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We study the phase structure of the four-dimensional twisted Eguchi-Kawai model using numer-

ical simulations. This model is an effective tool for studying SU(N) gauge theory in the large-N

limit and provides a nonperturbative formulation of the gauge theory on noncommutative spaces.

Recently it was found that itsZ4
N symmetry, which is crucial for the validity of this model, can

break spontaneously in the intermediate coupling region. We investigate in detail the symmetry

breaking point from the weak coupling side. Our simulation results show that the continuum limit

of this model cannot be taken.
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1. Introduction

In 1982, Eguchi and Kawai introduced an important and interesting idea, which is now called
Eguchi-Kawai equivalence [1]. Consider theSU(N) gauge theory (YM) on a periodicD-dimensional
lattice with the Wilson plaquette action. In the large-N limit the space-time degrees of freedom
can be neglected, and the theory is then equivalent to a modeldefined on a single hyper-cube,
called the Eguchi-Kawai model (EK model). This correspondence was shown by observing that
the Schwinger-Dyson equations for Wilson loops (loop equations) in both theories are the same.
Naïvely, in the EK model the loop equations can have open Wilson lines, which do not exist in
the original gauge theory due to gauge invariance. Therefore we need to assume that the global
Z

D
N symmetryUµ → eiθµUµ , which prohibits non-zero expectation values of the open Wilson lines,

is not broken spontaneously. However, soon after the discovery of the equivalence, it was found
that the symmetry is actually broken forD > 2 in the weak coupling region [2]. Although the
naive EK equivalence does not hold, several modifications have been proposed for this issue; they
are the “quenched” Eguchi-Kawai model (QEK model) [2, 3, 4] and the “twisted” Eguchi-Kawai
model (TEK model) [5]. Historically, more work has been performed on the TEK model because
it is theoretically interesting and numerically more practical. In addition, this model also describes
gauge theories on noncommutative spaces (NCYM) [6, 7].

The TEK model is a matrix model defined by the partition function

ZTEK =
∫ D

∏
µ=1

dUµ exp(−ST EK) (1.1)

with the action

ST EK = −βN ∑
µ 6=ν

ZµνTr UµUνU†
µU†

ν , β = 1/g2, (1.2)

wheredUµ andUµ (µ = 1, ..,D) are Haar measure and link variables. The phase factorsZµν are

Zµν = exp
(

2πinµν/N
)

, nµν = −nν µ ∈ ZN . (1.3)

The classical solutionU (0)
µ = Γµ satisfies the ’t Hooft algebra

ΓµΓν = Zν µΓνΓµ , (1.4)

and is called “twist-eater”. The twist-eater guarantees existence of theZD
N symmetry in the weak

coupling limit. It is unclear whether or not the symmetry is unbroken in the intermediate coupling
region, as there is no guarantee the symmetry is preserved. Numerical simulations performed
during the early days of this model, however, showed that thesymmetry is unbroken throughout
the whole coupling region. This has encouraged the belief that the TEK model describes the large-
N limit of SU(N) gauge theory.

Surprisingly, some indications ofZD
N symmetry breaking were recently reported in several

contexts concerning the TEK model [8, 9, 10]. In [10], theD = 4 TEK model with standard twist
was investigated up toN = 144 andZ4

N symmetry breaking phenomena in the intermediate coupling
region was observed by Monte-Carlo simulations. The work presented in this article continues this
investigation. We concentrate on investigating the locations of the symmetry breaking from the
weak coupling side in the(β ,N) plane to determine if the continuum limits of the TEK models can
be taken as the YM and the NCYM.
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2. Twist prescriptions

In this study we treat theD = 4 case. Among the various types of twist possible, we apply:

nµν = L εsym
µν , N = L2 (minimal symmetric twist, standard twist), (2.1)

nµν = L εskew
µν , N = L2 (minimal skew-diagonal twist), (2.2)

nµν = mL εskew
µν , N = mL2 (generic skew-diagonal twist), (2.3)

where we define anti-symmetrization matrices as

εsym
µν =











0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0











, εskew
µν =











0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0











. (2.4)

These twists representL4 lattices. The symmetric and the skew-diagonal form can be transformed
into one another by anSL(4,Z) transformation for the coordinates onT

4 [11]. While these forms
differ only by a coordinate transformation, they can give different results except the weak coupling
limit. We note that the generic twist (2.3) can be regarded asthe gauge theory onm-coincident
fuzzy T

4. (The minimal twists (2.1) and (2.2) are particular cases (m = 1) of the generic twist.)

3. Theoretical discussion for the Z
4
N symmetry breaking in the TEK model

As we mentioned in the introduction, theZ4
N symmetry can be broken in the intermediate

coupling region. In this section we give a theoretical discussion about this phenomena.

Here, we consider the first breaking point from the weak coupling limit β L
c . We assume that

Z
4
N symmetry breaking at this point is a transition from the twist-eater phaseUµ = Γµ to the identity

configuration phaseUµ = 1N .1 For simplicity we consider aZ4
N

β L
c

−→ Z
0
N type transition here. Of

course we can treatZ4
N

β L
c

−→ Z
3
N

β L
c

−→ Z
2
N

β L
c

−→ Z
1
N

β L
c

−→ Z
0
N (cascade) type breaking, but the obtained

behavior is not different from the former type. First, we focus on the classical energy difference
between these configurations. The energy difference can be easily calculated from the action (1.2)
as

∆S = ST EK [Uµ = 1N ]−STEK[Uµ = Γµ ]

= βN2 ∑
µ 6=ν

{

1−cos

(

2πnµν

N

)}

≃ 2π2β ∑
µ 6=ν

n2
µν . (3.1)

For the generic twist we have

∆S =

{

24π2βm2L2 (symmetric form),

8π2βm2L2 (skew-diagonal form).
(3.2)

1Of course, the twist-eater only hasZ
4
L symmetry for the twists we apply. But we write it asZ

4
N in this article.
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Note that the symmetric form is roughly three times more stable than the skew-diagonal form if both
twists have similar quantum fluctuations. Thus theZ

4
N symmetry breaking for the skew-diagonal

form can occur at smallerN than that for the symmetric form.

Going away from the weak coupling limit, the system experiences greater quantum fluctu-
ations. Here, we naively expect that theZ

4
N symmetry is broken if the fluctuation around the

twist-eater configuration exceeds the energy difference∆S. Because the system describesO(N2)

interacting gluons, it is natural to assume that their quantum fluctuations provide anO(N2) con-
tribution to the effective action. For the generic twist, the fluctuation isO(m2L4). Combining this
with eq. (3.2), we can estimate the critical pointβ L

c as

β L
c ∼ L2. (3.3)

Although the above discussion is quite crude, the symmetry breaking behavior described by
(3.3) is consistent with the numerical results discussed inthe next section.

4. Numerical simulations

In this section we show the results of our numerical simulations for theZ4
N symmetry breaking

phenomena. In order to discuss the continuum and large-N limits for this model, we concentrate
on the first breaking point from the weak coupling side.

4.1 Simulation method

In our simulation we use the pseudo-heatbath algorithm. Thealgorithm is based on [12], and
in each sweep over-relaxation is performed five times after multiplying SU(2) subgroup matrices.
The number of sweeps isO(1000) for eachβ . We scanned for the symmetry breaking point with
a resolution of∆β = 0.005, and thus quote±0.0025 as the error due to the finite resolution. Note
that the breaking points are ambiguous because the breakdown of the Z

4
N symmetry is a first-

order transition. As an order parameter for detecting the symmetry breakdown, we measure the
expectation value of Polyakov lines

Pµ ≡

∣

∣

∣

∣

〈

1
N

Tr Uµ

〉∣

∣

∣

∣

. (4.1)

4.2 Simulation results

First we consider the minimal twists. Figures 1 and 2 show thecritical lattice coupling from the
weak coupling sideβ L

c for the symmetric and skew-diagonal twists, respectively.For the minimal
skew-diagonal twist we also observe the critical lattice coupling from strong coupling sideβ H

c .
We see that while theZ4

N symmetry begins to break atN = 100 for the symmetric form, it is
already violated atN = 25 for the skew-diagonal form, which is consistent with the theoretical
considerations in section 3. Additionally, we observe a clear linear dependence ofβ L

c on N(= L2):

β L
c ∼ 0.0011N +0.21 (minimal symmetric twist), (4.2)

β L
c ∼ 0.0034N +0.25 (minimal skew-diagonal twist), (4.3)
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Figure 1: β L
c versusN (minimal symmetric twist).

Fit line is eq. (4.2), which is obtained usingN ≥

169 data.
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Figure 2: β L
c andβ H

c versusN (minimal skew-
diagonal twist). Fit lines are eqs. (4.3) and (4.4),
which are obtained usingN ≥ 64 andN ≥ 25 data,
respectively. TheZ4

N symmetry is broken within
the light blue shaded area.

in the largerN region. This behavior was already obtained in the theoretical discussion. Note that
the coefficient ofN for the skew-diagonal twist is roughly three times larger than that for symmetric
twist, which is also consistent with the theoretical analysis. Forβ H

c , we find the relation

β H
c ∼ 2.9/N +0.18 (minimal skew-diagonal twist). (4.4)

As N is increased,β H
c approaches a point where the phase transitionZ

4
N

β H
c

−→ Z
3
N takes place in the

original EK model.
For the generic twist we use the skew-diagonal form becauseZ

4
N symmetry breaking occurs at

smallerN than for the symmetric form, which makes our investigation much easier. We measure
β L

c for this twist up tom = 4. The simulation results are plotted in figure 3. From this figure we find
that for eachL, theβ L

c show weak 1/m behavior. The points at 1/m = 0 are linearly extrapolated
values. (m = ∞ means that an infinite number of fuzzy tori are superimposed.) The behavior for
L = 5 is particularly interesting. WhileZ4

N symmetry breaking is observed form = 1,2, and 3, it is
not seen form = 4 becauseβ L

c reaches a bulk transition point asm is increased. Figure 4 represents
the same data as figure 3, but withL2 as the horizontal axis. As we have seen in the minimal
case, the data forL ≥ 8 can be fitted by a linear function inL2 for eachm. From these figures, we
discover that the data forL ≥ 8 are well fitted globally by:

β L
c ∼ 0.0034L2 +

0.060
m

+0.19 (generic skew-diagonal twist). (4.5)

The discussion in section 3 did not predict the observed dependence ofβ L
c on 1/m. While we do

not have a clear reason for this phenomenon at present, we suspect that it is related to collective
modes of the eigenvalues of the link variables.
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Figure 3: β L
c versus 1/m for eachL (generic skew-

diagonal twist).β L
c for m = ∞ is obtained by linear

extrapolation.
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Figure 4: β L
c versusL2 for eachm (generic skew-

diagonal twist). We also includem = ∞ data, which
is obtained by the extrapolation shown in figure 3

5. Continuum limit

Although our simulation is restricted to the smallN region, we may use our theoretical con-
siderations to make statements about the large-N limit. Thus the EK equivalence is valid only in
the regionβ > β L

c ∼ N, not only in the smallerN region, but also in the large-N limit.

As is well known, the one-loop perturbative calculation of the YM lattice theory shows that its
beta function behaves asβ ∼ loga−1 near the weak coupling limit, wherea is lattice spacing. If we
wish to make the TEK model correspond to the YM theory, the scaling of the TEK model should
obey that of the YM. In the TEK model, the lattice sizeL is related toN. (For the generic twist, the
relation isN = mL2.) Then the continuum limit of the YM system with fixed physical size l = aL
can be obtained using the scaling

β ∼ loga−1 ∼ logN. (5.1)

In order to obtain the large-N limit with infinite volume, we should keepβ lower than eq. (5.1).
Otherwise, the system would shrink to a point. However, the simulation results obtained in this
study show thatβ L

c grows faster than the logarithm. Therefore we conclude thatEK equivalence
breaks down and the TEK model does not have YM as its continuumlimit.

In the case of the NCYM, the beta function is essentially the same as that of the YM theory at
the one-loop level [13], and thus the scaling near the weak coupling limit is β ∼ loga−1. But if we
wish to make the TEK model correspond to the NCYM, there is theconstrainta2L = fixed, which
means that we take a scheme in which the noncommutative parameterθ is fixed. And then both
the continuum limit and the infinite volume limit are simultaneously taken (double scaling limit).
Regardless of the constraint, by the nature of the logarithmscaling, the scaling for the NCYM is
the same as that of the ordinary YM (eq. 5.1). Therefore we conclude also that the TEK model
does not have NCYM as its continuum limit.
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6. Conclusions

We carefully investigated theZ4
N symmetry breaking phenomena in the TEK model using

Monte-Carlo simulation. We found a clear linear dependenceon L2 for the symmetry breaking
point from the weak coupling side. Regrettably, this means that the TEK models which use simple
twists cannot be made to correspond to either ordinary YM or NCYM in the continuum limit.

Finally, we mention the partial reduction [14], which has been actively used in recent years.
[14] showed that the large-N reduction is valid above some critical physical sizelc. This means
that for a lattice sizeL the reduction holds only below some lattice couplingβ (L). In order to take
continuum limit we should avoid the bulk transition atβ B

c , and thus there is a lower limit to the
lattice sizeLc(β ) used for the reduction. It is clever that the twist prescription is applied to this
reduction [15], and we believe it would be very efficient.
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