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Previous investigations have shown that the canonical approach to simulating QCD at finite den-
sity is promising. The algorithm we used in our earlier work employs an exact calculation of the
fermionic determinant which limits the size of the lattices we can simulate. Interesting questions
can only be answered if we simulate at larger volume. In this paper we explore an algorithm,
Hybrid Noisy Monte Carlo, that employs a determinant estimator rather than an exact calcula-
tion. We first present the technical aspects of the estimator, check that the algorithm is correct
by comparing it with our previous study, and then discuss its merits. We will also discuss the
challenges faced when simulating larger lattice volumes.
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1. Introduction

Simulating QCD at non-zero baryon density remains one of the challenges of lattice QCD.
Direct Monte Carlo simulations are hindered by the fact that the fermionic determinant is complex
when the chemical potential is different from zero. The common solution of separating out a com-
plex phase from the integrand and introducing it in the observable fails due to the sign problem and
overlap problem. A solution to the overlap problem was proposed in [1]; the method proposed starts
from the canonical partition function rather than the usual approach based on the grand canonical
one. For two degenerate flavors of quarks the canonical partition function is:

ZC(V,T,k) =
∫

DUe−SG(U)detkM(U)2, (1.1)

where

detkM(U)2 ≡ 1
2π

∫ 2π

0
dφe−ikφ detM(U,µ = iφT )2. (1.2)

With the above choice the total net quark number is fixed, i.e. nu + nd = k. Simulating the above
action involves computing the determinant for every phase φ ; this is not feasible. We replace the
continuous Fourier transform, detkM2 with a discrete one, det′kM2. The error due to this approxi-
mation is discussed in [2] and further analyzed in [3]. In the canonical approach we still have to
integrate over a complex integrand; the fermion contribution detkM(U)2 is complex when k 6= 0.
In our study [2] we used a Monte Carlo method to generate an ensemble based on the weight

W (U) ∝ e−SG(U) ∣∣Redet′kM(U)2∣∣ , (1.3)

and the removed phase is reintroduced in the observable measurement. To generate an ensemble
with this weight we use Metropolis method where the accept/reject step is based on the ratio of
determinants. For more details the reader is referred to the original paper [2].

Calculating the determinant of the fermionic matrix exactly is time consuming; it is only feasi-
ble for small lattices. To move to larger lattices we will use a method that involves an estimator for
the determinant. This method was proposed in [1]; in this work we will investigate it numerically.

2. The algorithm

In this section we will present the algorithm used in our simulations. We start by rewriting the
partition function

ZC(V,T,k) =
∫

DUe−SG(U)det′kM(U)2 (2.1)

=
∫

DUDξ e−SG(U) detM(U)2 fk(U,ξ ),

where ∫
Dξ g(U,φ ,ξ ) =

detM(Uφ )2

detM(U)2 , (2.2)

and
fk(U,ξ ) =

1
N ∑

φi

e−ikφig(U,φi,ξ ). (2.3)
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We introduce the estimator fk(U,ξ ) by rewriting the integral in terms of a new, auxiliary field ξ .
This auxiliary field plays the role of a stochastic variable. The other important feature is that we
separate out detM(U)2 and we estimate the ratio det′kM(U)2/detM(U)2. There are two reasons
for this separation: it improves the acceptance rate and also the ratio estimator is more precise than
the estimator for the determinant alone.

Since the determinant projection is complex its estimator will also be complex. In order to
simulate it, we need to separate a positive part out and fold the remaining phase in the observables.
We will then generate ensembles based on the weight:

W (U,ξ ) ∝ e−SG(U) detM(U)2 | fk(U,ξ )| . (2.4)

The algorithm proceeds in two steps: we first update the gauge fields U →U ′ using an HMC
update that satisfies detailed balance with respect to e−SG(U) detM(U)2 and accept this change with
the probability baseon on the ratio

∣∣∣ fk(U ′,ξ )
fk(U,ξ )

∣∣∣. The reason for separating out detM(U)2 is that the
new gauge field proposal takes into account the fermionic contribution. As showed in [2] this
improves the acceptance rate of this step dramatically.

The second step in the updating process is to refresh the auxiliary variables ξ . To implement
the Noisy Monte Carlo algorithm [4], another accept/reject step is used where a new proposal
ξ → ξ ′ is accepted with probability based on the ratio

∣∣∣ fk(U,ξ ′)
fk(U,ξ )

∣∣∣. It is easy to check that this
algorithm satisfies the detailed balance with respect to the weight W (U,ξ ) in Eq. (2.4).

3. The estimator

The most interesting technical aspect is setting up the estimator. In this section we describe
how to set up g(U,φ ,ξ ), an unbiased estimator for the determinant ratio [5]. We start by rewriting
Eq. (2.2): ∫

DUDξ g(U,φ ,ξ ) = e2Tr(lnM(Uφ )−lnM(U)). (3.1)

The construction of the estimator occurs in steps. First approximate lnM using a Pade approxima-
tion:

lnM ≈ b0I +
K

∑
i=1

bi

ci +M
(3.2)

For our simulations, we used a Pade approximation of order K = 30.
We then set up an estimator for the exponent of the right hand side of Eq. (3.1). For the trace,

we use an unbiased estimator based on Z(4) noise. We generate random vectors η and use

h(η) = 2η
†[lnM(Uφ )− lnM(U)]η , (3.3)

as an estimator for 2Tr(lnMφ − lnM). It is easy to show that when the elements of η are picked
with equal probability from Z(4) = {1,−1, i,−i}, the estimator h(η) is unbiased. Unfortunately,
without improvement this estimator has a large variance. In [5] it is shown that the variance is
proportional with the magnitude of the off-diagonal elements of the matrix. The suggested strategy
is to subtract from the matrix of interest matrices that are traceless, so that the estimator remains
unbiased, and that emulate the off-diagonal structure of the original matrix, so that the variance is
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reduced. We carry out this program using the set of matrices Dk, where D is the Wilson hopping
matrix. The order of the improvement is given by the largest k in the set. The variance is reduced
exponentially with the order of improvement as can be seen from Fig. 1. The only problem is
that TrDk is non-zero when k is even and larger than 2; for these orders we use the traceless
matrix Dk − 1

N TrDk, where N is the dimension of the matrix. The computational burden is then to
compute TrDk; to evaluate this we have to compute all closed loops of k steps. For k = 4, we have
6 such loops at every point corresponding to different plaquette orientations and, on a 44 lattice, 4
Polyakov loops wrapping around the lattice in different directions. As we increase k the number of
such loops increases quickly, 112 for k = 6, 2884 for k = 8 and 84360 for k = 10. For the purpose
of testing, we carried out the calculation up to order k = 11, but this is very expensive. In our
simulations we used only improvement up to order 9.
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Figure 1: Improvement of the trace estimator. Left panel: average and error of 1000 different noises with
different level of improvement; the line corresponds to the exact value. Right panel: the variance as a
function of the improvement order.

Once the estimator for the exponent is set up, we have to design an unbiased estimator for the
exponential function. Using the exponent estimator h, we follow [6] and write

g[h](η1,η2, ...) = 1+h(η1)+H(θ1−
1
2
)h(η1)h(η2)+H(θ1−

1
2
)H(θ2−

2
3
)h(η1)h(η2)h(η3)+ ...,

(3.4)
where H(x) is the step function which is 0 for x < 0 and equals 1 otherwise. The numbers θi are
random variables uniformly distributed over the interval [0,1]. The series looks infinite, but as
soon as one of the step functions is zero we can stop evaluating the following terms. In general this
happens quite fast and the average number of exponent estimators h(ηi) that needs to be evaluated
is e−1 ≈ 1.72. It is easy to show that this estimator averages to the desired value.

We have now an unbiased estimator for
detM2

φ

detM2 . The only problem is that it has a very large
variance. To understand how to address this problem, we plot in Fig. 2 the variance of the estimator
g as a function of the mean value and variance of the estimator h. You can see that the variance
of the estimator grows very quickly when the mean value or the variance of h are larger than 1.
Unfortunately, we cannot control how big these quantities are; they are dictated by how large the
lattice is and the ensemble temperature.
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Figure 2: Exponential estimator variance. Left panel: µ denotes the average value of the h estimator and σ2
x

its variance; the variance of the g estimator is denoted by σ2
E . Right panel: we plot the increase in variance

when using naive averaging of n estimates of g compared to the variance of g̃.

To address this problem, we use an estimator breakup: imagine that instead of h(η) in Eq.
(3.4) we use h(η)/n. Then the g estimator would average to the nth root of the determinant ratio. If
we take n independent estimates of this new g and multiply them together we get a new estimator
for the ratio g̃. This estimator has a smaller variance than g, but it is n times more expensive to
evaluate. To confirm that this trick is useful, we compare the variance decrease with the one that
we would get by just evaluating the average of n independent estimates of g. This average costs the
same as g̃ and its variance is n times smaller than the variance of g. In Fig. 2 we plot this ratio (i.e.
σ2

g /n
σ2

g̃
) for a case when 〈h〉 = 5 and

〈
h2

〉
= 5.1 (small variance for the exponent). We see from the

figure that if we use the naive averaging, the variance would be increased by about a million times
when the breakup level is greater than 5.

The first lesson is that the breakup estimator has a much better variance than the native averag-
ing. The second important thing to notice is that when the breakup level is greater than the average
value of h the payoff levels off; this means that further reductions in variance come at the same
rate as statistical reduction. We derive then a rule of the thumb to help us in setting up the breakup
level: the breakup level, n, should be set so that most of the estimates of h are smaller than n. In
practice this means that we have to setup n larger than the average value of h plus a few standard
deviations.

4. Algorithm check

To verify that the algorithm is correct we run a set of simulations on 44 lattices at the same
parameters as the ensembles we generated in our previous work [2]. Before we present the results,
we want to discuss the simulations. We had run simulations at β = 5.10, 5.15, 5.20, 5.25 and 5.30.
These simulations correspond to temperatures between 153MeV and 189MeV. We chose these
simulation points since they are close to the transition temperature and this is the area that we are
interesting in scanning in our future work. For each temperature, we ran three simulations for zero,
one and two baryon numbers. The hopping parameter was set to κ = 0.158 which corresponds to a
pion mass of approximatively 1GeV. We tuned the HMC trajectories length so that the acceptance
rate of the gauge update is about 50%.
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The only new parameter that we had to set up is the breakup level. As discussed in the previous
section, the breakup level needs to be setup such that most of the estimates are smaller than n. To
simplify things we took the ensembles we generated in our previous study and, for each configura-
tion, we evaluated the determinant for all the phases we used in that study. For each configuration,
we computed maxφ TrlnMφ −minφ TrlnMφ and we found it to be bound by 15. To be on the safe
side, we set the breakup level to n = 20.

To compare the results of the current simulations with the ones employing an exact calculation
of the determinant, we chose to measure the absolute value of the Polyakov loop and the baryon
chemical potential. In Fig. 3 we compare the results of our runs with the results we got from
our previous study; the results agree quite well and this leads us to conclude that the method and
implementation are sound.
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Figure 3: Checking the algorithm. Left panel: Absolute value of the Polyakov loop; the solid lines are
the result of our previous work and the symbols are the result of our current simulation. From bottom up
the curves correspond to 0, 1 and 2 baryon simulations. Right panel: Chemical potential – the lines are
our previous results and the symbols are the results of our current simulations. The red curve represents
the difference in free energy between the 1 and 0 baryon simulations and the blue curve corresponds to the
difference between 2 and 1.

5. Volume dependence

Our first simulations on 44 lattices confirm the correctness of the algorithm. However, to pro-
duce interesting results we need to move to larger volumes. The main drive behind the idea of using
an estimator in our simulation is that the exact calculations of the determinant scale quite poorly
with the size of the lattice – as we increase the lattice volume V the cost of the calculation increases
with V 3 whereas the estimator calculation was expected to scale like V (the cost of computing
(M +bi)−1η in Eq. (3.2) needed to approximate lnMη).

It turns out that the estimator is actually more expensive due to the determinant breakup: the
cost of the calculation increases linearly with the level of breakup and, as we discussed in a previous
section, the level of breakup needs to be adjusted as the fluctuations of Tr lnMφ become larger. To
determine how these fluctuations scale, we ran simulations on 44, 6×43, 62×42 and 63×4 lattices.
In Fig. 4 we show how the average and the variance of the fluctuations of the exponent h vary with
volume. It is easy to see that they increase linearly with the volume. We conclude then that the cost
of computing the estimator scales with V 2.
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Figure 4: Volume dependence of the fluctuations. Left panel: the mean value of the fluctuations as a function
of volume. Right panel: the variance of the fluctuations as a function of volume.

6. Conclusions

This work is part of a larger effort aimed at simulating QCD at non-zero baryon density. We
chose to investigate an approach based on the canonical partition function mainly because this
method should not have an overlap problem. Previous investigations [2, 7] have shown it to be very
promising. In this paper, we analyze a method based on an estimator [1]. The main technical issue
we discuss is the implementation of the estimator: we describe the details of our implementation
and show that it is correct by running simulations on 44 lattices. The results of these simulations
compare well with the ones we obtained using a different method [2].

We also look at the performance of the estimator and how it scales with the volume. We
find that the estimator is more expensive that originally expected. However, even on 44 lattice the
algorithm performs better than the exact method: 100 seconds for computing the estimator twice
(once for the gauge update and once for the stochastic field update) versus 140 seconds for the exact
calculation. Furthermore, when moving to larger lattices the gains will increase since the estimator
calculation scales as V 2 compared to V 3 for the exact calculation.

Our next goal is to run simulations on 63 × 4 lattices and look for a phase transition signal
at non-zero baryon density. This was shown to be feasible [7] and we plan to perform a similar
analysis for our simulations. In this paper we show that the best method to attack larger volume
simulations is the estimator method and we hope to report soon on simulations at larger volumes.
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