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Excited State Effective Masses George T. Fleming

In Lattice QCD with infinite temporal extent, typical hadronic Euclidean time correlation func-
tions can be described by the model function

C(~p, tn) =
M

∑
m=1

Am(~p)exp [−(t0 +na)Em(~p)] (1)

n≥ 0, Am, Em ∈ R, 0≤ E1 ≤ E2 ≤ ·· · ≤ EM.

In general, the correlation function computed on N = 2M time-slices tn will admit a solution of
M energies Em and amplitudes Am. The problem to solve is the nonlinear system of equations
y = V(x) a: 

y1

y2

y3
...

y2M

=


1 1 · · · 1
x1 x2 · · · xM

x2
1 x2

2 · · · x2
M

...
...

. . .
...

x2M−1
1 x2M−1

2 · · · x2M−1
M


 a1

...
aM

 (2)

for xm = exp [−aEm (~p)] and am = Am (~p)exp [−t0Em (~p)] where yn = C (~p, tn). V(x) is known as
2M×M rectangular Vandermonde matrix.

By inspection, it appears the problem is of polynomial degree 2M and thus should not admit
a general closed form solution in terms of radicals by the Abel–Ruffini theorem [1, 2] for M > 2.
The M = 1 solution is simple to compute and is widely known in the Lattice QCD literature as the
effective mass solution. Note already that the simple effective mass problem is linear and has only
one solution, suggesting that the polynomial degree is actually of order M.

The M = 2 solution was explicitly constructed in the Lattice QCD context by one of the authors
[3] and was independently constructed some time later by others [4]. In the absence of noise in the
yn, the general solution was known as early as 1795 to Prony [5] as shown below. It was noted [3]
that the problem, when reduced, required only the solution of a quadratic equation and so it was
conjectured that the general problem of size M could be reduced to a polynomial equation in one
variable of degree M.

An efficient algorithm has been available for some time for solving square Vandermonde sys-
tems [6] by making them upper triangular. This approach works equally well for rectangular Van-
dermonde systems as in Eq. (2). Furthermore, this approach reveals why the solution for the ener-
gies Em can be found without solving for the amplitudes Am and why the problem is of polynomial
degree M.

As a first step we transform the system so that V(x) is in upper triangular form [6] by pre-
multiplying by the lower 2M×2M bi-diagonal matrices:

Lm(x) =



1

0
. . .
. . . 1

0 1
xm −1

. . . . . .
xm −1


, (3)
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where the first −1 on the diagonal appears in the m+1 row and column.
To reduce the M = 2 problem, we pre-multiply by two factors of the bi-diagonal matrices of

Eq. (3) to find the reduced equation L2L1y = L2L1Va. By introducing the auxiliary quantities:

αi = x1yi−1− yi (2≤ i≤ 2M) (4)

β j = x2α j−1−α j (3≤ j ≤ 2M), (5)

the reduced system becomes:

y1 = a1 +a2 (6)

α2 = a2 (x1− x2) (7)

β3 = 0 (8)

β4 = 0. (9)

The first half of the equations, Eqs. (6) and (7), involve both the amplitudes A1,A2 and the energies
E1,E2 but the second half involve only the energies. It will be true for any M, in general, that the
last M equations can be solved first to find all the energies. Once all the energies are known, the
first M equations form a square upper triangular system that can be solved efficiently by backward
substitution to find the amplitudes.

To see that Eqs. (6)–(9) yield the known solution [3], first substitute Eq. (5) and eliminate x2

from Eqs. (8)–(9) to find

α2α4−α
2
3 = 0, or

∣∣∣∣∣α2 α3

α3 α4

∣∣∣∣∣= 0, (10)

where we note that the l.h.s. is the determinant of a 2×2 Hankel matrix or perhaps the minor of a
larger Hankel matrix. After substituting Eq. (4), this gives the known quadratic equation(

y2
2− y1y3

)
x2

1 +(y1y4− y2y3)x1 +
(
y2

3− y2y4
)

= 0. (11)

Note that this can also be written∣∣∣∣∣ y1 y2

y2 y3

∣∣∣∣∣x2
1−

∣∣∣∣∣ y1 y2

y3 y4

∣∣∣∣∣x1 +

∣∣∣∣∣ y2 y3

y3 y4

∣∣∣∣∣= 0, (12)

where the coefficients are not determinants of Hankel matrices but minors of a single Hankel ma-
trix. So, it can be written even more compactly as∣∣∣∣∣∣∣

y1 y2 1
y2 y3 x1

y3 y4 x2
1

∣∣∣∣∣∣∣= 0, (13)

where the left block is a Hankel matrix and the right block is a Vandermonde matrix.
Following the same procedure, the M = 3 polynomial can be written∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 1
y2 y3 y4 x1

y3 y4 y5 x2
1

y4 y5 y6 x3
1

∣∣∣∣∣∣∣∣∣∣
= 0 (14)

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
9
6

Excited State Effective Masses George T. Fleming

and solved using the method of Scipione del Ferro and Tartaglia [7], and the M = 4 polynomial can
be written ∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4 1
y2 y3 y4 y5 x1

y3 y4 y5 y6 x2
1

y4 y5 y6 y7 x3
1

y5 y6 y7 y8 x4
1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (15)

and solved using the method of Ferrari [7].
Although there are no general solutions in radicals for polynomials higher than quartic order,

there are numerical methods for finding the roots of polynomials of any order. The general form
for the polynomial follows from Eqs. (13), (14) and (15):

|H |=

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · yM 1

y2 y3 · · · yM+1 x1

...
...

. . .
...

...
yM+1 yM+2 · · · y2M xM

1

∣∣∣∣∣∣∣∣∣∣∣
= 0. (16)

Prony [5] showed that problems in the form of Eq. (1) implied the following system of equa-
tions y = H(y)p 

y1

y2
...

yM

=−


y2 · · · yM+1

y3 · · · yM+2
...

. . .
...

yM+1 · · · y2M




p1

p2
...

pM

 (17)

where the M×M matrix H(y) has the special structure of a Hankel matrix and the components pm

of p are the coefficients of a polynomial

P(x) =
M

∏
m=1

(x− xm) =
M

∑
m=0

pmxm (p0 = 1). (18)

The Prony-Yule-Walker method (or just Prony’s method, for short) [5, 8, 9] solves Eq. (17) to
find the coefficients and then finds the M roots of the polynomial in Eq. (18). The amplitudes are
determined by substituting the roots into Eq. (2) and solving it. Note again that using 2M timeslices
of correlation function data to determine M effective masses is a problem of polynomial order M.
The general conditions under which the solutions of the Hankel and Vandermonde systems coincide
is presented in [10]. A simple demonstration that both solutions are the same under some basic
assumptions will be provided elsewhere.

When constructing correlation functions in Lattice QCD, care is taken to ensure that the cor-
relation function transforms irreducibly under the symmetries of the lattice space group [11, 12].
For the model function, as in Eq. (1), this implies that the amplitudes depend on the details of
the specific correlation function but that the energies depend only on the irreducible representa-
tion. Since it is common in Lattice QCD simulations to compute at least two distinct correlation
functions for each irreducible representation, effective mass solutions which combine data from
multiple correlators are also possible.
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Assume that there are K correlation functions available as in Eq. (1) that differ only in their
amplitudes:

Ck(~p, tn) =
M

∑
m=1

Akm(~p)exp [−(t0 +na)Em(~p)] (19)

n≥ 0, Akm, Em ∈ R, 0≤ E1 ≤ E2 ≤ ·· · ≤ EM.

Data from the same N time slices will be used in the following from each correlation function to
construct M effective masses. Under this assumption the condition that there will be equal number
of data points as unknowns is KN = (K +1)M. Previously shown are the three solutions that satisfy
the condition for K = 1, up to quartic order. There are four more solutions for K > 1: (K,M,N) =
(2,2,3), (2,4,6), (3,3,4) and (4,4,5). Relaxing the assumption that the same number of time slices
are used from each correlation function will allow for more possibilities up to quartic order. It is
straightforward to generalize to these cases if desired.

The nonlinear equations to solve have a block structure:

y11

y12

y13

y21

y22

y23


=



1 1
x1 x2

x2
1 x2

2

1 1
x1 x2

x2
1 x2

2




a11

a12

a21

a22

 . (20)

Here, the indices for ykn, xm and akm are in the ranges 1 ≤ k ≤ K, 1 ≤ m ≤ M and 1 ≤ n ≤ N. To
reduce the system we extend Eq. (3) to block form with K identical blocks Lm(x) on the diagonal.
The reduced equations are

yk1 = ak1 +ak2 (21)

αk2 = (x1− x2)ak2 (22)

βk3 = 0 (23)

(1≤ k ≤ 2),

where we have added an additional index k to the auxiliary quantities defined in Eqs. (4) and (5).
Substituting for βk3 in Eqs. (23) and eliminating x2 gives the equation:∣∣∣∣∣α12 α22

α13 α23

∣∣∣∣∣= 0, (24)

where we’ve written the equation as a minor of some matrix, following our previous experience,
whose structure is not yet clear. Substituting for αkn gives a quadratic equation in x1 in determinant
form: ∣∣∣∣∣∣∣

y11 y21 1
y12 y22 x1

y13 y23 x2
1

∣∣∣∣∣∣∣= 0. (25)

Similar equations can be derived for (K,M,N) = (2,4,6), (3,3,4) and (4,4,5).
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The general form of the polynomial equation can be inferred by studying solved examples
as in Eq. (25). Define K Hankel matrices HN×Mk

k for each of the correlation functions with the
constraints ∑

K
k=1 Mk = M and N = M +1. Then the general form of the polynomial equation is∣∣∣∣∣∣∣∣∣∣∣∣

HN×M1
1 HN×M2

2 · · · HN×MK
M

1
x1

x2
1
...

xM
1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (26)

As previously discussed, each Hankel matrix is generally of full column rank, and, if the correlation
functions are linearly independent, then the columns of different Hankel matrices are also linearly
independent. So, Eq. (26) will only be satisfied for discrete values of x1 corresponding to the roots
of the polynomial.

In practical Lattice QCD calculations, the temporal extent is finite so the choice of tempo-
ral boundary conditions affects hadronic correlation functions near the boundary. For simplicity,
starting from Eq. (1), set t0 = 0 and identify the points t0 = 0 and tN = Na which can be done
using modular arithmetic, i.e. tn = (n mod N)a. For anti-periodic boundary conditions, the typical
hadronic Euclidean time correlation function is described by the model function

C(~p, tn) =
M

∑
m=1

{
Am(~p)exp [−(n mod N)aEm(~p)]+(−1)BA∗m(~p)exp [−(N−n mod N)aE∗

m(~p)]
}

(27)
n≥ 0, Am, A∗m, Em, E∗

m ∈ R, 0≤ E1 ≤ E2 ≤ ·· · ≤ EM, 0≤ E∗
1 ≤ E∗

2 ≤ ·· · ≤ E∗
M.

For periodic boundary conditions, set (−1)B → 1. For mesons, B = 0 but more importantly Am =
A∗m and Em = E∗

m which is not true for baryons (B = 1). So, baryon correlation functions represent
M states propatating to the left and M different states propagating to the right for a total of 2M
states.

Meson correlation functions represent the same M states propagating to the right and left but
time-reversal symmetry relates tn and tN−n so that the half as many states are represented but by
only half as many independent timeslices. As shown in [3], this can be made explicit by writing
the meson correlation function as

C(τn) =
M

∑
m=1

Am exp(−aNEm/2)cosh(anEm), τn = (n−N/2)a (28)

To write this result in the Vandermonde form of Eq. (2), define the variables

am = Am exp(−aNEm/2), xm = cosh(aEm), yn =
1

2n−1

n−1

∑
j=0

(
n−1

j

)
C(τn−2 j−1). (29)

For fermions lacking a positive single timeslice transfer matrix, e.g. domain wall fermions
with 1 < m0 < 2 [13], staggered fermions or even Wilson fermions with 0 < r < 1 [14], oscillitory
states will appear in the Euclidean time correlation functions

C(~p, tn) =
M

∑
m=1

(−1)mnAm(~p)exp [−(t0 +na)Em(~p)] (30)

6
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Figure 1: Left: Effective masses extracted from an ensemble of nucleon correlator using (K,M,N) =
(4,1,8) solution. Colors indicate different roots of the polynomial in the order (lowest to highest) black,
red, blue, green. Right: Effective masses on the same ensembles but using four correlators with different
smearing radii on the source and sink. Roots are from the (K,M,N) = (4,4,5) solution. Triangles indicate
the results of a 4×4 variational analysis using sixteen correlators with all possible combinations of different
smearings at the source and sink.

n≥ 0, Am, Em ∈ R, 0≤ E1 ≤ E3 ≤ ·· · ≤ EM−1, 0≤ E2 ≤ E4 ≤ ·· · ≤ EM.

Such states do appear as negative roots of the polynomial, Eq. (16) or (26), and should be consid-
ered non-spurious as dictated by the transfer matrix.

In summary, non-spurious polynomial roots may be negative depending on the transfer ma-
trix and may have magnitude |x| > 1 for backward propagating baryonic states. Folding mesonic
correlation functions eliminates the backward propagating states, so |x|< 1 for mesons.
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