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1. Introduction

Currently, theoretical determinations of the mixing paetensBg, (q = d,s) are becoming
more and more urgent in relation to the Unitarity Trianglalgsis. TheB-parameters are defined
as the relative deviations from the Vacuum Saturation Agpnation (VSA) of the matrix elements
of AB = 2 four-fermion operators betwe@&imeson states, i.e.
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3'By''By
They encode the low-energy information related to pardeigparticle oscillations and are for-
mally accessible to lattice QCD simulations. Neverthelesdirect computation oBg, is ham-
pered by the presence of the large value oftifgiark mass, which imposes the adoption of tiny
lattice spacingsa < 1/(5GeV)) in order to avoid large lattice artefacts. A possible wayieubd
expand theéB-parameters in Heavy Quark Effective Theory (HQET), i.einwerse powers of the
b-quark mass. The leading contribution, also known as the stpproximation, is expected not
to be far from the relativistic value, as previous latticeules have shown. Even so, the naive lat-
tice discretization of the effective four-fermion operatof the static theory, based on Wilson-type
light fermions, is affected by a non-trivial renormalizatimixing, due to the explicit breaking of
chiral symmetry, which pushes the numerics up to the edgeaiotarrent technology. Although
Ginsparg-Wilson fermions appear as the natural disctadizao study left-left four-quark opera-
tors, we follow a computationally cheaper approach, basetivisted mass QCD (tmQCD) [1],
which allows for purely multiplicative renormalizationthie same computational cost as with Wil-
son quarks.

2. Computational strategy

Our starting point is the equation relating the left-lefecgtor of the fully relativistic theory
to the four-fermion operators of HQET,

O (my) = Cl(mh“)Ql(U)+C2(m)7“)Q2(U)+O<%> , (2.1)
Q= G5, = (Gnyul) (Grvula) + (TnyuysWo) (Trvuysda) »  (2.2)
Q = 055 = (Untg) (Yrlg) + (UhysWy) (Frysg) - (2.3)

Eq. (2.1) has to be understood as a scheme dependent pgviurbatching between two renor-
malizable field theories. The coefficiertg known at NLO in theMS/NDR scheme [2], provide
the RG evolution from the defining scate, of the effective theory down to a scglex~ 1 GeV.
Although a natural hierarchy < my has to be assumed in the matching equation, it should be
observed that, due to the renormalizability of the statiotly, the four-fermion operatof3; » are
perfectly defined at any scale. In particular, they can beugeatively evolved up to the RGI point
through the appropriate»22 static anomalous dimension matrix, i.e.

] T
[QSG'] =) [sz] ! 4
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wherec ) will be defined later.

The advantage of introducing RGI operators is twofold. Gndhe hand, they are truly non-
perturbative quantities, free of systematic uncertasntedated to perturbative truncations. On the
other, they are regularization independent. As such theypedinked to any specific lattice regular-
ization, to be chosen on the basis of computational conaerieA simplification of the renormal-
ization pattern is achieved if we perform a change of bagiswe introduce the primed operators

/RGI RGI RGI RGI

e o o ) B S R
This redefinition becomes particularly advantageous onldtieee if the relativistic degrees of
freedom are discretized according to tmQCD at full twise, i.with twist anglea = /2 [1].
In particular, from now on we consider the specific case oBhmeson, for which we assume a
fermion content made of a static quark plus a twisted straqgek belonging to a fully twisted
(c,s)-doublet. Lighter degrees of freedom, i.e. the up and dovarks, do not need to be further
specified, since they do not enter the valence skctortmQCD the operatorg, , are mapped
onto their odd parity counterpar@’lvz, which renormalize purely multiplicatively, as proved in
[3]. In other words, with some abuse of notation

(QFC) = lim 21 e (90(2)) (24(2) i -
(QF®!) = lim 25 e (90(a)) (25(8) nalep - (2.6)
where
21 = Oniw = (nVul) (Trvuysl) + (Fhvuvsta) (Bavutda) . (2.7)
25 = Ownin +480ps.s0= (UnYulia) (WrVuYsWa) + (UnyuVelia) (WrVula) +

A[(UnysWo) (W) + (Untg) (Wryso)] - (2.8)

The RGI renormalization constaniﬁRGI (k=1,2) have been recently obtained in the quenched
approximation [4] through finite size techniques based enSbhrodinger functional [5]. Since
the latter allows for the adoption of mass independent sesgthe computation ‘ff((,Rm has been
performed with standard (untwisted) Wilson fermions. Alipneary study of the non-perturbative
renormalization folN; = 2 has been also presented at this conference [6].

3. Non-perturbative renormalization in the Schrédinger functional

In order to study the renormalization of the four-quark epers, we consider a theory with a
light quark sector consisting of two masslesadmproved Wilson-type quark@ps, g») entering
the four-quark operators, plus a third light spectator kuay, regularized in the same way, whose
réle will be clarified in a moment. Suitable renormalizatmonditions can be specified in terms of

IThis freedom allows to extend the present stratedyste: 2 with any kind of dynamical sea, without incurring in
mixed action issues, such as the adoption of differentkategularizations for valence and sea quarks.
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SF correlators made of bilinear boundary source operaiges >4 o, (lying resp. on the two time
boundariesq =0 andxy = T)

T[] =a° }[z&_ )M s, (y Ss[M =255 2, (L4 (y) . (3.1)
Xy

and the four-fermion operator3; ,. Due to the flavour and parity structure @ ,, zero-momentum
correlators need at least three bilinear boundary soulees bilinears are placed & = 0 and the
third one atxop = T. Their product gives rise to a generalized source

W (T1,T2,T 3] = Zan[1]Z23[M 2] 25T 3] (3.2)

which is parity-odd under five different choices of the Diraatrices 1, ', andl 3, i.e.

1 3
SO =W [y v 1] SE=5 > am Mol
k,l,m=1
13 13 5 13
52 Vo, Vi W 52 (Vi V6, ] yU:gZW[w,w,vs]- (3.3)

k

1

All of the above sources have the same quantum numbe#; aand can be used as probes within
the correlators
T (x0) = L3(24(x).7) . (3.4)

Nevertheless, their renormalization is non-trivial anduiees the introduction of multiplicative
renormalization constants to absorb the additional Itigawic divergences of the boundary fields
from Eq. (3.4). To avoid this, we introduce some boundarpdgandary correlators

1! = s Telale)) 35)

fl = e (Tl (36)

g = - lﬁz W21 e (3.7)
and use them in the ratios

h 7 (x) (3.8)

k;a(xo) = fyl[fil]l/zfa[kma ’

in such a way that the additional renormalization factorthefboundary sources in Eq. (3.4) drop
out. The parameter in the exponent oﬂ‘{' and k! can be freely chosen without changing the
flavour content of the denominator and, in what follows, il take valueso = 0,1/2.

Renormalization conditions, formulated in terms of thmml((s; (Xo), read

2 (go, = 1/L) K, (T/2) = S, (T/2) gomo » (3.9)



Preliminary results of B, in the static limit from tmQCD Filippo Palombi and Mauro Papinutto

whereT = L, no background field is introduced and the &Fangle [7] is set t®@ = 0.5. In our
simulations we adopt four different lattice discretizasoof the heavy quark action, i.e. the stan-
dard Eichten-Hill one [8] and its statistically improveds®ns where the naive parallel transporter
is replaced by a smeared APE, HYP1 or HYP2 gauge link [9]. Heweén this talk we only report
on results with the HYP2 action, i.e. the one with the bestaigo-noise ratio. Out of the plethora
of renormalization schemes that can be defined by Eq. (3®x;heose our preferred ones to be
(s,a) =(1,0) fork=1and(s,a) = (3,0) for k= 2 (cfref. [4] for further details), thus eliminating
the indicessanda from the notation.

4. Renormalization group running

The formal solution of the Callan-Symanzik equation redatee scheme-dependent RG run-

ning operatotZ; (i) to the renormalization group invariant o} )

~ —% /200 ) (0)
(e = AlH) [%} exp{— [ ag (% - %) } = ZWEH), (@.1)

whereg(u) is the scheme and scale-dependent renormalized coupling.g@l is to compute
¢ (1) non-perturbatively. In practice the strategy we follow @ssplit perturbative and non-
perturbative contributions at a high renormalization e¢a},

(20) rer = Ck(Mpt) Uk (Lot Hnad) Zk(Hhad) (4.2)

whereU( Hpt, Uhad) = € (Unad) /G (Hpt) represents the evolution of the renormalized operaij(g:)
from the low-energy hadronic scalgaqto the high-energy perturbative scalg > Lnhag. Our first
task has been to compute it non-perturbatively. Since iffialt to accommodate scales which
differ by orders of magnitude in a single lattice calculatidt is useful to factorize the evolution
and adopt a recursive approach. Accordingly, we introdheesb-called step-scaling functions
(SSFs)oi and o, which describe the change in the renormalization constand the gauge cou-
pling respectively, when the energy scalés decreased by a factor of two,

o(u) =g (1/2), u=gi(u),
1 2((Qo,apt/2) m=0 ,
1y 1_ k ) —
Uk(U) - Uk(uv IJ/Z) - IaILnO D@pk/(go’a“) U= () = !aIE]OZk(u’ aﬂ) ) (43)

andgg denotes the bare coupling. Having computed the SSFs forweseg of couplingsi, i =
0,1,2,...,n—1, we can construct the non-perturbative evolutif(2" tinag, Hhad) from the product
of SSFs

1
n—1 )

Uk (2" thad, Bhad) = { I_LUK(Ui)} Ui =022 tpag) (4.4)
i=

In the present computatigm,aq is taken to be a few hundreds of MeV and we have choser8,
so that we could trace the evolution non-perturbativelyr tiveee orders of magnitude. In this way
Hot = 2"Unad is large enough to allow for a perturbative evaluationcpfiiy) with the operator
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anomalous dimension approximated at NLO [3]) and fheinction at NNLO [11]. The relation
between the RGI operators and the bare lattice ones defiaésté#th RGI renormalization factor

(2 re1 = Zeroi(90) 24(a) - (4.5)

A comparison between Eq. (4.2) and Eq. (4.5) leads to

Zi re1(90) = E (Mpt)Uk(Hpt, Hnad) 24 (Jo, lnad) - (4.6)

The factorZ/(go, ahad) Must be determined for each operator in a lattice simulattdixed phag
for a range of bare couplings, using suitable renormabpatonditions. In our simulations we have
Unad= 1/(2Lmax) ~ 270 MeV wherelmaxis fixed through the conditiog2-(1/Lmax) = 3.480. This
corresponds to havinbmax/ro = 0.718(16) (ro = 0.5fm) [10]. The sequence of couplings =
Q§F(2*iLmax) is obtained by solving the recursion relatiopi= 3.480,0(u+1) =u;, | =0,1,... .

5. Continuum extrapolation of the step scaling functions

The lattice SSF& must be extrapolated to the continuum limit (i.e. vanistarig) at fixed
gauge coupling in order to obtain their continuum countésaa. Since the four-fermion operators
have not been improved, we expect the dominant discreaiizatifects to be (n); therefore our
data should exhibit a linear behaviourapL. Accordingly, we have fitted to thensatz

Zi(ua/L) = o(u) + p(u) (a/L). (5.2)

Fits have been performed using either four values of thedatpacing, i.e.L/a = 6,8,12 16
or, alternatively, without taking into account the coats#etal /a = 6, which may be subject to
higher-order lattice artefacts. The results from threed sur-point fits are always compatible
within one standard deviation for all operators and schemsege for a few exceptions in which
the agreement drops at the level of 1.5 standard deviatiolys &Ve have therefore decided to
choose the three-point based linear extrapolations taexbur final estimates afi. The resulting
continuum limit extrapolations for our preferred renorization schemes are illustrated in Fig. 1.
The maximal statistical uncertainty fa is ~ 1.5% and is found at the largest valuewfvhen
discarding data dt/a = 6. The values op obtained in the fits 0f2} are always compatible with
zero within the statistical uncertainty, while in the caée%j they are not compatible with zero for
u 2> 2, thus signalling a stronger dependence upon the cut-off.

6. Non-perturbative RG running in the continuum limit

In order to compute the RG running of the operators in theicoain limit as described
in section 4, we need to fit the results fog(u) to some functional form. We follow the same
procedure as for the renormalized quark mass [12], i.e. wptdtie polynomial ansatz

M
ocu) =1+ 5 snu™, (6.1)
m=1
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Figure 1: Continuum limit extrapolation of the SSBg (with s= 1, a = 0) andX; (with s=3, a = 0) at
various SF renormalized couplings computed using the H'éR2¢ discretisations of the static action. The
SF couplingu increases from top-left to bottom-right.

with M = 2, 3,4 ands; always & possibly) set to its perturbative value
1
s1=y%In2, s =yYIn2+ E(yﬁ(’))z +boy?| (In2)2. (6.2)

It is worth mentioning that ik, is fitted as a free parameter, it turns out to lie in the balpar
perturbation theory. The RG running factti( fihad) = € (2" thad)Uy (2" Unad, Uhad), Which is now

a function of the fit parameters only, can be obtained withragiete control of the systematic
effects. We have indeed checked that its value is fairlyrisgige to the fit ansatz and to whether
S, is set to its perturbative value or not. We choose to quoteiafiral results those obtained with
M = 3, s1 fixed by perturbation theory arsd, sz kept as free parameters.

In practice, due to constrains imposed by Heavy Quark Spir8stry, the number of inde-
pendent SF schemes @&, is downgraded to four fok = 1 and to eight fok = 2. These lead to
total RGI renormalization factors which are scheme inddpahapart from Qa) lattice artefacts.

The main criterion to define suitable schemes amounts tokofgedthat the systematic un-
certainty related to truncating the perturbative evolutiactord (upt) of Eq. (4.2) at NLO in the
anomalous dimension is well under control. This in turn megguan estimate of the size of the
NNLO contribution toc(upt). To this purpose we have re-computgdLiy) with two different
values of the NNLO anomalous dimensig€: in the first case we seg/'? /v | = |\ 1y 9;
in the second case, we gu%’@ by performing a one-parameter fit to the SSF veitls, fixed by
perturbation theory, and equating the resulting valug; & its perturbative expression

ss= 122+ [OYY + 200V + 010 | (In2)2+

+ [E0K%)2+ bo( )2+ 563 | (in2)2. (6.3)
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For the operator?], we find that in either case the central value of the comtnaf (tnad) =

G (Upt) Uy (Hpt, Hnad) changes by a small fraction of the statistical error, of ttdenQ1-03 stan-
dard deviations (depending on the renormalization scheife) the operator2),, which carries
relatively large NLO anomalous dimensions, the effect camablarge as.8—10 standard devia-
tions. Therefore, we add t,(nad) a corresponding systematic uncertainty of this order. $t ha
to be stressed that the impact of this extra uncertaintyeatetrel of theB—B mixing amplitude is
not particularly worrying, since the matrix element@f enters the latter only at@s), when the
static-light theory is matched to QCD. The results for th&&8&nd the operator RG running in the
reference schemes (see the end of Section 3) are illusiratgdure 2.
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Figure 2: Upper plots: the step scaling functioas, (discrete points) as obtained non-perturbatively. The
shaded area is the one sigma band obtained by fitting thesptoiat polynomial. The dotted (dashed) line
is the LO (NLO) perturbative result. Lower plots: RG runnisfg2; , obtained non perturbatively (discrete
points) at specific values of the renormalization sgalén units of A. The lines are perturbative results at
the order shown for the Callan-Symangkfunction and the operator anomalous dimengion

7. Matching to hadronic observables

The RGI operator is connected to its bare counterpart viadted renormalization factor
Z! nci(90) Of Eq. (4.6). We stress thal o,(go) is a scale-independent quantity, which more-
over depends upon the renormalization scheme only viafoeffeicts. Indeed, it depends on the
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k s € (Hnad) ay by Ck

1 1 0.777(17) 0.5731(11) -0.171(11) 0.082(25)
2 3 0.675(12) 0.7258(14) -0.061(14) 0.016(33)

Table 1: Runningci(pnad) (With thag= (2Lmax) ~1) and fits to the total renormalization factor of Eq. 4.6.

particular lattice regularization chosen, though onlytﬁafactorﬁ(’ (0o, @lnad), the computation
of which is much less expensive than the total RG runningfag{ thad)-

We have computed! (Qo, 8lhad), Hhad= 1/(2Lmax) NON-perturbatively at four values Bffor
each scheme and four-fermion operator, and for the fouerdifft static actions under considera-
tion. The total renormalization factors are obtained upaittiplying by the corresponding running
factors on third column of Table 1. Polynomial interpolasoof the form

Zi rei(00) = ax+ (B — 6) + c(B — 6)2, (7.1)

can be subsequently used to obtain the total renormalizddictor at any value off within the
covered rangé6.0 < 3 < 6.5). We provide in Table 1 the resulting fit coefficients for the Pl
action in our reference renormalization schemes. Thesarparizations represent our data with
an accuracy of at least¥%. The contribution from the error in the RG running factof§able 1
has not been included: since these factors have been canputee continuum limit, they should
be added in quadratuidter the quantity renormalized with the factor derived from EQ1] has
been extrapolated itself to the continuum limit.

8. SF correlators for the bare matrix elements

In order to simulate the physical matrix elements neededhemB-parameter, we adopt a
formalism similar to the one described in the previous sesti where the heavy quark field is
described by the HYP2 static action, while the light quarldfie described by the tmQCD action
including the Sheikoleslami-Wohlert term with non-pebatively definedcsy,. The interpolating
operators of th&s- and Bs-mesons are provided by the boundary soumﬁandzgﬁ. Correlation
functions are then constructed by inserting a bilinear ana-fermion operator in the bulk of the
SF. Accordingly, the building blocks of the computation gieen by

as

3
o) =~ 3 szt Fi000) = - 3 (ZXlX) 6.1

Fo(%0) = 8 3 (Z¥haroX)Zen) (8.2)

whereX = AF® V5™ andY = 2/ ,. To be precise, the extraction of tBeparameter of Eq. (1.1)
requires that the matrix eIementsﬁ(L2 be normalized by the square of the decay matrix element
of the B-meson mediated by the static axial current. Since therlatteotated at full twist into
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a linear combination of axial and vector currents, we obthm single contributions to thB-
parameter from the plateau region of the ratios

Fg{(Xo) -
1PNV ) A @)
h
where h . (XO) _ i [Zstat fstat(xo)_z\?tat fStat(XO)] (8 4)
A—iV \/é ARGl "A .RGI 'V : )

The RGI axial constarZS'®a, has been non-perturbatively computed in [14, 9]. The scalegen-
dent ratioZJ% /Z3'%L is taken from [15]. We performed simulationst= 6.0,6.1,6.2 with the
strange quark mass set to physical values as in [16]. Laiticemeters are collected in Table 2.

9. Analysis of the excited state contaminations

The standard way to identify a plateau interval for a threepcorrelation function such as
Eqg. (8.2) is to analyse the exponential decay rate of theespanding meson propagatoy._,,,
obtained via the binding energy

B TxL3 Ker K u
6.0 | 32 16° | 0.135196 | 0.135181 | 0.028669
1 ha v (X0 — @) 6.1 | 38x24° | 0135665 | 0.135650 | 0.028532
aFett(Xo) = 5109 ————— 9.1 . 2 | o . 4
(%) 5109 My (%0 + ) (9.1) 6.2 | 44x 24 | 0135795 | 0.135785 | 0.022890

. . Table 2: Lattice parameters
This procedure may work only provided that the

lowest valuexd'", at which the fundamental state

is numerically isolated, fuffills the conditiof™ < T /2. Correspondingly, the interva™, T —
xg“”] can be certainly used to extract the plateau value of the{point correlator. Unfortunately,
this is not the case, as shown in Figs. 3 and 4 (left): due tseiia@l mass gap between the lowest
and the first excited states in the static-light channel ptageau starts at about the middle of the
lattice. Simulations at larger time extensions are inéngfhg expensive owing to the exponential
rise of the noise-to-signal ratio related to static propaiga Irrespective of this, the observabRs
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Figure 3: The binding energy and the contributions to Bygparameter a8 = 6.0.
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are characterized by a very flat time dependence; exam@gs@rided by Figs. 3 and 4 (right). In
order to understand this behaviour, we perform an expamdiggs. (8.1,8.2) through the insertion
of complete sets of Hamiltonian eigenstates. Assumindlteegxcited contributions in the vacuum
channel may be disregarded, one easily arrives at the mpeation

0 (nm) e ® @
(0,0) 1+ 3 m#00) :@0)' famGnme (T 770)2n0 %08

Ri(x0) =B . B - .
e —(T—x0)A® —xon®
l+z(n7m)7$(070) famGnme X0)Bpg @ *08yg

whereAﬁg) = E,QB) — E((,B> is the energy gap between theéh Hamiltonian eigenstat@, B) with the
guantum numbers of a statdz-meson and the fundamental state. Moreover,

g o (nBAIME) 9.3)

8(n, B|A0|0,0)(0,0[A0|m, B)
. _ (ign,B){m, Blig) g _ (n.B|Ao[0,0)(0,0/A0|m, B) ©.4)
"M (ig|0,B)(0,Blig) ’ "M (0,B|A|0,0)(0,0|A|0,B) '

Here |ig) represents the SF boundary state corresponding to thenaaftithe bilinear sources

Eq. (3.1) on the vacuum. In particular, one should obseraeBH”m) represents a generaliza-

tion of the B-parameter, describing the particle-antiparticle mixaigexcited states. Numerator

and denominator of Eq. (9.2) look quite similar. They onlifati by the weighting coefficients
(n,m) ,(0,0)

Zm=DB""/B .

The hypothetical conditioa,m ~ 1 would act on the ratioR(Xp) as an additional damping
factor of the excited state contaminations, together withdxponential decays due to the mass
gapsAﬁ,Ef%. In practice, what really matters for our concern is the fisgtited contribution, because
already the second excitation is reasonably expected tpe@nwith the 0 glueball (omg ~
1.7 GeV). Data suggest thatp could be quite close to one.
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Figure 4: The binding energy and the contributions to Byeparameter a8 = 6.2.

Since the quantum statéB,n) and|B,0) differ only by their mass, we are led to speculate
about the mass dependence of the generalB&pdrametersBi(”’m). Although quantitative state-

ments are highly non-trivial, it is not difficult to identifst least one extreme situation where the
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limits z,,m» = 1 could be realized. This is a scenario in WhB](H’m) is weakly dependent upon the
mass of the external states. Bﬁ”’m) is close toBi(o’O), then their ratio will be close to one. This
picture imposes no restrictions on the vaIuB{%O).

An apparently different possibility is represented by theA/ which impIiesBi(”’m) =1, and
consequently,, = 1. Though speculative, it is not unreasonable that the toleof the VSA
depends weakly upon the mass of the external states ang@siisle in the end for the realization
of the above-mentioned scenario.

A quantitative check of the suppression of excited statd¢agnimations inRy2(Xp) would
be provided by the level of stability of the observed plakeander a variation of the boundary
interpolating operators. In the framework of the Schrédimiginctional this possibility is explored
via the introduction of boundary wave functions like in [1Znfortunately, the computational price
required at present for the practical implementation of #mearing techniqgue amounts to giving
up one of the boundary summations of Eq. (3.1), with a comegimg increase of the statistical
error by a factor of/L3. The situation is even worse with a three-point correlatichsas Eq. (8.2),
which has interpolating sources on both boundaries. Irctsg the introduction of smearing wave
functions increases the statistical noise by a factor®%fwhich makes the check useless. This
problem can be hopefully overcome through the implemeamadf a SF all-to-all propagator like

proposed in [18, 19, 20]. This is currently under way.

10. A two-state stochastic model

In order to have a qualitative view about the impact of largeiations ofz from one on
the time dependence & (xy), we consider a two-state model. Here, the binding energytizend
contributions to thé-parameters are described by the stochastic variables

1 1— pe400-1)

S(e,)(o,T) —e+élog{m s (101)
1— zp e*A(XO) + e*A(T*XO)

pzoT) = 120 } (10.2)

1-p [e—A(Xo) + e—A(T—Xo)] ’

where p andA are differently distributed random coefficients, whiland e parametrizez;o and
E((,B>. Obviously,A is meant to represent the energy gap of the first excited Jtaben a two-state
analysis ofEes(Xo), it is roughly known thalA ~ 0.22(3). Therefore, we model this variable
according to a Gaussian distribution probability, i.e.

1 A—A
P(A) = ——exp| ——— | , A,0p) =(0.22,0.03) . 10.3
0= osen( Gz ) . (Bow) - (022009 (103
On the other handp is supposed to represent the product of the matrix elemigtand g,
defined in Eq. (9.4). Choosing a distribution probability thuis variable is delicate, because we are
largely ignorant about the projection of the SF boundartestg) onto the first excited staté, B)
and the decay constant of the latter. We can heuristicajhgeexthat

_ (1,BJA0]0,0)  mgfg

= = ~1. 10.4
<O,B|A0|O, O> meB ( )

hio
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Nevertheless, if we believe thég) is well projected ontd0,B), then fio ~ 0. In this case we
should choose a probability distribution pfpeaked aroungb = 0. By contrast, if we believe that
lig) is a balanced mixture dbD,B) and|1,B), it follows that fip ~ 1. It makes sense to assume
a given sign forp and not to allow for fluctuations of the opposite sign. A flésilistribution
probability allowing for a definite sign is the Log-normasttibution, defined by

_ 1 INo— D)2
P(p;p,0p) = pr7\/ﬁexp{—%} . (10.5)

Having producedN samples{A;}i—1..n and{p;}i—1..n Of A and p, we approximate the ensemble
averages ofi(z xp, T) ande(e X, T) via

o o 1— pie —Ai(x0—1) 06
(e7X07T) - <£(e7X07T e+ = Z g 1 pe*Al(XO?Ll) bl (1 . )

1 N1_ Zp[ i(Xo)_|_e*Ai(T*X0)]

A2x0.T) =% 1) > [ ) T (e b 1o b ] -

(10.7)

The ensemble averagésand.Z are now functions of the distribution parameteranda,, which

can be varied in order to change the shape of the distrihufor of the worst cases we considered
is the one corresponding {@ = —1/8,0, = 1/4), i.e a Log-normal distribution peaked around
exp(—p) ~ 0.88. In the spirit of the two-state model, such a distributitgscribes a large overlap
between the interpolating boundary state and the firstekahe. As shown in Fig. 5, the binding
energy resembles very closely the one of Fig. 3. The shapié® 8 parameter corresponding of
different choices of suggest that;o could be very close to one in the real case, thus supporting
our interpretation in terms of the VSA.

11. Conclusions

BY — B® mixing remains among the most important processes thateaéred to pin down
the elements of the CKM matrix precisely. However, in ordeconstrain the unitarity triangle
sufficiently well and to look for signs of new physics, the@a uncertainties associated with
hadronic effects must be reduced. In this talk we have redash a new strategy for the com-
putation of the heavy-lighB-parameters in lattice QCD, based on tmQCD and HQET. Its main
advantage is the exact absence of mixing under renormalizavhich plagues standard Wilson
fermions, at the same computational cost of a Wilson-typgelegization. We have described our
fully non-perturbative calculation of the relations beemeparity-odd, static-light four-quark op-
erators in quenched lattice QCD and their renormalized tevparts. We have also described our
first experiences with the computation of the bare matrirelets for theBs — Bs mixing and their
excited state contaminations. Before attempting a continaxtrapolation of the matrix elements,
a deeper analysis of the excited state contributions has ttohe and we hope that the all-to-all
propagator, like proposed in [18, 19, 20] will be of greatphislere.
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