PROCEEDINGS

OF SCIENCE

Phase structure of twisted Eguchi-Kawai model

Tomomi Ishikawa*

RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
E-mail: t onromi @uar k. phy. bnl . gov

Tatsuo Azeyanagi
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Masanori Hanada
Theoretical Physics Laboratory, RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

Tomoyoshi Hirata
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

We study the phase structure of the four-dimensional tdiEguchi-Kawai model using numer-
ical simulations. This model is an effective tool for stuttyBJ (N) gauge theory in the largi-
limit and provides a nonperturbative formulation of the gatheory on noncommutative spaces.
Recently it was found that it&f, symmetry, which is crucial for the validity of this model,rca
break spontaneously in the intermediate coupling regioe.inestigate in detail the symmetry
breaking point from the weak coupling side. Our simulatiesults show that the continuum limit
of this model cannot be taken.

The XXV International Symposium on Lattice Field Theory
July 30 - August 4 2007
Regensburg, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Phase structure of TEK model Tomomi Ishikawa

1. Introduction

In 1982, Eguchi and Kawai introduced an important and iistérg idea, which is now called
Eguchi-Kawai equivalence [1]. Consider the8J (N) gauge theory (YM) on a period@-dimensional
lattice with the Wilson plaquette action. In the laiyelimit the space-time degrees of freedom
can be neglected, and the theory is then equivalent to a nuedigled on a single hyper-cube,
called the Eguchi-Kawai model (EK model). This corresparmdewas shown by observing that
the Schwinger-Dyson equations for Wilson loops (loop eiqua) in both theories are the same.
Naively, in the EK model the loop equations can have openddilges, which do not exist in
the original gauge theory due to gauge invariance. Thezefiegg need to assume that the global
zR symmetnyJ, — eieHU“, which prohibits non-zero expectation values of the opelsdftdilines,
is not broken spontaneously. However, soon after the desgonf the equivalence, it was found
that the symmetry is actually broken f&r > 2 in the weak coupling region [2]. Although the
naive EK equivalence does not hold, several modifications baen proposed for this issue; they
are the “quenched” Eguchi-Kawai model (QEK model) [2, 3, ddl ahe “twisted” Eguchi-Kawai
model (TEK model) [5]. Historically, more work has been penied on the TEK model because
it is theoretically interesting and numerically more pieal In addition, this model also describes
gauge theories on nhoncommutative spaces (NCYM) [6, 7].

The TEK model is a matrix model defined by the partition fumati

D
ZTEK =/ [] AU exp(—Srex) (1.1)
u=1

with the action

Srex = —BN ; ZwTruu Uil p=1/¢, (1.2)
UFAV

wheredU, andU,, (1 = 1,..,D) are Haar measure and link variables. The phase faZigrare

The classical solutiohlfl0> = [, satisfies the 't Hooft algebra

r“rV:ZV“rvr“, (14)

and is called “twist-eater”. The twist-eater guarantedsterce of theZl symmetry in the weak
coupling limit. It is unclear whether or not the symmetry rfowoken in the intermediate coupling
region, as there is no guarantee the symmetry is preserveanehial simulations performed
during the early days of this model, however, showed thasyimemetry is unbroken throughout
the whole coupling region. This has encouraged the belafttie TEK model describes the large-
N limit of U (N) gauge theory.

Surprisingly, some indications &Y symmetry breaking were recently reported in several
contexts concerning the TEK model [8, 9, 10]. In [10], he= 4 TEK model with standard twist
was investigated up td = 144 andZg, symmetry breaking phenomena in the intermediate coupling
region was observed by Monte-Carlo simulations. The woes@nted in this article continues this
investigation. We concentrate on investigating the loacetiof the symmetry breaking from the
weak coupling side in thg3,N) plane to determine if the continuum limits of the TEK modeds c
be taken as the YM and the NCYM.
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2. Twist prescriptions

In this study we treat thB = 4 case. Among the various types of twist possible, we apply:

nw = L& N= L? (minimal symmetric twist, standard twist) (2.1)
N = L sf,'\‘,e"", N= L2 (minimal skew-diagonal twist) (2.2)
N = mL e, N=mL?  (generic skew-diagonal twist) (2.3)

where we define anti-symmetrization matrices as

0 1 11
-1 0 11

e = 11041l sf,'\‘,e""_ (2.4)
-1-1-10

These twists representf lattices. The symmetric and the skew-diagonal form candrestormed
into one another by aBlL(4,7Z) transformation for the coordinates @ [11]. While these forms
differ only by a coordinate transformation, they can givifedént results except the weak coupling
limit. We note that the generic twist (2.3) can be regardethasggauge theory om-coincident
fuzzy T*. (The minimal twists (2.1) and (2.2) are particular cases=(1) of the generic twist.)

3. Theoretical discussion for the Zg, symmetry breaking in the TEK model

As we mentioned in the introduction, ti&, symmetry can be broken in the intermediate
coupling region. In this section we give a theoretical dsston about this phenomena.

Here, we consider the first breaking point from the weak daggimit B;. We assume that
Zg, symmetry breaking at this point is a transition from the tveiater phasd, =T, to the identity

L
configuration phas¥l, = 1n.Y For simplicity we consider &y, LN 7§, type transition here. Of

L L L L
course we can tredy, LN Z3 E, Z3 LN Z} LN Z{, (cascade) type breaking, but the obtained

behavior is not different from the former type. First, wedsmn the classical energy difference
between these configurations. The energy difference caadiky ealculated from the action (1.2)
as

AS = Srek [Uy = In] — Srex Uy =T ]

— BN? ; {1—003(271,3“”) } ~ 21°B ; Ny- (3.1)
UZV UZV

For the generic twist we have

) .
AS— {24n2[3rnzL (symmetric form) (3.2)

8 BnPL? (skew-diagonal form)

10f course, the twist-eater only hﬁé symmetry for the twists we apply. But we write it ﬂﬁ, in this article.
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Note that the symmetric form is roughly three times morelsttian the skew-diagonal form if both
twists have similar quantum fluctuations. Thus #fgsymmetry breaking for the skew-diagonal
form can occur at smallé¥ than that for the symmetric form.

Going away from the weak coupling limit, the system expeargngreater quantum fluctu-
ations. Here, we naively expect that tfg symmetry is broken if the fluctuation around the
twist-eater configuration exceeds the energy differei8eBecause the system descri@aN?)
interacting gluons, it is natural to assume that their quantiuctuations provide a®(N?) con-
tribution to the effective action. For the generic twisk fluctuation isO(nm?L4). Combining this
with eq. (3.2), we can estimate the critical poit as

B~ L2 (3.3)

Although the above discussion is quite crude, the symmetgking behavior described by
(3.3) is consistent with the numerical results discussdtemext section.

4. Numerical smulations

In this section we show the results of our numerical simatetifor theZg, symmetry breaking
phenomena. In order to discuss the continuum and I8r¢jedits for this model, we concentrate
on the first breaking point from the weak coupling side.

4.1 Simulation method

In our simulation we use the pseudo-heatbath algorithm. al¢p@rithm is based on [12], and
in each sweep over-relaxation is performed five times aftdtiptying SJ (2) subgroup matrices.
The number of sweeps 8(1000 for each3. We scanned for the symmetry breaking point with
a resolution ofAB = 0.005, and thus quot&0.0025 as the error due to the finite resolution. Note
that the breaking points are ambiguous because the breakdbthe Zg symmetry is a first-
order transition. As an order parameter for detecting thmensgtry breakdown, we measure the
expectation value of Polyakov lines

e[

First we consider the minimal twists. Figures 1 and 2 shovethieal lattice coupling from the
weak coupling sidg8t for the symmetric and skew-diagonal twists, respectivEty: the minimal
skew-diagonal twist we also observe the critical latticeptimg from strong coupling sidg!.
We see that while th&g, symmetry begins to break & = 100 for the symmetric form, it is
already violated aN = 25 for the skew-diagonal form, which is consistent with thearetical
considerations in section 3. Additionally, we observe aclmear dependence gt onN(= L?):

. (4.1)

4.2 Simulation results

BS ~ 0.001IN+0.21  (minimal symmetric twist) (4.2)
B(I:‘ ~ 0.0034N + 0.25 (minimal skew-diagonal twist) (4.3)
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Figurel: Bt versusN (minimal symmetric twist). Figure 2: B5 and B! versusN (minimal skew-

Fit line is eq. (4.2), which is obtained usildgy> diagonal twist). Fit lines are eqgs. (4.3) and (4.4),

169 data. which are obtained using > 64 andN > 25 data,
respectively. TheZy, symmetry is broken within
the light blue shaded area.

in the largem region. This behavior was already obtained in the theaktiscussion. Note that
the coefficient oN for the skew-diagonal twist is roughly three times largamtkhat for symmetric
twist, which is also consistent with the theoretical anialyor B, we find the relation

B ~29/N+0.18 (minimal skew-diagonal twist) (4.4)

As N is increased! approaches a point where the phase transiﬂﬁ}r& Z3, takes place in the
original EK model.

For the generic twist we use the skew-diagonal form becZfjssymmetry breaking occurs at
smallerN than for the symmetric form, which makes our investigatiomchmeasier. We measure
B for this twist up tom= 4. The simulation results are plotted in figure 3. From thisriigwe find
that for each., the B} show weak ¥m behavior. The points at/in= 0 are linearly extrapolated
values. (h= o means that an infinite number of fuzzy tori are superimpgsé&te behavior for
L = 5 is particularly interesting. Whil&y, symmetry breaking is observed fior= 1,2, and 3, itis
not seen fom= 4 becaus¢. reaches a bulk transition point ass increased. Figure 4 represents
the same data as figure 3, but wlth as the horizontal axis. As we have seen in the minimal
case, the data fdr > 8 can be fitted by a linear function lr? for eachm. From these figures, we
discover that the data fdr> 8 are well fitted globally by:

0.060 . . .
B ~0.0034.2 + ———+019 (generic skew-diagonal twist) (4.5)

The discussion in section 3 did not predict the observed ritpece ofgl on 1/m. While we do
not have a clear reason for this phenomenon at present, wedtbat it is related to collective
modes of the eigenvalues of the link variables.
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Figure3: f¢ versus ¥mfor eachl (generic skew- Figure 4: BL versusL? for eachm (generic skew-
diagonal twist).B¢ for m= o is obtained by linear giagonal twist). We also include = o data, which
extrapolation. is obtained by the extrapolation shown in figure 3

5. Continuum limit

Although our simulation is restricted to the smidliregion, we may use our theoretical con-
siderations to make statements about the |&tdenit. Thus the EK equivalence is valid only in
the regionB > BL ~ N, not only in the smalleN region, but also in the largh-limit.

As is well known, the one-loop perturbative calculationha# tY M lattice theory shows that its
beta function behaves fis~ loga—! near the weak coupling limit, wheesis lattice spacing. If we
wish to make the TEK model correspond to the YM theory, théirsg@f the TEK model should
obey that of the YM. In the TEK model, the lattice sizés related td\. (For the generic twist, the
relation isN = mL2.) Then the continuum limit of the YM system with fixed physisaze| = al

can be obtained using the scaling

B ~loga~! ~ logN. (5.1)

In order to obtain the larght limit with infinite volume, we should keep lower than eq. (5.1).
Otherwise, the system would shrink to a point. However, theukation results obtained in this
study show thaBl grows faster than the logarithm. Therefore we conclude Eaequivalence
breaks down and the TEK model does not have YM as its continimin

In the case of the NCYM, the beta function is essentially Hraesas that of the YM theory at
the one-loop level [13], and thus the scaling near the weagloay limit is 8 ~ loga~t. But if we
wish to make the TEK model correspond to the NCYM, there iscthvestrainta®L = fixed, which
means that we take a scheme in which the noncommutative pteafhis fixed. And then both
the continuum limit and the infinite volume limit are simultously taken (double scaling limit).
Regardless of the constraint, by the nature of the logarghating, the scaling for the NCYM is
the same as that of the ordinary YM (eq. 5.1). Therefore welode also that the TEK model
does not have NCYM as its continuum limit.
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6. Conclusions

We carefully investigated th&g, symmetry breaking phenomena in the TEK model using
Monte-Carlo simulation. We found a clear linear dependesté? for the symmetry breaking
point from the weak coupling side. Regrettably, this me&asthe TEK models which use simple
twists cannot be made to correspond to either ordinary YM@KNMI in the continuum limit.

Finally, we mention the partial reduction [14], which hagbectively used in recent years.
[14] showed that the largl-reduction is valid above some critical physical sige This means
that for a lattice sizé& the reduction holds only below some lattice coupld.). In order to take
continuum limit we should avoid the bulk transition @? and thus there is a lower limit to the
lattice sizeL¢(f) used for the reduction. It is clever that the twist presaipis applied to this
reduction [15], and we believe it would be very efficient.
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