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from the Higgs fields. The resulting ensemble is used to studyquenched quark propagation with
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1. Introduction

Lattice QCD suffers from the so-called Sign Problem; the Lagrangian density with Nf quark
flavors has the form ¯qMq; the functional measure detNf M(µ) = detNf M∗(−µ) implies that for
µ 6= 0 the action is complex, rendering Monte Carlo importance sampling impracticable.

Can one at least perform lattice QCD simulations in the quenchedNf → 0 limit, i.e. study the
propagation of valence quarks withµ 6= 0 through a non-perturbative gluon background [1]?

Of course, the information extracted from such an approach could be atbest qualitative, since
(unlike the case ofT > 0) the gauge field ensemble{Uµ} can only respond toµ 6= 0 via virtual
quark loops. Anyway, such information might be valuable in furnishing a non-perturbative defi-
nition of the Fermi surface, whose existence is assumed in most phenomenological treatments of
dense matter.

In the context of a random matrix theory, Stephanov [2] showed that the quenched theory
should be thought of as theNf → 0 limit of a QCD-like theory with not justNf flavors of quarkq∈ 3
of the SU(3) gauge group but also withNf flavors of conjugate quarkqc ∈ 3̄. As a consequence,
qqc bound states appear in the spectrum, resulting in baryons degenerate with light mesons. For
µ/T ≫ 1 there is anonset transitionfrom the vacuum to a ground state with quark number density
nq > 0 . For QCD it occurs atµo ≃ mN/3 (mN is the nucleon mass) but if conjugate quarks are
presentµo ≃ mπ/2.

We try to modify the gluon background in some way so that color confinement nolonger holds:
then the role ofqqc excitations may not be so important in determining the ground state in the quark
sector. Our hope is that valence quark propagation in such a background may qualitatively resemble
that of the deconfined regime of the phase diagram atµ/T ≫ 1. We start with the 3d configurations
characteristic of the deconfined phase found atT > Tc, µ/T ≪ 1 produced by the approach to hot
gauge theory known as Dimensional Reduction (DR). The quenched action is the 3d SU(2) gauge
– adjoint Higgs model obtained by DR from 4d SU(2) given by Eqn. (4) of Ref.[3]:

S3d = β ∑
x,i> j

(

1− 1
2

trUx,i j

)

+2∑
x

tr(ϕxϕx)−2κ ∑
x,i

tr(ϕxUx,iϕx+ı̂U
†
x,i)+λ ∑

x
(2tr(ϕxϕx)−1)2,

whereϕ ≡ 1
2ϕaτa represents the adjoint Higgs field. In the DR approach, all non-static modes of the

gauge theory are integrated out leaving a 3d gauge-Higgs model describing the non-perturbative
behaviour of the remaining static modes.

Our goal is to study quark propagation through anon-confiningquenched gluon background
with µ 6= 0. Since chemical potential couples to quarks via the timelike component of the current
µψ̄γ0ψ , this is an inherently four-dimensional problem. In order to generate sucha background
we take a 3d configuration generated by the DR simulation, motivated by the fact that it describes
deconfining physics, and “reconstruct” the gauge field in the timelike direction via the prescription:

U0 = exp

(

ig

√

κ
Nτ

ϕ
)

= cos(g̃
√

ϕaϕa)+ i
τaϕa√ϕaϕa

sin(g̃
√

ϕaϕa) , (1.1)

with g̃ =
√

κ
β . Spatial link variablesUi are taken to be time independent and identical to their 3d

counterparts. Henceforth we use 4d configurations{Uµ} generated as outlined above as input in
quenched studies.
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Sinceq andq̄ fall in equivalent representations of the gauge group hadron multiplets contain
bothqq̄ mesons andqq, q̄q̄ baryons, which are degenerate atµ = 0. In the chiral limit the lightest
hadrons are Goldstone bosons and can be analysed using chiral perturbation theory (χPT) [4]: at
leading order forµ ≫ T a second order onset transition from vacuum to matter consisting of tightly
bound diquark scalar bosons is predicted at exactlyµo = mπ/2. In the limit µ → µo+ the matter
in the ground state becomes arbitrarily dilute, weakly-interacting and non-relativistic: a textbook
example of Bose-Einstein condensation. At the same point the chiral condensate〈q̄q〉 starts to
fall below its vacuum value and a non-vanishing diquark condensate〈qq〉 develops. The diquark
condensate spontaneously breaks U(1) baryon number symmetry, so theground state is superfluid.

More recent simulations have found evidence for a second transition at larger µ to a decon-
fined phase, as evidenced by a non-vanishing Polyakov loop [5] and by a fall in the topological
susceptibility [6]. In this regime thermodynamic quantities scale according to the expectations of
free field theory (also referred to as “Stefan-Boltzmann” (SB) scaling), namelynq ∝ µ3, and energy
densityε ∝ µ4 [5].

2. Numerical Results

We have chosenβ = 9.0 sufficiently close to the continuum limit for the DR formalism to
be trustworthy, and start with a point withT = 2Tc: this corresponds toκ = 0.3620027,λ =

0.0020531. It is important to make a precise determination of the pion mass atµ = 0: we obtain
mπat = 0.2321(1) on a 83 × 32. Since this scale is not too dissimilar toL−1

s , we have repeated
the measurement on 163×64, where we findmπat = 0.2368(3). The systematic error due to finite
volume is significant, but small enough at 2% to be acceptable for this exploratory study. We
have analysed the quark densitynq and chiral condensate〈q̄q〉 as functions ofµ for various j with
0≤ µ/T ≤ 8. There is a transition atµat ≈ 0.12, becoming more abrupt as diquark sourcej → 0,
from a phase withnq = 0, 〈q̄q〉 constant to one in whichnq increases approximately linearly with
µ and〈q̄q〉 ∝ µ−2. This is in complete accordance with the scenario described byχPT in which
asµ increases atT ≈ 0 there is a transition atµc = mπ/2 from the vacuum to a weakly-interacting
Bose gas formed from scalar diquarks. The diquarks are supposed toBose-condense to form a
superfluid condensate; on a finite system this must be checked atj 6= 0 using the〈qq+〉 observable:
the condensate increasing monotonically withµ. To determine the nature of the ground state an
extrapolationj → 0 is needed. We have used a cubic polynomial for data with 0.02≤ ja ≤ 0.1;
Fig. 1 confirms that once again there is an abrupt change of behaviour inthe order parameter atµ ≈
mπ/2, and that the high-µ phase is superfluid. Next we explored a parameter set correspondingto a
smaller scalar “stiffness” by changing toκ = 0.1. Naively this corresponds to a huge value ofT/Tc,
ie. taking us further into the deconfined phase of the hot gauge theory. Of course, whether DR-
based concepts remain valid for the reconstructed theory must be addressed empirically. This time
we used a volume 83×64 for the bulk observables and atµ = 0 determined the pion massmπat =

0.1377(1) on 83×128, andmπat = 0.1423(4) on 163×64, showing that the finite volume error is
now roughly 3%. We studiednq and〈q̄q〉 as functions ofµ for 0≤ µ/T ≈ 12. It is noteworthy that
for µ > mπ/2 nq(µ) is numerically very similar to the values found atκ = 0.3620027, whereas
for µ < mπ/2 the chiral condensate〈q̄q〉 is significantly smaller, indicative of a weaker quark –
anti-quark binding at this smallerκ. Moreover, using the Gell-Mann-Oakes-Renner relation, valid
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Figure 1: 〈qq+〉 vs. µat for various j; the extrapolation toj → 0 is obtained using a cubic polynomial.

for χPT, f 2
π m2

π = 2mq〈q̄q〉 we have:f 2
π a2 = 0.99 for κ = 0.1 and f 2

π a2 = 0.58 for κ = 0.3620027.
The non-interacting limit isfπ → ∞ therefore the interparticle intractions are weaker atκ = 0.1. As
before, there is a clear discontinuity in the observables’ behaviour atµc ≃ mπ/2, and the general
picture is qualitatively very similar, suggesting that theχPT scenario is still applicable. Diquark
binding is now also much weaker.

It is disappointing that we have found no qualitative change in physics as the parameters are
varied – recall that theχPT model which describes the results reasonably well is based on the
assumption of confinement, or at least on the presence of very tightly bound diquark states in the
spectrum.

To explore the parameter space more widely we focussed on a single observable, nq, and
scanned the(κ,λ ) plane on 83 × 16 at five different values ofµ with β = 9.0, ma= 0.05 and
ja = 0.01. Data shows that except forλ = 0.1 the results for fixedµ are practically independent
of κ and of λ . Moreover,nq increases linearly withµ over a wide region of parameter space,
as it does forµ > µc. This approximate linear behaviour is once again a prediction ofχPT, and
is to be contrasted with thenq ∝ µ3 behaviour expected of a deconfined theory where baryons
can be identified with degenerate quark states occupying a Fermi sphere of radiuskF ≈ µ. The
absence of this scaling is a further reason to conclude that the reconstructed model does not describe
deconfined physics.

2.1 Bosonic Spectrum

An appropriate set of states to look at, to study the bosonic spectrum, is constituted of pion,
scalar, higgs and goldstone. Pion and scalar states are related via the U(1)ε global symmetryχ 7→
eiαε χ, χ̄ 7→ χ̄eiαε . Analogous to chiral symmetry for continuum spinors, this is an exact symmetry
of the action in the limitm→ 0. In a phase with spontaneously broken chiral symmetry, the scalar
is massive, and the pion a Goldstone mode, becoming massless asm→ 0. Similarly, “higgs” and
“goldstone” diquark states are related via the U(1)B baryon number rotationχ 7→ eiβ χ, χ̄ 7→ χ̄e−iβ ,
an exact symmetry of the action in the limitj → 0. In a superfluid phase with〈qq+〉 6= 0, the higgs
is massive, and the goldstone massless in the limitj → 0.

The boson correlators are constructed from theGor’kovpropagator where appear the 2×2 (in
color space) matricesN ∼ 〈χxχ̄y〉 andA∼ 〈χxχy〉 which are known as thenormalandanomalous
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Figure 2: Mass spectrum of various bosonic excitations as a function of µat .

parts respectively. On a finite volumeA≡ 0 for j = 0; lim j→0 limV→∞ A 6= 0 signals particle-hole
mixing resulting from the breakdown of U(1)B symmetry, and hence superfluidity. Due to SU(2)
symmetries the only independent components ofG are ReN11≡ N and ImA12≡ A and their barred
counterparts.

We have studied the model with a chemical potentialµat = 0.25, ie. above the criticalµc

required to enter the superfluid phase. All four channels yield clear signals for single particle
bound states.

Like any meson constructed from staggered fermions, the correlators in principle describe two
states and must be fitted using the form

C(t) = A[e−mt +e−m(Lt−t)]+B[e−Mt +(−1)te−M(Lt−t)], (2.1)

wherem andM denote the masses of states with opposite parities. In most cases we findM ≫ m;
however forµ > µc the pion correlator has a distinct “saw-tooth” shape, and in fact the fit yields
mπ > Mb1, whereπ denotes the usual pseudoscalar pion, andb1 a state of opposite parity, which
must therefore be scalar. In Fig. 2 the corresponding spectrum for allthe boson states. Note that all
states are approximately degenerate atµ = 0; the equality of pion, higgs and goldstone correlators
is guaranteed by SU(2) symmetry atµ = 0, but the degeneracy of the scalar in the chirally-broken
vacuum can only arise as a result of meson-diquark mixing due toj 6= 0. Next, note that the pion
mass remains constant forµ < µc, where it is a pseudo-Goldstone boson associated with chiral
symmetry breaking, and then falls once the superfluid phase is entered; thisis in accordance with
the predictions ofχPT. Most of the other states show a much steeper decrease withµ for µ < µc,
followed by a gentle rise to a plateau atma≈ 0.13 in the superfluid phaseµ > µc, precisely as
expected of the goldstone state in the superfluid phase with diquark sourcej 6= 0.

The exception is the higgs, which rises more steeply to become the heaviest state at largeµ. We
conclude that the breaking of degeneracy between higgs and goldstonestates is clear supplementary
evidence for the breaking of U(1)B symmetry in the superfluid phase and all states withJP = 0+

including theb1 butexceptthe higgs have some projection onto the Goldstone state, regardless of
whether the original interpolating operator is mesonic or baryonic.

2.2 Fermionic Spectrum

We have also studied the fermion spectrum, often in the context of condensed matter called
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Figure 3: Close-up ofA(t)for variousµat .
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Figure 4: E and Γ vs. µat in both normal and
anomalous channels.

the quasiparticlespectrum. Since the Gor’kov propagatorG is not gauge invariant we have to
specify a gauge fixing procedure. A feature of the quenched approach is that it permits large
statistics to be accumulated with relatively little CPU effort. This has enabled us for the first time
in a gauge theory context to studyG at µ 6= 0, by helping to overcome the sampling problems
associated with gauge fixing. We have experimented with two gauge choices:Unitary gauge
ϕ 7→ ϕ ′ = (0,0,ϕ ′

3), which is implementedbeforethe reconstruction of the 4th dimension, and
is unique up to a Z2 factor, specified by demandingϕ ′

3 ≥ 0; andCoulomb gauge, implemented
by maximising∑xi tr(Ux,i +U†

x−ı̂,i), in an attempt to make the gauge fields as smooth as possible
and hence improve the signal-to-noise ratio. We have studied the normal andanomalous fermion
timeslice propagators on a 32×82×64 lattice atβ = 9.0, κ = 0.1, λ = 0.0020531,ma= 0.05,
ja = 0.0.2 andµat = 0.3; the last value chosen to ensureµ > µc. Two features to note are that the
Coulomb data is roughly twice as large as the unitary data reflecting an enhanced signal and that
there is little variation withkx.

In the NJL model the quasiparticle propagator can be successfully fitted using the forms

N(t) = Pe−ENt +Qe−EN(Lt−t), (2.2)

A(t) = R[e−EAt −e−EA(Lt−t)], (2.3)

where forµ 6= 0 there is no reason to expectP = Q, but for a well-defined quasiparticle state the
equalityEN = EA should hold. Here, by contrast, only the anomalous channel fits produced an
acceptableχ2 and shows any evidence of gauge independence. The value ofEA obtained is very
close tomπ/2, indicating that at this value ofκ the pion is a weakly bound state. Another striking
feature of the data is the approximate forwards-backwards symmetry ofN(t), implying P≃ Q. We
have studied the dispersion relationsEA(kx) for data taken on a 32× 82× 64 lattice; it confirms
that the quasiparticle excitation energies arek-independent: one motivation for our study was to
investigate to what extent the concept of a Fermi surface, which is not strictly gauge invariant, can
be put on a firm empirical footing in a gauge theory. Our results shows no evidence for a Fermi
surface. The nature of the quasiparticle excitation is clarified a little at the other parameter set
studied, namelyκ = 0.3620027. In this case our results show no evidence for any well-defined spin-
1
2 state in either normal or anomalous channels; as a result of confinement theexcitation spectrum
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of the model seems to be saturated by the tightly bound spin-0 states of Fig. 2. Fig. 3 shows a close-
up ofA(t) for variousµ values, showing the presence of an oscillatory component whose amplitude
initially grows with µ (theµat = 0.3 points overlay those fromµat = 0.2), but whose wavelength
is roughlyµ-independent. The origin of the oscillation could possibly be associated with the non-
unitarity of the model, but is most likely a manifestation of independent spin-1

2 excitations being
ill-defined due to confinement.

We have fitted theκ = 0.3620027 data to the forms

N(t) = Pe−ENt cos(ΓNt +φ)+Qe−EN(Lt−t) cos(ΓN(Lt − t)+φ), (2.4)

A(t) = R[e−EAt cos(ΓAt +φ)−e−EA(Lt−t) cos(ΓA(Lt − t)+φ)], (2.5)

where we interpretE as the energy andΓ as the width of a quasiparticle excitation. The results’
most striking feature is their independence ofµ, with Γ of the same order of magnitude asE.
An interesting systematic effect is thatEN > EA while ΓN < ΓA, which has motivated us to study√

E2 +Γ2 vs. µ: the disparity between normal and anomalous channels is significantly reduced.
Inspection of theµat = 0.3 data also shows that the gauge dependence of this result is O(20%)
at worst. Numerically,

√
E2 +Γ2 > mπ , indicating strong quark – anti-quark binding, due to the

persistence of confinement at this value ofκ. Therefore we can interpret the effect of confinement
as rotating the quasiparticle pole into the complex plane, the rotation angle being larger in the
anomalous channel than in the normal one.

3. Conclusions

Our attempt to alter the nature of the gluon background by changing the parameters of the 3d
DR gauge-Higgs model has been a partial success, in that in going fromκ = 0.3620027 toκ = 0.1
the strength of the binding between quarks weakens significantly.

However, in neither case is there evidence for significant departure ofnq, 〈q̄q〉 and〈qq〉 from
the behaviour predicted byχPT, so that even if quarks are important degrees of freedom atκ = 0.1,
there is no evidence for the formation of a degenerate system signalled by SB scaling.

Sadly though, it appears to remain the case that despite its “unreasonable effectiveness” in
virtually all other aspects of lattice QCD, the quenched approximation has nothing useful to tell us
about the physics of high quark density.
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