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1. Introduction

The standard approach used in the evaluation of form factors in lattice iQ@Dcompute a
three-point function. More detailed information on hadron structure eaaxracted from four-
point correlators. The quark distribution inside the hadron and hadeformation are just two
such important aspects that can be studied using these correlatorsgudidime density-density
correlator provides a gauge invariant definition of the hadron "wametfan" but originally could
only be evaluated approximatel] [1]. This is because four-point funstia harder to compute
than two- and three-point functions, requiring the all to all propagatbe dsual way to estimate
the all to all propagator is by employing stochastic technigldes [2]. In[R#i[@e usedZ(2) noise
combined with dilution to compute the all to all propagators and obtained resutt$dranesons
and baryons[]d]4]. In this work we generalize the so called one-erdffiicoriginally devised as a
method to calculate two-point functions, to evaluate four-point functioresdévnonstrate that this
approach yields more accurate results by evaluating the density-dens#iator for the pion and
p-meson and comparing the results to those obtained using standard stoteestiques|[]3]]4].
Furthermore, we extract the pion form factor obtaining results that hawgoarable errors as those
obtained when one uses the one-end trick to compute the pion form faatgrthe three-point
function [8]. An advantage of using four-point functions is that we aréed one set of stochastic
propagators to extract the form factor fmy momentum transfer unlike using three-point functions
where a new set is needed for every momentum. We also show how to inera method to
other mesons and give preliminary results@n one of the three form factors of thle-meson.

2. Four-point functions

Hadron four-point functions are given by

G (Rartato) = [ dadx(n(,0)| 1§ (o3, (%a,t) IS, t) (2.1)

Wherejgf is the normal ordered electromagnetic operatgyy,;qs : with f being a flavor index,

while |h) denotes any hadronic state. The two integrations ensure zero momentuerhaiitonic
state; integrating ovef; sets the momentum of the source equal to that of the sink and integrating
over X sets both to zero. Thus to compute the four-point function on the lattice, tte all
propagator from all site®; to X is needed.

It is well known that an estimate for the all to all propagator can be obtaiaieg) stochastic
techniques[]2]. In brief, one inverts for a set\f noise vectors obeyinéf;j‘(x) \?T(y)>r =0(x—

Y)Oab0u,v and(.fﬁ‘(x)}r = 0 and estimates the all to all propagator by averaging the product of the
solution vectors with the noise vectors over the stochastic ensemble. Nameglyattiepropagator
GB‘Z (X,y) — <cp\?(x)EﬁT(y)>r, whereé is a noise vector ang the solution vector. One, therefore,
replaces every occurrence Gfwith the product betwee& and ¢ thereby obtaining the stochastic
estimate for the four-point function. More details and results for hadravewunctions and the
pion form factor obtained using this method can be found in REfg] [3, Bgrevit is shown that
with sufficient number of noise vectors and dilution one can obtain a radssignal [[7]. We
shall refer to this approach as Method I. Here we show how one carceestochastic noise by
implementing the one-end trick|[5] for the computation of meson four-pointtfans. We shall
refer to this new approach as Method II.
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3. Description of Method |1

The one-end trick was originally devised for the precise calculation of pi@apoint func-
tions. In its original form, one combines appropriately solution vectors doathautomatic sum-
mation over the source coordinate arises. Thus the number of stochastisiams needed is re-
duced to a few inversions, thereby suppressing stochastic noise.a@dlieitly, expanding the dot
product between two solution vectors yields the pion two-point correlatonsed over the source
coordinate:

T / /
S (APERDGEERY) = Y < |GEB (%,t:%o,10) 88 (%0, o) | Gil (.%o €5 <vo,to>> SEED
X % Yoo '

where we assume that the noise vectors are localized on a certain timi.sliaking the average
of the noise vectors over the stochastic ensemble yildsinctions by definition. Thus we obtain

> [Gﬁbv(xt;%o,to)}TGﬁ%,(i,t;Vo,to)éaaxéwfé(x’o—Vo) =y Trl6R % 6P| (32)
X.Y0.%0 XX

In the case of the pion Ed. (8.2) arises automatically since one combinesctvedsd going prop-
agator with theys pairs that appear in the pion interpolating operator. For a general irdinmp
field, sayqq;, wherel is any product ofy-matrices, the noise vectors must be diluted in spin
i.e. Eﬁ(Yo,to)r = &3(Xo,10)&y, r = 1,...,4. This imposes that the number of noise vectors is in
multiplets of four. In this case the solution vectors g@ﬁx’,t;to)r = 3% Gﬁ? (X,t;xo,to)fb(xo,to),
where they argument appearing i@ is to remind us that the noise vector is localized on the time
slicety. The combination given by

> QR tto)v(Tys)vr G (X tito)r (V61 )i (3.3)
X

yields the two-point function of the meson summed over both sink and soamdinates. The
downside of this method is that, due to the automatic summation over both the sadremk
spatial coordinates, one cannot compute two-point functions for anpitnamenta using a given
set of noise vectors. To utilize the one-end trick and extract the two-pomelator at finite mo-
mentum one must multiply the noise vectors with an appropriate phase prior tovénsiam. Thus
one need$\; inversions for every momentum vector.

The application of this method to four-point functions is appealing since bipitien (see
Eqg. (2.1)) one is interested in the case where the initial and final states r@st.aWe show here
how the one-end trick can be implemented for the case of mesons. Thedmiifunction that we
consider is shown schematically in Fi§j. 1. At the propagator level we have

Gl (oito,tuta ) = 5 (Xr (X 0)] (X + %, t2) }° (%o, 12) | Xr (%o,£ 0)) (3.4)
%1% %o
=5 T (V6o G (%1, t1; %o, to)T Y5G (Ro + %1, t2; X0, 10) Y6 Vo G(R2 + X1, t2; X, )T y6G T (%1, t1; X, )]

%1,X,X0
whereln = yol Tyo and xr(x) is the interpolating field of the meson that takes the general form
gi(x)rqgj(x) for i # j. Here we explicitly add a sum over the source coordiXgtend we fix the
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time slice of the sourcdy, and the sinkt. The time
slicest; andty, where the currents are inserted, on the
other hand, are free to take any value betwigesnd
t. Thus one needs two sets of stochastic inversions,

B= 5.6,al= 2.56(10) GeV
#Confs.| «k | amg [ mg/mp
283 x 401[8] 1
185 | 0.1575 | 0.270(3)| 0.69

150 0.1580 | 0.199(3)| 0.56 one set with the noise vectors localized on the time
28 %3219 slice,to and one on the time slicé, One then finds
200 0.15825‘ 0_15(‘)"(3)‘ 0.45 an appropriate combination of solution vectors such

that the summation over source and sink coordinates

Table 1 The'3|mulat|on parameters used "Mis carried out automatically. The combination:
our computations.

>r [¥6Yo S(T; %, ta; X + X1, 23 o) Yo Yo S(T; Ko -+ Ru, t2; R, ;1) (3.5)
X1
where %ﬁ’,(r;x’ﬁxl,tz;il,tl;t) =3, (p;’j‘(X’z+Xl,tz;t)r(Fyg)rK(gj‘b(X’l,tl;t)K achieves this.

Throughout this work we use two degenerate flavors
J7 (R + %4, t2) of dynamical Wilson quarkg[J[€] 9]. In all computa-
tions we employ Gaussian smearing combined with
hypercubic (HYP) smearing of the gauge links that
i (%0,t) enter the Gaussian smearing function. The parame-
ters of the Gaussian smearing are adjusted to ensure
minimal time evolution for filtering the meson ground
state. The parameters of our calculation are summa-
rized in Table]L.

(X.t) (%,to)

Figure 1. The four-point function for
mesons.

4. Meson wave functions

The p-meson charge distribution is obtained using the equal time density-densigfator
given by

GY (Xu.ty) = /d3X2d3X<P(Kt)| i6(%2 + X1, 1) 1§ (%2, ta) [P (%o to)) - (4.1)

We test the new technique by comparing resultsGbr(Xl,tl) using Methods | and Il. In the large

t1 andt —t; limit when thep state dominates(BjO(X’l,tl), normalized over the spatial volume,
becomes time independent and it is denotedChfX;). In the non - relativistic limit, this four-
point function reduces to the wave function squared. The ingredieetdedein Method | are the
point to all propagator from the source and two all to all propagators atdiiest; andt, both of
which are kept fixed. For this computation we use six sets of noise vedtotedifor each spin,
color and even-odd sites i.e. we need2d= 144 inversions to obtain each stochastic propagator.
This means a total of 1442+ 12 = 300 inversions are required for each gauge configurafion [4].
For Method II, on the other hand, we used eight sets of spin diluted neiterg at the source
and sink thus a total of 64 inversions for each configuration. In [fig. Z®v a comparison
between the results obtained using Method | and Il. What is plotted is theeponj®f the density-
density correlatorC,(X;), along the spin axis taken to be the z-axis and perpendicular to it. The
interpolating field used for the-meson iquysd. As can be seen the statistical errors obtained when
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Cp(r) x 10*1 using Method Il are almost four times smaller despite
15 T y y y the fact that we use 1482 = 4.5 less number of noise
[% ] i} § e vectors to estimate the all to all propagator. Therefore
10l %L & é% Z o | the improvement gained using the one-end trick is re-
I @ ally significant, reducing computational time by two
@% orders of magnitude. The results obtained in Method
05} %%%% Il clearly reveal an asymmetry in the charge distribu-
15 : : ; tion of the p-meson, which in Method | was hard to
K =0.1580 x 5 see.
1o 3; A Having demonstrated the effectiveness of Method Il
1.0} [mr LED 0] T ] we use it, in what follows, to study deformation in the
CEa DEF o p-meson as a function of the quark mass and to ex-
05t @ 2p tract the pion angh-meson form factors. In Fig] 3 we
R show contour plots of the density-density correlator of

0 02 04 06 os 1 thep-mesonCy(r), projected onto thg-z plane. As

r (fm) can be seen, for all three pion masses, we obtain an

Figure 2. Projections of thep-meson ellipse thatis elongated along the spin axis, showing a
density-density correlator along the spin axi€lear deformation from spherical symmetry. The cor-

and
and

perpendicular to it. Upper for Method Iresponding contour plots for the pion show no devia-

lower for Method Il ak = 0.1580. tion from the circle as expected.
1.2
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Figure 3: Contour plots of the charge distribution of themeson projected onto thez plane for

all threek values studied. The dashed circles are to guide the eye.

5. Pion and p-meson form factors

Form factors can be accurately extracted using four-point functiptesding the Fourier trans-

form of Gﬂf(xtl,tz) and allowing large time separations between the current insertipad;.
Therefore the extraction of form factors requires larger temporalnsid@ than the equal time
density-density correlators. Methods to suppress excited state contnibatie therefore of crucial
importance here. Gaussian smearing combined with HYP smearing achieves gtate domi-
nance as early as three time slices. Taking the Fourier transform of théquippoint correlator
we obtain

. 2
. N 2 [(TO) Jo| (P |” & (p)tr—tr) g minlt—t-t2)—t0)
G%(D',tl,tz) m) ‘<XV5‘ 7T(0)>} 8m72TE(ﬁ) € ©
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2\ 12
_ |<XM§} 7T(0)>’2 KE(ﬁ)g_‘_ng)(';)T(Q )‘ e E(P)(to—t1) g=Mn(t—(t2—t1)—to) 7 (5.1)

whereF is the pion form factor an@? is the Euclidean momentum transfer squared. The time
dependencies and overlaps cancel by dividing with an appropriateicatian of two-point func-
tions:

AE[PMr | Gl (Bilo,t, t2,1) Gy (.t —to)
E(P)+Mr \| Gy (B,t2 — t0) Gy, (0, — (t2 — t1) —to)

R (Bity,ty) = (5.2)

whereG (B, t) is the pion two-point function at momentupn We search for a plateau Be:(ﬁ;tl,tz)

by varying the time difference —t;, as shown in Fig]4. We perform the calculation for two source
- sink separations, name(y —tp) /a =14 and 16 to check that we have ground state dominance.
As can be seen, we obtain consistent plateau values for both sourkeseparations.

2.0 T T T T T L} L} L} L} 1.2 T L} L} T T
— tsnk/a= 14 —3+ Wilson Ne=2: m; = 690 MeV —m—
Lgf K=01575 e = JA T 1o% My = 510 MeV _
5 1.6} | R My = 384 MeV —a—j
STO[F=0E B B B®wme o _ VMD ——
> 1.4} i 0.8} Hybrid: m; = 318 MeV = 1
g~ & tmQCD:m; =470 MeV —o—
1.2} 1 205l
. B © (S
S1opp-18 ® ® © : = o I-Lo4
B 2 M O
06fp2=38 B o m @ § 0.2 .
0 4 gz |: 45 %ﬁ %@ L L L L L L L A i A E ﬁl
"1 2 3 45 6 7 8 910 00 05 1.0 15 20 25 30
(tb—t1)/a Q? (GeV?)
Figure4: R,j,so(rs;tl,tz) versus(ty —t;)/afor k = Figure 5. The pion form factor for threec-
0.1575. The range used for the fit is shown by the values. We compare with results using the hy-
length of the lines. brid approach frommO] and twisted mass results
from [B].

In Fig.[§ we show the pion form factor for thre&evalues compared with recent results obtained
using three-point functions. Results in the hybrid approach, that uswsmical staggered sea
quarks and domain wall valence quarks, are obtained using sequewsiedions to compute the
three-point function[[J0]. Results with dynamical twisted mass fermions, emther hand, use
the one-end trick to compute the three-point functign [6]. Our results ceenmy well to those
obtained in the latter case, which is closest to our approach. Assuming veeson dominance
and takingm, = 0.77 GeV we obtain the curve shown, for reference, in fig. 5.

The p-meson has a Coulomksc, a magneticGy and a quadrupolézg form factor. They
can be parametrized in terms @i, G, andGs as

2

+avz ) C Gu=G Gc=G +EQ—ZG
aM2 3 M = 2, — V1 Q

GQ:Gl—G2+<1 3AM2

One can find combinations between initial and fipgbolarizations and insertion directiong{
that isolate individual form factors and for which decay to a pion is fatbid Here we shall
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demonstrate the method by showing preliminary results3ar As for the case of the pion form
factor,G1, can be extracted using onjy:

e
Gﬁ?(m;tl,tz) _ 8|\/|)‘2E((02)L) (E(p.)+M)2G2(QR)e M- (-t ~to) g E(p.)(t-tr) (5.3)
1.2 - — ; - where  (Q[Xxy |o(B,s)) = A(P)e(P.9),
@) e %:8%5%%% SV | seap9g(BY = g — %2 and p.
mp = 0.853(37) GeVi—a—| is a momentum perpendicular to thedirec-
08f ' tion. As in the case of the pion form factor, we
0.6} ; construct an appropriate ratio and search for
- a plateau i, —t;. Results forG; are shown
04T £ ] in Fig. [§. They carry small statistical errors
0.2} I'E = 1 demonstrating the applicability of the method
0.0} } " "W | for the extraction of thgp-meson form factors.
Q? (GeV?) An analysis to extract all three form factors

00 05 10 15 20 25 30 and subsequently derive physical quantities is

Figure6: G; as a function of the momentum transferin progress.
Q? for threek values.

6. Conclusions

We have shown that the one-end trick can be applied to evaluate accudoatefyoint func-
tions. Using this approach, the density-density correlators are compugedfiient accuracy to
show that thgp-meson is deformed. We also obtain accurate results for the pion fornr theto
compare favorably to the accuracy obtained using the one-end trick toutertipe three-point
function. The advantage of using four-point functions is that only @t@sinversions is needed
for all momentum transfers, unlike in the case of three-point functionsentree needs new inver-
sions for each value of the momentum transfer. Preliminary results gmttheson form factoiG,
carry small statistical errors demonstrating the applicability of the method alse icatloulation
of the form factors of thgp-meson.
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