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We shall discuss the finite ma errors of the overlap fermion in this talk. We present results on
the speed of light from the dispersion relation and the hyperfine splitting between the vector and
pseudoscalar mesons as a function to ma to reveal the mΛQCDa2 and m2a2 errors. We conclude
from this study that one should be limited to using ma less than 0.5 in order to keep the systematic
ma errors below a few percent level.
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In the last few years, there have been a number of studies to check how well current algebra
relations are satisfied with various numerical approximations for the overlap fermion and how
feasible it is to carry out large scale calculations with realistically small quark masses. Although
it takes two orders of magnitude more time to compute the propagators than those of the Wilson-
type fermions, the overlap fermion has a host of desirable features, such as the fact that there are
no O(a) errors, no additive renormalization for the quark masses, no mixing between different
chiral sectors, and that the chiral Ward identity and other current algebra relations make the non-
perturbative renormalization easier, etc. In addition, there are a number of pleasant surprises in that
the O(a2) errors, as judged from hadron masses, is small [1] and is about the smallest among the
fermion actions studied in the quenched simulations [2]. The overlap fermion is local for lattice
spacing as coarse as 0.2 fm with the range being roughly one lattice spacing for the Euclidean
distance [2]. The renormalization factors from the chiral Ward identity and the regularization
independent scheme [3] have very little dependence on ma [4] for ma as large as 0.7. The speed of
light as calculated from the dispersion relation deviates from unity appreciably only for ma larger
than ∼ 0.55 [5].

It was emphasized that the effective quark propagator for the overlap fermion has the same
form as that in the continuum, i.e. the inverse effective propagator is just an anti-hermitian Dirac
operator plus the bare quark mass term [5]. As such, the overlap fermion is equally applicable to
the heavy as well as the light quarks. The only practical concern is how large the ma errors are
for the heavy quarks. Thus, it is essential to assess the ma errors before one can confidently apply
the overlap formalism to heavy quarks for a specific ma. For this purpose, we present results on
the dispersion relation and the hyperfine splitting between the vector and pseudoscalar mesons as
a function of ma to reveal the mΛQCDa2 and m2a2 errors.

We first examine the O(m2a2) and O(ma2) errors in the dispersion relation. It is suggested that
dispersion relation is one of the places where one can discern the ma error [6, 7]. We computed
the pseudoscalar meson mass and energies at several lattice momentum, i.e. pLa =

√
n2π/La with

n = 0,1,2,3. The overlap quark propagators are calculated on the 163×28 quenched lattice with 80
configurations generated from Iwasaki guage action with a = 2.00 fm as determined from fπ [8].
Following Refs. [6, 7], we fit the energies to the dispersion relation

(E(p)a)2 = c2(pa)2 +(E(0)a)2 (1)

where p = 2sin(pLa/2). The dispersion relation is so defined such that the ma error is reflected in
the deviation of c (the effective speed of light) from unity.

We see in Fig. 1 that the effective speed of light c is consistent with unity all the way to
ma ∼ 0.4. Since there is no O(ma) error, we fit it with the form quadratic in a, i.e. c = c0 +

b(ΛQCDa)ma+d m2a2 (ΛQCDa = 0.188 for a = 0.2 fm), and find that c0 = 0.982(10), b= 0.580(346),
and d =−0.279(87) with χ2/Ndo f = 0.1 for the pseudoscalar meson case and c0 = 1.044(43), b =

0.016(38), and d = −0.41(36) with χ 2/Ndo f = 0.1 for the vector meson case. Using these to
gauge how large the ma errors are, we see that the systematic error is less than ∼ 4% for both
the pseudoscalar and vector mesons up to ma ∼ 0.56. This ma is ∼ 2.4 times larger than that is
admitted in the study of improved Wilson action [7] where it is found that the O(m2a2) errors from
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Figure 1: The effective speed of light c from the pseudoscalar-meson (upper panel) and vector-meson (lower
panel) dispersion relations as a function of ma.

the anisotropy of the dispersion relation for the pseudoscalar and vector mesons are less than ∼ 5%
when mQat < 0.23.

The other physical quantity we calculate is the hyperfine splitting between the vector and
pseudoscalar mesons as a function of ma. We should first point out that this hyperfine splitting is
expected to go down with the square root of the quark mass for heavy quarks [9]. This is so because
the spin-spin part of the one-gluon-exchange interaction which is expected to dominate the short
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Figure 2: The hyperfine splitting on two lattices as a function of ma. The upper panel is for the 163 × 72
lattice with a = 0.0561 fm and the lower panel is for the 204 lattice with a = 0.133 fm.

distance behavior between the heavy quarks in the quarkonium has the form

VSS ∝
αsλ1 ·λ2

m1m2
σ1 ·σ2δ (~r1 −~r2), (2)

which leads to a hyperfine splitting between the equal-mass vector and pseudoscalar mesons in first
order perturbation in αs

h. f .s ∝
|Ψ(0)|2

m2 , (3)
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Figure 3: The same as in Fig. 2 except as a function of 1/
√

ma.

where Ψ(0) is the wavefunction of the quarkonium at the origin. In view of the fact that the
2S− 1S radial excitation and the splitting between the averaged 3P2,

3P1 and 3P0 and the 3S1 state
(i.e. 3Pavg − 3S1) of the vector mesons J/Ψ and ϒ are almost the same, one deduce from the non-
relativistic potential model that the size of these mesons scale like

r ∝
1√
m

(4)

in order to keep the excitation independent of the quark mass. Since |Ψ(0)|2 scales like r−3, hence
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one obtains
h. f .s ∝

1√
m

. (5)

We show in Fig. 2 the hyperfine splitting between the vector meson and pseudoscalar meson for
the 163×72 lattice with a = 0.0561 fm [10] and the 204 lattice with a = 0.133 fm [11] as a function
of ma. We notice first that, despite of the fact that the lattice spacings of these two lattices differ by
a factor of 2.37, their behaviors in ma are very similar. Furthermore, the hyperfine splittings in both
cases do not approach zero at large quark mass as they should and this is obviously due to the ma
errors. To assess the errors, we plot in Fig. 3 the hyperfine splitting as a function of 1/

√
ma. It is

clear that there is a broad range of ma where the hyperfine splitting is largely proportional to
√

ma
as in Eq. (5). But there are a few outliers at large ma which deviate substantially from the 1/

√
m

behavior. These are due to the systematic ma errors. We fit the region which is largely linear in
1/
√

ma with a form which also takes into account the 1/m correction, i. e.

h. f .s. =
a√
ma

(1+
b

ma
). (6)

This form fits well in the range of ma from 0.07 to 0.47 for the 163 ×72 lattice and from 0.1094 to
0.438 for the 204 lattice. The fits are drawn as solid lines in Figs. 2 and 3. We see in both cases,
the lattice results start to deviate from the fits around ma = 0.5 and correspondingly 1/

√
ma = 1.4.

For ma = 0.6, the m2a2 error is about 7%. By the time ma reaches 0.85, the m2a2 error is about
50%.

By examining the ma errors of the deviation from the effective speed of light and the hyperfine
splitting, we conclude that it is prudent to use ma smaller than 0.5 in the overlap fermion formalism
in order to keep the systematic O(ma2) and O(m2a2) errors to less than 3 to 4 %. This study is
done with the Iwasaki gauge action. We have not explored if and how this conclusion varies with
different gauge actions.

This work is partially supported by DOE Grants DE-FG05-84ER40154 and DE-FG02-95ER40907.
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