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1. Introduction

In recent years there has been renewed interest in charncphys new statedDg; has been
found by BABAR and CLEO collaborations [1, 2] with a mass ajand 2.32 GeV and its discov-
ery has been an important topic both experimentally andrétieally.

In principle, lattice QCD should be able to determine thecgpien of thecs system, but to do
this in practice requires high precision numerical simarls.

In this paper, we study thBs spectrum with dynamical anistoropic lattices. We usea#ht
propagators and construct a spatially extended inteipalatperator basis for the excited states.
We also compare our results with previous lattice studied][3

2. The dynamical anisotropic actions

The gauge action employed is a Two-Plaquette Symanzik wepr@ction which has been
designed to reduce the cut-off effects for the scalar glighjalt is given by
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whereQE{2t refers to simple and rectangular plaquettes in the spatt@mporal directions and
&2 is the bare anisotropy.
TheN¢ = 2 anisotropic fermion action [6] is given by
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whereag anda; (as > &) are the spatial and temporal lattice spacings respeygtaved Eé) is the
bare anisotropy. The links are fattened using stout link$hat maximise the plaquette. The same
anisotropic fermion action is used for both light sea quakd heavy valance quarks.

In a dynamical simulation, the bare anisotrop{ésandfg, which are input parameters, must
be tuned simultaneously such that one reaches the targettraapy €, ~ 6). This procedure is
explained in details in Refs. [6, 8, 9].

3. Lattice Parameters

We performed our simulation &t = 2 onNsx Ny = 12° x 80 lattices using 250 configurations
with a sea quark mass close to that of the strange quark mass.sifhulation parameters are
summarized in Table 1.

We set our target anisotropy to be 6 and tune the anisotraptee charm and strange sectors
separately in order to obtain the same physical anisotrdmge charm quark mass used in our
simulation, am.=0.117, was tuned so as to obtain the cor®t¥ mass. Our lattice spacing
is determined from the spin averaged (1P-1S) splitting arwionium [10, 11] and found to be
a ~ 0.028 fm. We use all-to-all propagators with the “dilution”nid method of Ref. [12] using no
eigenvectors in the charm sector ad= 20 eigenvectors in the light sector with two independent
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Configurations 2505 m =0.117,8;Msea= & Miight =-0.057)

Dilution Time+space even/odd

Physics S and P waves ground and excited states
Volume 12 % 80

N¢ 2

ag ~ 0.17 fm

at ~ 7.2 GeV

my/myho ~ 0.55

Er ~ 6

Table 1: Simulation parameters used for this studybgfspectrum.

noise vectors in each case. In this first study, we limit thetidn to time and space (even/odd).
An important advantage of all-to-all propagators is thatlidws us to easily implement a spatially
extended operator basis so that we can search for bettéajpveth the states of interest then when
restricted to point-like operators. Our list of operatosediin this simulation is listed in Table 2.

0~ V5, ¥5(S1+ 2+ %), V6 V4
1~ VYi(SL+S+%3).Yya
0" 1ys,y-P

1" ¥eYi, ViVi, VX B, V5P

2" WP+ VP YiP1— VoP2, 2Y3P3 — YiP1— Vo2

Table 2: The basis of operators. The notation for the gluonic pptlasids, i=1,2,3, are defined in Ref. [13].

4. Analysis

Due to their stochastic nature, time diluted all-to-all ggators introduce random noise at
each time slice. As a result, effective masses calculatad frorrelators derived in this manner
fluctuate more than what is observed when using point-tpralpagators. Effective mass plots
are no longer an accurate visual aid when searching for gtaidgu regions if this method is
employed. These introduced fluctuations do not, howevéciathe quality of the exponential
(cosh) fits that are performed on the original correlators.

A more accurate visual picture (to replace effective magtsptan be obtained by introducing
the “tmin” or sliding window plots. For a fixed value tf,ax (Or alternativelytmin) the fitting window,
(tmin.tmax), 1S varied by changingyin (0r tmay. This is illustrated in Fig. 1 for the0and I ground
states. Our selection of the fits is based on stable regiotiseo$liding window plots together
with a goody?/n.d.f value. We observed these stable fits for all the ground ariteelxstates we
show here. Based on this analysis, we calculate the massetifesAm(1~ —0~) = 102+ 6 and
Am(1T —07) =118+26 MeV in contrast to experimental values of 144 and 142 Mesfectively.
The possible reasons for the discrepancies are discussieel gonclusions.
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In order to extract the excited states, we adopt the use ofdhational analysis method
[14, 15]. Using the operator basis given in Table 2 combingd two different smearings for each
quark field, we can obtain the correlation matrix,

Cap = (004 0}|0) (4.2)

wherea,B = 1,...,n represent the different interpolating operators conguictWe performed
single-state fits to the diagonal elements of this cor@athatrix. Our results for the ground states
obtained from the variational analysis and the cosh fitsesgndthin three percent. Our preliminary
Ds spectrum for the S and P waves are shown in Figure 2
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Figure 1: Sliding window plots for the ground states of @nd I~ at zero momentum. The solid lines show
the best fitted masses chosen.

5. Conclusions

We have presented our preliminary results forErespectrum o\ = 2 dynamical 13 x 80
anisotropic lattices for the S and P waves. We used allitprabagators and a variational basis of
operators in order to extract the excited states. Our irsitiaulation was performed at a low level
of dilution (time and space even-odd). Increasing theidituevel to obtain better data is currently
underway. In addition, we plan on studying the D waves anditigtand to repeat the simulation
at finer lattices.
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D, Spectrum (preliminary)
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Figure 2: The cs spectrum which is normalised to Gstate. The scale is determined from the charmo-

nium (1P — 1§) splitting. Dashed lines represent the experimental Hulels and blue circles represent the
UKQCD [3] results.
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