
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