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1. Introduction

The discovery of about ten new charmonium resonances withinthe past five years prompted
an increased experimental and theoretical interest in the phenomenology of these states. This trend
is bound to continue, in particular since the PANDA experiment at the new antiproton facility
FAIR will produce huge new data samples whose interpretation will require theoretical input. One
way both to reproduce and to predict the experimental spectrum of particle resonances from first
principles QCD are Lattice simulations.

Properties of many recently observed states are at variancewith nonrelativistic quark model
predictions, the most striking example being the X(3872). It is an important task to reveal the inner
structure of such states, i.e. to clarify to what extent charmonium resonances can be interpreted
as quark modelcc̄ states or whether some of these contain significant quark-gluon hybrid or four
quark contributions (tetraquark or molecule).

We expect the lightest hybrid charmonium states to be heavier than 4.3 GeV, the experimental
DD threshold lies above 3.7 GeV and the vector charmoniumJ/ψ ground state much lower, at
about 3.1 GeV. This means that, with the exception ofD waves and higher angular momentum
states, the higher Fock components will only start to show upprominently in radial excitations. As
a first step, we need to be able to reliably compute these on thelattice.

We describe the methods used to obtain these states, our simulation set-up and present first
results on the charmonium spectrum and “wavefunctions”.

2. Variational method

We start from a cross correlator matrix

Ci j (t) = 〈Oi(t)O
†
j (0)〉, (2.1)

with a basis of operatorsOi, i = 1, . . . ,N, destroying a colour singlet state within the desired lattice
Oh ⊗C representation from which we wish to deduce continuum quantum numbers. We do not
include charmed sea quarks and hence the numbers of charm andanti-charm quarks are separately
conserved. At present we restrict ourselves to thecc̄ sector (including hybrids). At a later stage
four quark operators will be incorporated.

The correlator matrix can be spectrally decomposed,

Ci j (t) = ∑
n

vn
i vn∗

j e−Ent , (2.2)

wherevn is the nth state within the subsector of the Hilbert space spanned byC(t), andEn is
the corresponding energy eigenvalue. SinceCi j is a real symmetric matrix1, thevn are mutually
orthogonal.

To obtain initial guesses of the eigenvaluesλ α and -vectorsψα , α = 1, . . . ,N, we solve the
generalized eigenvalue problem [2, 3],

C−1/2(t0)C(t)C−1/2(t0)ψα
t0 (t) = λ α

t0 (t)ψα
t0 (t) , (2.3)

1This only holds in the limit of infinite statistics. We symmetrize C(t) by hand, after checking that violations are
consistent with zero, within the statistical errors.
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varying t0 andt > t0. Due to this symmetrized construction theN-component eigenvectorsψα are
mutually orthogonal for all choices oft0 andt. Note that the eigenvalues of the systemC(t)φα =

λ αC(t0)φα with ψα = C1/2(t0)φα are the same as in Eq. (2.3). Moreover, the non-orthogonalφs
will approach the orthogonalψs at larget0.

If we chooset0 too large, the rank ofC(t0) will not be maximal anymore as (within statistical
errors) excited states will die out in Euclidean time. Fort0 chosen too small,C(t) will receive
contributions from more than theN lowest lying states, resulting in unstable eigenvectors and
effective masses,

mα
eff(t) = a−1 ln

(

λ (t)
λ (t +a)

)

, (2.4)

where we have suppressed the subscriptt0. For each channel we employ a three dimensional basis
of operators which we call local, narrow and wide.

We apply iterative Gaussian smearing to the fermion fieldsφ ,

φ (n+1)
x = c

(

φ (n)
x + κ

±3

∑
j=±1

Ux, jφ
(n)
x+a̂

)

, (2.5)

with κ = 0.3 and a normalisationc to avoid numerical overflow. We smear quark and antiquark with
the same number of stepsng which is equivalent to applying 2ng smearing steps to one propagator
only.

The parallel transportersUx, j = U (15)
x, j above are p-APE smeared:

U (n+1)
x,i = PSU(3)

(

U (n)
x,i + α ∑

| j|6=i

U (n)
x, j U (n)

x+a̂,iU
(n)†
x+âı, j

)

, (2.6)

whereα = 2.5 was chosen to maximize the spatial plaquette constructed from the smeared links
(see the left hand side of Figure 1).PSU(3) denotes a projection operator, back into the gauge group.
By using smeared transporters within Eq. (2.5) we achieve a more continuum-like spatial distri-
bution of the smearing wavefunction (see Section 5 below) and better overlaps with the physical
states.

Effective masses for symmetric 2-point functions with a local source and different sink smear-
ings are shown in Figure 1. We selected the smearing applied to the trial wavefunctions within
each channel, such that one effective mass approached the asymptotic state from above, one from
below and ones sat exactly on spot. This procedure ensures that the span of our variational basis
has overlap not only with the ground state but also with the lowest radial excitations.

3. Simulation details

While chiral symmetry plays a minor role for charmonia, the charm quark massmc is not
heavy enough to allow for a non-relativistic treatment. We use the clover Wilson action both for
valence and sea quarks which will give us a well-defined continuum limit. However,mca 6� 1, such
that ultimately ana→ 0 extrapolation will be important. We work onNf = 2 dynamical lattices
generated by the QCDSF collaboration. Details of these lattices can be found in Ref. [1]. Here
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Figure 1: Dependence of the average value of the spatial plaquette on the number of p-APE smearing steps
(left) and effective masses for local-smeared correlatorswith different smearing functions (right).

we present results from a single 163×32 lattice atβ = 5.20 andκ = 0.13420 corresponding to an
inverse lattice spacing ofa−1 ≈ 1.73 GeV and a pion massmπ ≈ 1 GeV. The lattice spacing was
determined from the valuer0 ≈ 0.46 fm such that the nucleon reaches its experimental mass when
extrapolated to physicalmπ . This leaves us with the charm quark mass as the only free parameter
which we set by tuningm1S = 1

4mηc + 3
4mJ/Ψ to the experimental value.

The operators we use are based on Ref. [4], however derivatives were symmetrized to allow for
charge conjugation eigenstates also at finite momenta. The quark bilinears about which we report
here are displayed in Table 1, together with their irreducible lattice representations and the lowest
spin continuum state they couple to.

name Oh repr. JPC state operator

a0 A1 0++ χc0 1
π A1 0−+ ηc γ5

ρ T1 1−− J/ψ γi

a1 T1 1++ χc1 γ5γi

b1 T1 1+− hc γiγ j

(a1×∇)T2 T2 2−− γ5si jkγ j∇k

(b1×∇)T1 T1 1−+ exotic γ4γ5εi jkγ j∇k

Table 1: Interpolating fields in use.

4. Spectrum

In Figure 2 we show effective masses for the analyzed lattice. In all channels we see nice
plateaus for the ground and the first excited state. Apart from the exotic 1−+ channel we also
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obtain reasonable signals for the second excited state which however we digest with caution: to
gain more confidence in these we will move to a larger operatorbasis and increase statistics. The
lines indicate the fit ranges and errors. For the 1−+ it turned out particularly hard to separate the
ground state from the first excitation because these are veryclose in mass. Hybrid potentials are
rather flat and yield dense spectra within potential models.Hence this maybe taken as a hint at a
hybrid content. However, the creation operator with best overlap with this state does not contain
an explicit chromomagnetic field dependence: in a relativistic theory, for any allowedJ all PC
quantum numbers including exotic ones can be obtained from quark bilinears, even in the free field
case. More study of this question is required.

The computed spectrum is plotted in Fig. 3, together with theexperimental values. It is im-
portant to note that we were not too careful when setting the charm quark mass parameter and
underestimatem1S by about 15 MeV. However, this is still well within the accuracy of the lat-
tice spacing determination and moreover will cancel from level splittings. So the whole spectrum
should be shifted higher a bit.

We obtain a 1S hyperfine splitting of∆m1S = 73(2) MeV, below the experimental 117 MeV
and consistent with the unphysically high pion mass, wrong number of sea quarks and lattice arte-
facts. Also disconnected contributions can affect this quantity. For the 2S hyperfine splitting we
obtain∆m2S = 47(6) MeV, in agreement with experiment [49(5) MeV]. Our failure to consistently
underestimate this value as well might be explainable byDD threshold effects which we neglect
due to our heavy sea quarks (and henceD mesons). Alternatively, theηc mass might receive small
contributions from theUA(1) anomaly or fromηc−η ′ mixing, also effects that we neglect, whose
full treatment requires disconnected quark line diagrams and charmed sea quarks.
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Figure 2: Effective masses from the three dimensional operator basis. Fit ranges and errors are indicated by
horizontal lines. Thet0 values refer to the respective normalization time slices (see Eq. (2.3)).
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Figure 3: Predicted spectrum, together with the experimental values. TheDD threshold is the experimental
one.

5. Wavefunctions

The variational method not only helps to compute the spectrum but also provides access to
couplings. Efforts to extract such couplings in the heavy quark regime have already been made
for example in Refs. [5] and [6]. There exists no real shortcut to the computation of three-point
functions for this purpose but nonetheless it can be instructive to analyze the smearing functions
that we use in some detail.

For sufficiently larget0 we can identify the components of the eigenvectorsψα of Eq. (2.3) as
the couplings of our interpolating functions with the physical state of massmα . Here we start from a
four-dimensional basis of trial functions with 0, 5, 10 and 40 (times two) Gauss smearing iterations.
We can apply these functions toδ sources (in space and colour) to obtain the spatial distribution
of the corresponding trial wavefunctionsΦ j(x) ∈ SU(3). By folding these with our eigenvectors
we can attempt to construct the “wavefunctions" of the physical states:Ψα(x) = ∑ j ψα

j Φ j(x).
Needless to say that it is not possible to exactly create the physical eigenstates with such a small
number of trial functions. Moreover, in Euclidean time we cannot obtain the phase information and
hence only the (gauge invariant) probability densities aremeaningful quantities. Thus in general
TrΨα†Ψβ 6= δ αβ . Unfortunately, the used lattice is too coarse to resolve the node structure of|Ψ|2.
However, observing that|Ψ|2 for our APE smeared fields and|Ψ|2 in the free case are very similar,
we plot the wavefunctions for the free case, where the nodes are clearly visible due to the sign
change. Fig. 4 shows these wavefunctions for the lowest three pseudoscalar states. We neglect the
statistical errors.

In spite of the small basis the node structure is consistent with the 1S, 2Sand 3Sassignment,
with no visible pollution from higher Fock states orD waves. For the 1Swe obtain anrmswidth
of ca. 0.39 fm. This compares reasonably well with the infinite volume continuum potential model
expectation of about 0.4 fm [8].
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Figure 4: The 1S, 2S and 3S pseudoscalar "wavefunctions".

6. Outlook

The next step is to include disconnected contributions to the charmonium two-point functions
which may play an important role for quantities like the 1Shyperfine splitting. Work on improved
all-to-all propagator calculations is already in progress. We also plan to extend our operator basis
by including four-quark states, once we have moved to light sea quark masses.
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