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1. Introduction

Currently, theoretical determinations of the mixing parametersBBq (q = d,s) are becoming
more and more urgent in relation to the Unitarity Triangle analysis. TheB-parameters are defined
as the relative deviations from the Vacuum Saturation Approximation (VSA) of the matrix elements
of ∆B = 2 four-fermion operators betweenB-meson states, i.e.

BBq =
〈B̄0

q|O∆B=2
LL |B0

q〉
8
3 f 2

Bq
m2

Bq

, O
∆B=2
LL =

[

ψ̄bγµ(1− γ5)ψq
][

ψ̄bγµ(1− γ5)ψq
]

. (1.1)

They encode the low-energy information related to particle-antiparticle oscillations and are for-
mally accessible to lattice QCD simulations. Nevertheless, a direct computation ofBBq is ham-
pered by the presence of the large value of theb-quark mass, which imposes the adoption of tiny
lattice spacings(a≪ 1/(5GeV)) in order to avoid large lattice artefacts. A possible way outis to
expand theB-parameters in Heavy Quark Effective Theory (HQET), i.e. ininverse powers of the
b-quark mass. The leading contribution, also known as the static approximation, is expected not
to be far from the relativistic value, as previous lattice results have shown. Even so, the naïve lat-
tice discretization of the effective four-fermion operators of the static theory, based on Wilson-type
light fermions, is affected by a non-trivial renormalization mixing, due to the explicit breaking of
chiral symmetry, which pushes the numerics up to the edge of our current technology. Although
Ginsparg-Wilson fermions appear as the natural discretization to study left-left four-quark opera-
tors, we follow a computationally cheaper approach, based on twisted mass QCD (tmQCD) [1],
which allows for purely multiplicative renormalization atthe same computational cost as with Wil-
son quarks.

2. Computational strategy

Our starting point is the equation relating the left-left operator of the fully relativistic theory
to the four-fermion operators of HQET,

O
∆B=2
LL (mb) = C1(mb,µ)Q1(µ)+C2(mb,µ)Q2(µ)+O

(

1
mb

)

, (2.1)

Q1 = O
stat
VV+AA =

(

ψ̄hγµψq
)(

ψ̄h̄γµψq
)

+
(

ψ̄hγµγ5ψq
)(

ψ̄h̄γµγ5ψq
)

, (2.2)

Q2 = O
stat
SS+PP = (ψ̄hψq)(ψ̄h̄ψq)+ (ψ̄hγ5ψq)(ψ̄h̄γ5ψq) . (2.3)

Eq. (2.1) has to be understood as a scheme dependent perturbative matching between two renor-
malizable field theories. The coefficientsCi, known at NLO in theMS/NDR scheme [2], provide
the RG evolution from the defining scalemb of the effective theory down to a scaleµ ≈ 1 GeV.
Although a natural hierarchyµ < mb has to be assumed in the matching equation, it should be
observed that, due to the renormalizability of the static theory, the four-fermion operatorsQ1,2 are
perfectly defined at any scale. In particular, they can be perturbatively evolved up to the RGI point
through the appropriate 2×2 static anomalous dimension matrix, i.e.

[

QRGI
1

QRGI
2

]

= ĉ(µ)

[

Q1(µ)

Q2(µ)

]

, (2.4)

2
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whereĉ(µ) will be defined later.
The advantage of introducing RGI operators is twofold. On the one hand, they are truly non-

perturbative quantities, free of systematic uncertainties related to perturbative truncations. On the
other, they are regularization independent. As such they can be linked to any specific lattice regular-
ization, to be chosen on the basis of computational convenience. A simplification of the renormal-
ization pattern is achieved if we perform a change of basis, i.e. we introduce the primed operators

[

Q′RGI
1

Q′RGI
2

]

=

[

QRGI
1

QRGI
1 +4QRGI

2

]

=

[

1 0
1 4

][

QRGI
1

QRGI
2

]

= R

[

QRGI
1

QRGI
2

]

. (2.5)

This redefinition becomes particularly advantageous on thelattice if the relativistic degrees of
freedom are discretized according to tmQCD at full twist, i.e. with twist angleα = π/2 [1].
In particular, from now on we consider the specific case of theBs-meson, for which we assume a
fermion content made of a static quark plus a twisted strangequark belonging to a fully twisted
(c,s)-doublet. Lighter degrees of freedom, i.e. the up and down quarks, do not need to be further
specified, since they do not enter the valence sector1. In tmQCD the operatorsQ′

1,2 are mapped
onto their odd parity counterpartsQ′

1,2, which renormalize purely multiplicatively, as proved in
[3]. In other words, with some abuse of notation

〈Q′RGI
1 〉 = lim

a→0
Ẑ′

1,RGI (g0(a)) 〈Q′
1(a)〉α=π/2

tmQCD ,

〈Q′RGI
2 〉 = lim

a→0
Ẑ′

2,RGI (g0(a)) 〈Q′
2(a)〉α=π/2

tmQCD , (2.6)

where

Q
′
1 = OVA+AV =

(

ψ̄hγµψq
)(

ψ̄h̄γµγ5ψq
)

+
(

ψ̄hγµγ5ψq
)(

ψ̄h̄γµψq
)

, (2.7)

Q
′
2 = OVA+AV +4OPS+SP =

(

ψ̄hγµψq
)(

ψ̄h̄γµγ5ψq
)

+
(

ψ̄hγµγ5ψq
)(

ψ̄h̄γµψq
)

+

4[(ψ̄hγ5ψq) (ψ̄h̄ψq)+ (ψ̄hψq) (ψ̄h̄γ5ψq)] . (2.8)

The RGI renormalization constantsẐ′
k,RGI (k = 1,2) have been recently obtained in the quenched

approximation [4] through finite size techniques based on the Schrödinger functional [5]. Since
the latter allows for the adoption of mass independent schemes, the computation of̂Z′

k,RGI has been
performed with standard (untwisted) Wilson fermions. A preliminary study of the non-perturbative
renormalization forNf = 2 has been also presented at this conference [6].

3. Non-perturbative renormalization in the Schrödinger functional

In order to study the renormalization of the four-quark operators, we consider a theory with a
light quark sector consisting of two massless O(a) improved Wilson-type quarks(ψ1,ψ2) entering
the four-quark operators, plus a third light spectator quark ψ3, regularized in the same way, whose
rôle will be clarified in a moment. Suitable renormalizationconditions can be specified in terms of

1This freedom allows to extend the present strategy toNf = 2 with any kind of dynamical sea, without incurring in
mixed action issues, such as the adoption of different lattice regularizations for valence and sea quarks.

3
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SF correlators made of bilinear boundary source operatorsΣs1s2, Σ′
s1s2

(lying resp. on the two time
boundariesx0 = 0 andx0 = T)

Σs1s2[Γ] = a6∑
x,y

ζ̄s1(x)Γζs2(y) , Σ′
s1s2

[Γ] = a6∑
x,y

ζ̄ ′
s1
(x)Γζ ′

s2
(y) , (3.1)

and the four-fermion operatorsQ′
1,2. Due to the flavour and parity structure ofQ′

1,2, zero-momentum
correlators need at least three bilinear boundary sources.Two bilinears are placed atx0 = 0 and the
third one atx0 = T. Their product gives rise to a generalized source

W [Γ1,Γ2,Γ3] = Σ1h[Γ1]Σ23[Γ2]Σ′
3h̄[Γ3] , (3.2)

which is parity-odd under five different choices of the DiracmatricesΓ1, Γ2 andΓ3, i.e.

S
(1) = W [γ5,γ5,γ5] , S

(2) =
1
6

3

∑
k,l ,m=1

εklmW [γk,γl ,γm] ,

S
(3) =

1
3

3

∑
k=1

W [γ5,γk,γk] , S
(4) =

1
3

3

∑
k=1

W [γk,γ5,γk] , S
(5) =

1
3

3

∑
k=1

W [γk,γk,γ5] . (3.3)

All of the above sources have the same quantum numbers asQ′
1,2 and can be used as probes within

the correlators

F
(s)
k (x0) = L−3〈Q′

k(x)S
(s)〉 . (3.4)

Nevertheless, their renormalization is non-trivial and requires the introduction of multiplicative
renormalization constants to absorb the additional logarithmic divergences of the boundary fields
from Eq. (3.4). To avoid this, we introduce some boundary-to-boundary correlators

f hl
1 = − 1

2L6〈Σ
′
1h̄[γ5]Σh1[γ5]〉 , (3.5)

f ll
1 = − 1

2L6〈Σ
′
12[γ5]Σ21[γ5]〉 , (3.6)

kll
1 = − 1

6L6

3

∑
k=1

〈Σ′
12[γk]Σ21[γk]〉 , (3.7)

and use them in the ratios

h(s)
k;α (x0) =

F
(s)
k (x0)

f hl
1 [ f ll

1 ]1/2−α [kll
1 ]α

, (3.8)

in such a way that the additional renormalization factors ofthe boundary sources in Eq. (3.4) drop
out. The parameterα in the exponent off ll

1 andkll
1 can be freely chosen without changing the

flavour content of the denominator and, in what follows, it will take valuesα = 0,1/2.

Renormalization conditions, formulated in terms of the ratios h(s)
k;α (x0), read

Z
′(s)

k;α (g0,µ ≡ 1/L) h(s)
k;α (T/2) = h(s)

k;α (T/2)|g0=0 , (3.9)

4
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whereT = L, no background field is introduced and the SFθ–angle [7] is set toθ = 0.5. In our
simulations we adopt four different lattice discretizations of the heavy quark action, i.e. the stan-
dard Eichten-Hill one [8] and its statistically improved versions where the naïve parallel transporter
is replaced by a smeared APE, HYP1 or HYP2 gauge link [9]. However, in this talk we only report
on results with the HYP2 action, i.e. the one with the best signal-to-noise ratio. Out of the plethora
of renormalization schemes that can be defined by Eq. (3.9), we choose our preferred ones to be
(s,α) = (1,0) for k = 1 and(s,α) = (3,0) for k = 2 (cf ref. [4] for further details), thus eliminating
the indicessandα from the notation.

4. Renormalization group running

The formal solution of the Callan-Symanzik equation relates the scheme-dependent RG run-
ning operatorQ′

k(µ) to the renormalization group invariant one
(

Q′
k

)

RGI

(

Q
′
k

)

RGI = Q
′
k(µ)

[

ḡ2(µ)

4π

]−γ ′k
(0)/2b0

exp

{

−
∫ ḡ(µ)

0
dg

(

γ ′k(g)

β (g)
− γ ′(0)

k

b0g

)}

= Q
′
k(µ)ĉ′k(µ) , (4.1)

where ḡ(µ) is the scheme and scale-dependent renormalized coupling. Our goal is to compute
ĉ′k(µ) non-perturbatively. In practice the strategy we follow is to split perturbative and non-
perturbative contributions at a high renormalization scale µpt,

(

Q
′
k

)

RGI = ĉ′k(µpt)U
′
k(µpt,µhad)Q

′
k(µhad) , (4.2)

whereU ′
k(µpt,µhad)≡ ĉ′k(µhad)/ĉ′k(µpt) represents the evolution of the renormalized operatorsQ′

k(µ)

from the low-energy hadronic scaleµhad to the high-energy perturbative scaleµpt ≫ µhad. Our first
task has been to compute it non-perturbatively. Since it is difficult to accommodate scales which
differ by orders of magnitude in a single lattice calculation, it is useful to factorize the evolution
and adopt a recursive approach. Accordingly, we introduce the so-called step-scaling functions
(SSFs)σk andσ , which describe the change in the renormalization constants and the gauge cou-
pling respectively, when the energy scaleµ is decreased by a factor of two,

σ(u) = ḡ2(µ/2) , u≡ ḡ2(µ) ,

σk(u) = U ′
k(µ ,µ/2)−1 = lim

a→0

Z ′
k (g0,aµ/2)

Z ′
k (g0,aµ)

∣

∣

∣

m=0

u≡ḡ2(µ)
≡ lim

a→0
Σk(u,aµ) , (4.3)

andg0 denotes the bare coupling. Having computed the SSFs for a sequence of couplingsui , i =

0,1,2, . . . ,n−1, we can construct the non-perturbative evolutionU ′
k(2

nµhad,µhad) from the product
of SSFs

U ′
k(2

nµhad,µhad) =

{

n−1

∏
i=0

σk(ui)

}−1

, ui = ḡ2(2(i+1)µhad) . (4.4)

In the present computationµhad is taken to be a few hundreds of MeV and we have chosenn = 8,
so that we could trace the evolution non-perturbatively over three orders of magnitude. In this way
µpt ≡ 2nµhad is large enough to allow for a perturbative evaluation of ˆc′k(µpt) with the operator

5
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anomalous dimension approximated at NLO [3]) and theβ -function at NNLO [11]. The relation
between the RGI operators and the bare lattice ones defines the total RGI renormalization factor

(

Q
′
k

)

RGI = Ẑ′
k,RGI(g0)Q

′
k(a) . (4.5)

A comparison between Eq. (4.2) and Eq. (4.5) leads to

Ẑ′
k,RGI(g0) = ĉ′k(µpt)U

′
k(µpt,µhad)Z

′
k (g0,aµhad) . (4.6)

The factorZ ′
k (g0,aµhad) must be determined for each operator in a lattice simulationat fixedµhad

for a range of bare couplings, using suitable renormalization conditions. In our simulations we have
µhad= 1/(2Lmax)≈ 270 MeV whereLmax is fixed through the condition ¯g2

SF(1/Lmax) = 3.480. This
corresponds to havingLmax/r0 = 0.718(16) (r0 = 0.5 fm) [10]. The sequence of couplingsui =

ḡ2
SF(2

−iLmax) is obtained by solving the recursion relationu0 = 3.480,σ(ul+1) = ul , l = 0,1, . . . .

5. Continuum extrapolation of the step scaling functions

The lattice SSFsΣk must be extrapolated to the continuum limit (i.e. vanishinga/L) at fixed
gauge coupling in order to obtain their continuum counterpartsσk. Since the four-fermion operators
have not been improved, we expect the dominant discretization effects to be O(a); therefore our
data should exhibit a linear behaviour ina/L. Accordingly, we have fitted to theansatz

Σk(u,a/L) = σk(u)+ ρ(u)(a/L) . (5.1)

Fits have been performed using either four values of the lattice spacing, i.e.L/a = 6,8,12,16
or, alternatively, without taking into account the coarsest dataL/a = 6, which may be subject to
higher-order lattice artefacts. The results from three- and four-point fits are always compatible
within one standard deviation for all operators and schemes, save for a few exceptions in which
the agreement drops at the level of 1.5 standard deviations only. We have therefore decided to
choose the three-point based linear extrapolations to extract our final estimates ofσk. The resulting
continuum limit extrapolations for our preferred renormalization schemes are illustrated in Fig. 1.
The maximal statistical uncertainty forσk is ∼ 1.5% and is found at the largest value ofu when
discarding data atL/a = 6. The values ofρ obtained in the fits ofQ′

1 are always compatible with
zero within the statistical uncertainty, while in the case of Q′

2 they are not compatible with zero for
u & 2, thus signalling a stronger dependence upon the cut-off.

6. Non-perturbative RG running in the continuum limit

In order to compute the RG running of the operators in the continuum limit as described
in section 4, we need to fit the results forσk(u) to some functional form. We follow the same
procedure as for the renormalized quark mass [12], i.e. we adopt the polynomial ansatz

σk(u) = 1+
M

∑
m=1

smum , (6.1)

6
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Figure 1: Continuum limit extrapolation of the SSFsΣ1 (with s= 1, α = 0) andΣ2 (with s= 3, α = 0) at
various SF renormalized couplings computed using the HYP2 lattice discretisations of the static action. The
SF couplingu increases from top-left to bottom-right.

with M = 2,3,4 ands1 always (s2 possibly) set to its perturbative value

s1 = γ ′(0)
k ln2 , s2 = γ ′(1)

k ln2+

[

1
2
(γ ′(0)

k )2 +b0γ ′(0)
k

]

(ln2)2 . (6.2)

It is worth mentioning that ifs2 is fitted as a free parameter, it turns out to lie in the ballpark of
perturbation theory. The RG running factor ˆc′k(µhad) = ĉ′k(2

nµhad)U ′
k(2

nµhad,µhad), which is now
a function of the fit parameters only, can be obtained with a complete control of the systematic
effects. We have indeed checked that its value is fairly insensitive to the fit ansatz and to whether
s2 is set to its perturbative value or not. We choose to quote as our final results those obtained with
M = 3, s1 fixed by perturbation theory ands2, s3 kept as free parameters.

In practice, due to constrains imposed by Heavy Quark Spin Symmetry, the number of inde-
pendent SF schemes forQ′

k is downgraded to four fork = 1 and to eight fork = 2. These lead to
total RGI renormalization factors which are scheme independent apart from O(a) lattice artefacts.

The main criterion to define suitable schemes amounts to checking that the systematic un-
certainty related to truncating the perturbative evolution factor ĉ′k(µpt) of Eq. (4.2) at NLO in the
anomalous dimension is well under control. This in turn requires an estimate of the size of the
NNLO contribution to ˆc′k(µpt). To this purpose we have re-computed ˆc′k(µpt) with two different

values of the NNLO anomalous dimensionsγ ′(2)
k : in the first case we set|γ ′(2)

k /γ ′(1)
k | = |γ ′(1)

k /γ ′(0)
k |;

in the second case, we guessγ ′(2)
k by performing a one-parameter fit to the SSF withs1,s2 fixed by

perturbation theory, and equating the resulting value ofs3 to its perturbative expression

s3 = γ ′(2)
k ln2 +

[

γ ′(0)
k γ ′(1)

k +2b0γ ′(1)
k +b1γ ′(0)

k

]

(ln2)2 +

+
[

1
6(γ ′(0)

k )3 +b0(γ
′(0)
k )2 + 4

3b2
0γ ′(0)

k

]

(ln2)3 . (6.3)

7
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For the operatorQ′
1, we find that in either case the central value of the combination ĉ′k(µhad) ≡

ĉ′k(µpt)U ′
k(µpt,µhad) changes by a small fraction of the statistical error, of the order 0.1–0.3 stan-

dard deviations (depending on the renormalization scheme). For the operatorQ′
2, which carries

relatively large NLO anomalous dimensions, the effect can be as large as 0.8–1.0 standard devia-
tions. Therefore, we add to ˆc′2(µhad) a corresponding systematic uncertainty of this order. It has
to be stressed that the impact of this extra uncertainty at the level of theB–B̄ mixing amplitude is
not particularly worrying, since the matrix element ofQ′

2 enters the latter only at O(αs), when the
static-light theory is matched to QCD. The results for the SSFs and the operator RG running in the
reference schemes (see the end of Section 3) are illustratedin Figure 2.

Figure 2: Upper plots: the step scaling functionsσ12 (discrete points) as obtained non-perturbatively. The
shaded area is the one sigma band obtained by fitting the points to a polynomial. The dotted (dashed) line
is the LO (NLO) perturbative result. Lower plots: RG runningof Q′

1,2 obtained non perturbatively (discrete
points) at specific values of the renormalization scaleµ , in units ofΛ. The lines are perturbative results at
the order shown for the Callan-Symanzikβ -function and the operator anomalous dimensionγ.

7. Matching to hadronic observables

The RGI operator is connected to its bare counterpart via thetotal renormalization factor
Ẑ′

k,RGI(g0) of Eq. (4.6). We stress that̂Z′
k,RGI(g0) is a scale-independent quantity, which more-

over depends upon the renormalization scheme only via cutoff effects. Indeed, it depends on the

8
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k s ĉ′k(µhad) ak bk ck

1 1 0.777(17) 0.5731(11) -0.171(11) 0.082(25)
2 3 0.675(12) 0.7258(14) -0.061(14) 0.016(33)

Table 1: Runningĉ′k(µhad) (with µhad= (2Lmax)
−1) and fits to the total renormalization factor of Eq. 4.6.

particular lattice regularization chosen, though only viathe factorẐ ′
k (g0,aµhad), the computation

of which is much less expensive than the total RG running factor ĉ′k(µhad).

We have computedZ ′
k (g0,aµhad), µhad= 1/(2Lmax) non-perturbatively at four values ofβ for

each scheme and four-fermion operator, and for the four different static actions under considera-
tion. The total renormalization factors are obtained upon multiplying by the corresponding running
factors on third column of Table 1. Polynomial interpolations of the form

Ẑ′
k,RGI(g0) = ak +bk(β −6)+ck(β −6)2 , (7.1)

can be subsequently used to obtain the total renormalization factor at any value ofβ within the
covered range(6.0 ≤ β ≤ 6.5). We provide in Table 1 the resulting fit coefficients for the HYP2
action in our reference renormalization schemes. These parametrizations represent our data with
an accuracy of at least 0.3%. The contribution from the error in the RG running factorsof Table 1
has not been included: since these factors have been computed in the continuum limit, they should
be added in quadratureafter the quantity renormalized with the factor derived from Eq. (7.1) has
been extrapolated itself to the continuum limit.

8. SF correlators for the bare matrix elements

In order to simulate the physical matrix elements needed forthe B-parameter, we adopt a
formalism similar to the one described in the previous sections, where the heavy quark field is
described by the HYP2 static action, while the light quark field is described by the tmQCD action
including the Sheikoleslami-Wohlert term with non-perturbatively definedcsw. The interpolating
operators of theBs- andB̄s-mesons are provided by the boundary sourcesΣsh andΣ′

sh̄
. Correlation

functions are then constructed by inserting a bilinear or a four-fermion operator in the bulk of the
SF. Accordingly, the building blocks of the computation aregiven by

fX(x0) = − a3

2 ∑
x
〈Xhs(x)Σsh〉 , f ′X(x0) = − a3

2 ∑
x
〈Σ′

sh̄Xh̄s(x)〉 , (8.1)

FY(x0) = a3∑
x
〈Σ′

sh̄Yhsh̄s(x)Σsh〉 , (8.2)

whereX = Astat
0 ,Vstat

0 andY = Q′
1,2. To be precise, the extraction of theB-parameter of Eq. (1.1)

requires that the matrix elements ofQ′
1,2 be normalized by the square of the decay matrix element

of the Bs-meson mediated by the static axial current. Since the latter is rotated at full twist into

9



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
3
6
6

Preliminary results of BBs in the static limit from tmQCD Filippo Palombi and Mauro Papinutto

a linear combination of axial and vector currents, we obtainthe single contributions to theB-
parameter from the plateau region of the ratios

Ri(x0) =
3
8

FQ′
i
(x0)

[2hA−iV(x0)][2h′A−iV(T −x0)]
, i = 1,2 , (8.3)

where
hA−iV(x0) =

1√
2

[

Zstat
A,RGI f

stat
A (x0)−Zstat

V,RGI f
stat
V (x0)

]

. (8.4)

The RGI axial constantZstat
A,RGI has been non-perturbatively computed in [14, 9]. The scale indepen-

dent ratioZstat
V,RGI/Zstat

A,RGI is taken from [15]. We performed simulations atβ = 6.0,6.1,6.2 with the
strange quark mass set to physical values as in [16]. Latticeparameters are collected in Table 2.

9. Analysis of the excited state contaminations

The standard way to identify a plateau interval for a three-point correlation function such as
Eq. (8.2) is to analyse the exponential decay rate of the corresponding meson propagatorhA−iV ,
obtained via the binding energy

β T ×L3 κcr κ µ
6.0 32×163 0.135196 0.135181 0.028669
6.1 38×243 0.135665 0.135650 0.028532
6.2 44×243 0.135795 0.135785 0.022890

Table 2: Lattice parameters

aEeff(x0) =
1
2

log

{

hA−iV(x0−a)

hA−iV(x0 +a)

}

. (9.1)

This procedure may work only provided that the
lowest valuexmin

0 , at which the fundamental state
is numerically isolated, fulfills the conditionxmin

0 < T/2. Correspondingly, the interval[xmin
0 ,T −

xmin
0 ] can be certainly used to extract the plateau value of the three-point correlator. Unfortunately,

this is not the case, as shown in Figs. 3 and 4 (left): due to thesmall mass gap between the lowest
and the first excited states in the static-light channel, theplateau starts at about the middle of the
lattice. Simulations at larger time extensions are increasingly expensive owing to the exponential
rise of the noise-to-signal ratio related to static propagators. Irrespective of this, the observablesRi

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

E
ef

f(x
0)

x0/T

β = 6.0
[κ,µ] = [0.135181,0.028669]

V = 32x163

-1.3

-1.2

-1.1

-1

-0.9

-0.8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

R
2(

x 0
)

x0/T

β = 6.0

[κ,µ] = [0.135181,0.0286685]

V = 32x163

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

R
1(

x 0
)

β = 6.0

[κ,µ] = [0.135181,0.0286685]

β = 6.0

[κ,µ] = [0.135181,0.0286685]

V = 32x163

Figure 3: The binding energy and the contributions to theBs-parameter atβ = 6.0.
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are characterized by a very flat time dependence; examples are provided by Figs. 3 and 4 (right). In
order to understand this behaviour, we perform an expansionof Eqs. (8.1,8.2) through the insertion
of complete sets of Hamiltonian eigenstates. Assuming thatthe excited contributions in the vacuum
channel may be disregarded, one easily arrives at the representation

Ri(x0) = B(0,0)
i

1+ ∑∞
(n,m) 6=(0,0)

B(n,m)
i

B(0,0)
i

fnmgnme−(T−x0)∆
(B)
n0 e−x0∆(B)

n0

1+ ∑∞
(n,m) 6=(0,0) fnmgnme−(T−x0)∆

(B)
n0 e−x0∆(B)

n0

, (9.2)

where∆(B)
n0 = E(B)

n −E(B)
0 is the energy gap between then-th Hamiltonian eigenstate|n,B〉 with the

quantum numbers of a staticBs-meson and the fundamental state. Moreover,

B(n,m)
i =

〈n,B|Q′
i |m,B〉

8
3〈n,B|A0|0,0〉〈0,0|A0|m,B〉

, (9.3)

fnm =
〈iB|n,B〉〈m,B|iB〉
〈iB|0,B〉〈0,B|iB〉

, gnm =
〈n,B|A0|0,0〉〈0,0|A0|m,B〉
〈0,B|A0|0,0〉〈0,0|A0|0,B〉 . (9.4)

Here |iB〉 represents the SF boundary state corresponding to the action of the bilinear sources
Eq. (3.1) on the vacuum. In particular, one should observe that B(n,m)

i represents a generaliza-
tion of theB-parameter, describing the particle-antiparticle mixingof excited states. Numerator
and denominator of Eq. (9.2) look quite similar. They only differ by the weighting coefficients
znm = B(n,m)

i /B(0,0)
i .

The hypothetical conditionznm ≈ 1 would act on the ratiosRi(x0) as an additional damping
factor of the excited state contaminations, together with the exponential decays due to the mass
gaps∆(B)

nm. In practice, what really matters for our concern is the firstexcited contribution, because
already the second excitation is reasonably expected to compete with the 0++ glueball (r0mG ≈
1.7 GeV). Data suggest thatz10 could be quite close to one.
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Figure 4: The binding energy and the contributions to theBs-parameter atβ = 6.2.

Since the quantum states|B,n〉 and |B,0〉 differ only by their mass, we are led to speculate
about the mass dependence of the generalizedB-parametersB(n,m)

i . Although quantitative state-
ments are highly non-trivial, it is not difficult to identifyat least one extreme situation where the
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limits znm = 1 could be realized. This is a scenario in whichB(n,m)
i is weakly dependent upon the

mass of the external states. IfB(n,m)
i is close toB(0,0)

i , then their ratio will be close to one. This

picture imposes no restrictions on the value ofB(0,0)
i .

An apparently different possibility is represented by the VSA, which impliesB(n,m)
i = 1, and

consequentlyznm = 1. Though speculative, it is not unreasonable that the violation of the VSA
depends weakly upon the mass of the external states and is responsible in the end for the realization
of the above-mentioned scenario.

A quantitative check of the suppression of excited state contaminations inR1,2(x0) would
be provided by the level of stability of the observed plateaux under a variation of the boundary
interpolating operators. In the framework of the Schrödinger functional this possibility is explored
via the introduction of boundary wave functions like in [17]. Unfortunately, the computational price
required at present for the practical implementation of this smearing technique amounts to giving
up one of the boundary summations of Eq. (3.1), with a corresponding increase of the statistical
error by a factor of

√
L3. The situation is even worse with a three-point correlator such as Eq. (8.2),

which has interpolating sources on both boundaries. In thiscase the introduction of smearing wave
functions increases the statistical noise by a factor ofL3, which makes the check useless. This
problem can be hopefully overcome through the implementation of a SF all-to-all propagator like
proposed in [18, 19, 20]. This is currently under way.

10. A two-state stochastic model

In order to have a qualitative view about the impact of large deviations ofz10 from one on
the time dependence ofRi(x0), we consider a two-state model. Here, the binding energy andthe
contributions to theB-parameters are described by the stochastic variables

ε(e,x0,T) = e+
1
2

log

{

1− pe−∆(x0−1)

1− pe−∆(x0+1)

}

, (10.1)

ρ(z,x0,T) =
1−zp

[

e−∆(x0) +e−∆(T−x0)
]

1− p
[

e−∆(x0) +e−∆(T−x0)
] , (10.2)

wherep and∆ are differently distributed random coefficients, whilez ande parametrizez10 and
E(B)

0 . Obviously,∆ is meant to represent the energy gap of the first excited state. From a two-state
analysis ofEeff(x0), it is roughly known thata∆ ≈ 0.22(3). Therefore, we model this variable
according to a Gaussian distribution probability, i.e.

P(∆) =
1

σ∆
√

2π
exp

(

−∆− ∆̄
2σ2

∆

)

, (∆̄,σ∆) = (0.22,0.03) . (10.3)

On the other hand,p is supposed to represent the product of the matrix elementsf10 and g10,
defined in Eq. (9.4). Choosing a distribution probability for this variable is delicate, because we are
largely ignorant about the projection of the SF boundary state |iB〉 onto the first excited state|1,B〉
and the decay constant of the latter. We can heuristically expect that

h10 =
〈1,B|A0|0,0〉
〈0,B|A0|0,0〉 =

m∗
B f ∗B

mB fB
≈ 1 . (10.4)
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Nevertheless, if we believe that|iB〉 is well projected onto|0,B〉, then f10 ≈ 0. In this case we
should choose a probability distribution ofp peaked aroundp = 0. By contrast, if we believe that
|iB〉 is a balanced mixture of|0,B〉 and |1,B〉, it follows that f10 ≈ 1. It makes sense to assume
a given sign forp and not to allow for fluctuations of the opposite sign. A flexible distribution
probability allowing for a definite sign is the Log-normal distribution, defined by

P(p; p̄,σp) =
1

pσp
√

2π
exp

{

−(ln p− p̄)2

2σ2
p

}

. (10.5)

Having producedN samples{∆i}i=1...N and{pi}i=1...N of ∆ and p, we approximate the ensemble
averages ofµ(z,x0,T) andε(e,x0,T) via

E (e,x0,T) = 〈ε(e,x0,T)〉 ≃ e+
1

2N

N

∑
i=1

log

{

1− pie−∆i(x0−1)

1− pe−∆i(x0+1)

}

, (10.6)

R(z,x0,T) = 〈ρ(z,x0,T)〉 ≃ 1
N

N

∑
i=1

1−zpi
[

e−∆i(x0) +e−∆i(T−x0)
]

1− pi
[

e−∆i(x0) +e−∆i(T−x0)
] . (10.7)

The ensemble averagesE andR are now functions of the distribution parameters ¯p andσp, which
can be varied in order to change the shape of the distribution. One of the worst cases we considered
is the one corresponding to(p̄ = −1/8,σp = 1/4), i.e a Log-normal distribution peaked around
exp(−p̄) ≃ 0.88. In the spirit of the two-state model, such a distributiondescribes a large overlap
between the interpolating boundary state and the first excited one. As shown in Fig. 5, the binding
energy resembles very closely the one of Fig. 3. The shapes oftheB-parameter corresponding of
different choices ofz suggest thatz10 could be very close to one in the real case, thus supporting
our interpretation in terms of the VSA.

11. Conclusions

B0− B̄0 mixing remains among the most important processes that are required to pin down
the elements of the CKM matrix precisely. However, in order to constrain the unitarity triangle
sufficiently well and to look for signs of new physics, theoretical uncertainties associated with
hadronic effects must be reduced. In this talk we have reported on a new strategy for the com-
putation of the heavy-lightB-parameters in lattice QCD, based on tmQCD and HQET. Its main
advantage is the exact absence of mixing under renormalization, which plagues standard Wilson
fermions, at the same computational cost of a Wilson-type regularization. We have described our
fully non-perturbative calculation of the relations between parity-odd, static-light four-quark op-
erators in quenched lattice QCD and their renormalized counterparts. We have also described our
first experiences with the computation of the bare matrix elements for theBs− B̄s mixing and their
excited state contaminations. Before attempting a continuum extrapolation of the matrix elements,
a deeper analysis of the excited state contributions has to be done and we hope that the all-to-all
propagator, like proposed in [18, 19, 20] will be of great help there.
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