
P
o
S
(
D
I
F
F
2
0
0
6
)
0
3
6

DIS Spin Structure Functions at small x

B.I. Ermolaev
Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia
E-mail: boris.ermolaev@mal.ioffe.ru

M. Greco
�

Department of Physics and INFN, University Rome III, Rome, Italy
E-mail: greco@fis.uniroma3.it

S.I. Troyan
St. Petersburg Institute of Nuclear Physics, 188300, Gatchina, Russia
E-mail: troyan@thd.pnpi.spb.ru

Explicit expressions for the non-singlet and singlet spin-dependent structure function g1 in the

small-x region are obtained. They include the total resummation of the double- and single- log-

arithms of x and account for the running QCD coupling αs effects. Both the non-singlet and

singlet structure functions are Regge behaved asymptotically, with the intercepts predicted in

agreement with experiments. A detailed comparison with the DGLAP evolution equations for

different values of x and Q2 is performed. The role played by singular terms in DGLAP fits for

the initial quark densities is discussed and explicitly shown to mimic the resummation of leading

logarithms at small-x. Finally, explicit expressions for the singlet g1 at small x and small Q2 are

obtained with the total resummation of the leading logarithmic contributions. It is shown that g1

practically does not depend on x in this kinematic region.
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1. Introduction

In the standard theoretical approach for investigating the DIS structure function g1
�
x � Q2 � ,

namely DGLAP [1], gDGLAP
1 is a convolution of the coefficient functions CDGLAP and the evolved

parton distributions. The latter are also expressed as a convolution of the splitting functions
PDGLAP and initial parton densities, which are fitted from experimental data at large x, x � 1 and
Q2 � 1 GeV2. However there is an obvious asymmetry in treating the Q2- and x- logarithmic con-
tributions in DGLAP. Indeed, the leading Q2- contributions, ln

�
Q2 � , are accounted to all orders in

αs whereas CDGLAP
�
x � and PDGLAP

�
x � are known in first two orders of the perturbative QCD. On the

other hand, in the small-x region the situation looks opposite: logarithms of x, namely double loga-
rithms (DL), i.e. the terms

�
αs ln2 �

1 � x ��� k , and single logarithms (SL), the terms
�
αs ln

�
1 � x ��� k ,with

k � 1 � 2 ����� , are becoming quite sizable and should be accounted to all orders in αs. The total resum-
mation of DL terms was first done [2] in the fixed αs approximation, and led to a new expression
gDL

1 , for g1, that in the small-x asymptotics was of the Regge (power-like) form and much greater
than the well-known small-x asymptotics of gDGLAP

1 .

Strictly speaking, the results of Refs. [2] could not be compared in a straightforward way with
DGLAP because instead of the running αs, with the parametrization

αDGLAP
s � αs

�
Q2 � � (1.1)

Refs. [2] had used αs fixed at an unknown scale. A closer investigation of this matter [5] led us
to conclude that the DGLAP-parametrization of Eq. (1.1) can be a good approximation at x not
far from 1 only. Instead, a new parametrization was suggested, where the argument of αs in each
of the ladder rungs of the involved Feynman diagram is the virtuality of the horizontal gluon (see
Ref. [5] for detail). Indeed this parametrization works well both for small and large x. It converges
to the DGLAP-parametrization at large x but differs from it at small x, and it allowed us to obtain
in Refs. [7] the expressions for g1 accounting for all-order resummations of DL and SL terms,
including the running αs effects 1. This led us to predict the numerical values of the intercepts
of the singlet and non-singlet g1. These results were then confirmed [8] by several independent
groups who have analyzed the HERMES data and extrapolated them at small x.

On the other hand, it is well known that, despite missing the total resummation of lnx, DGLAP
works quite successfully at x 	 1. This might suggest that the total resummation of DL contribu-
tions performed in Refs. [7] should not be relevant at available values of x and might be of some
importance at extremely small x reachable in the future. In Ref. [9] we made a detailed numerical
analysis and explained why DGLAP fits can be successful at small x. Indeed in order to describe the
available experimental data, singular expressions (see for example Refs. [10, 11]) are introduced
for the initial parton densities. These singular factors (i.e. the factors which 
 ∞ when x 
 0 )
introduced in the fits mimic the total resummation of Refs. [7]. Then using the results of Ref. [7]
for incorporating the total resummation of lnx allows to simplify the rather sophisticated structure
of the standard DGLAP fits down to a normalization constant at small x.

1The parametrization of Ref. [5] was used later in Refs. [6] for studying the small-x contribution to the Bjorken sum
rule.
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2. Difference between DGLAP and our approach

In DGLAP, g1 is expressed through convolutions of the coefficient functions and evolved par-
ton distributions. As convolutions look simpler in terms of integral transforms, it is convenient to
represent g1 in the form of the Mellin integral. For example, the non-singlet component of g1 can
be represented as follows:

gNS
1 DGLAP

�
x � Q2 � � �

e2
q � 2 ��� ı∞� ı∞

dω
2ıπ

�
1 � x � ωCDGLAP

�
ω � δq

�
ω � exp � � Q2

µ2

dk2�
k2� γDGLAP

�
ω � αs

�
k2� ����� �

(2.1)
with CDGLAP

�
ω � being the non-singlet coefficient functions, γDGLAP

�
ω � αs

� the non-singlet anoma-
lous dimensions and δq

�
ω � the initial non-singlet quark densities in the Mellin (momentum) space.

The expression for the singlet g1 is similar, though more involved. Both γDGLAP and CDGLAP are
known in first two orders of the perturbative QCD. Technically, it is simpler to calculate them at
integer values of ω � n. In this case, the integrand of Eq. (2.1) is called the n-th momentum of
gNS

1 . Once the moments for different n are known, gNS at arbitrary values of ω is obtained by
interpolation. The expressions of the initial quark densities are obtained from phenomenological
consideration, by fitting the experimental data at x � 1. Eq. (2.1) shows that γDGLAP governs the
Q2- evolution whereas CDGLAP evolves δq

�
ω � in the x-space from x � 1 into the small x region.

When in the x-space the initial parton distributions δq
�
x � are regular in x, i.e. do not 
 ∞ when

x 
 0, the small-x asymptotics of g1 DGLAP is given by the well-known expression:

gNS
1 DGLAP � gS

1 DGLAP � exp ��� ln
�
1 � x � ln � ln

�
Q2 � µ2 � � ln

�
µ2 � Λ2

QCD
�
	�� � (2.2)

On the contrary, when the total resummation of the double-logarithms and single-logarithms
of x is done[5], the Mellin representation for gNS

1 is

gNS
1

�
x � Q2 � � �

e2
q � 2 ��� ı∞� ı∞

dω
2πı

�
1 � x � ωCNS

�
ω � δq

�
ω � exp � HNS

�
ω � ln

�
Q2 � µ2 ��
 � (2.3)

with new coefficient functions CNS,

CNS
�
ω � � ω

ω � H �����NS

�
ω � � (2.4)

and anomalous dimensions HNS,

HNS � �
1 � 2 � � ω ��� ω2 � B

�
ω � � � (2.5)

where

B
�
ω � � �

4πCF
�
1 � ω � 2 � A �

ω � � D
�
ω ��� � �

2π2 � � (2.6)

D
�
ω � and A

�
ω � in Eq. (2.6) are expressed in terms of ρ � ln

�
1 � x � , η � ln

�
µ 2 � Λ2

QCD
� , b � �

33 �
2n f

� � 12π and the color factors CF � 4 � 3, N � 3:

D
�
ω � � 2CF

b2N
� ∞

0
dρe

� ωρ ln � ρ � η
η


 � ρ � η�
ρ � η � 2 � π2 � 1

η
� � (2.7)
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A
�
ω � � 1

b
� η
η2 � π2 � � ∞

0

dρe
� ωρ

�
ρ � η � 2 � π2

� � (2.8)

HS and CNS account for DL and SL contributions to all orders in αs.
When x 
 0,

gNS
1 � � x2 � Q2 
 ∆NS

�
2 � gS

1 � � x2 � Q2 
 ∆S
�
2

(2.9)

where the non-singlet and singlet intercepts are ∆NS � 0 � 42 � ∆S � 0 � 86. The x- behaviour of
Eq. (2.9) is much steeper than the one of Eq. (2.2). Obviously, the total resummation of loga-
rithms of x leads to a faster growth of g1 when x is decreasing, compared to what is predicted
by DGLAP, provided the input initial parton density δq in Eq. (2.1) is a regular function of ω at
ω 
 0.

3. Role of the initial parton densities

There are various forms in the literature for δq
�
x � , but all available fits include both a regular

and a singular factor when x 
 0 (see e.g. Refs. [10, 11] for detail). For example, one of the fits
from Ref. [10] is given by

δq
�
x � � Nηx

� α � � 1 � x � β �
1 � γxδ � � � (3.1)

with N � η being normalization factors, α � 0 � 576, β � 2 � 67, γ � 34 � 36 and δ � 0 � 75. In the
ω-space Eq. (3.1) is a sum of pole contributions:

δq
�
ω � � Nη � � ω � α � � 1 � ∑mk

�
ω � λk

� � 1 � � (3.2)

with λk � 0, and the first term in Eq. (3.2) corresponds to the singular factor x
� α of Eq. (3.1). When

Eq. (3.1) is substituted in Eq. (2.1), the singular factor x
� α affects the small-x behavior of g1 and

changes its asymptotics Eq. (2.2) for g1 for the Regge asymptotics. Indeed, the small-x asymptotics
is governed by the leading singularity ω � α , so

g1 DGLAP � C
�
α � � 1 � x � α � � ln �

Q2 � Λ2 ��� � �
ln

�
µ2 � Λ2 ��� 	 γ � α � � (3.3)

Obviously, the actual DGLAP asymptotics of Eq. (3.3) is of the Regge type, and differs a lot from
the conventional DGLAP asymptotics of Eq. (2.2). Indeed it looks similar to our asymptotics given
by Eq. (2.9), namely by incorporating the singular factors into DGLAP initial parton densities it
leads to the steep rise of gDGLAP

1 and therefore to a successful description of DGLAP at small x. In
Ref. [9] it is shown that without the singular factor x

� α in the fit of Eq. (3.1), DGLAP would not be
able to work successfully at x � 0 � 05. In other words, the singular factors in DGLAP fits mimic the
total resummation of logarithms of x of Eqs. (2.3), (2.9). To be more specific, although both (3.3)
and (2.9) predict the Regge asymptotics for g1, there is a numerical difference in the intercepts:
Eq. (3.3) predicts that the intercept of gNS

1 should be α � 0 � 57, a value which is greater than our
predicted non-singlet intercept ∆NS � 0 � 42. Therefore the non-singlet gDGLAP

1 grows, when x 
 0,
faster than our predictions. Such a rise however is too steep and contradicts the results obtained in
Refs. [7] and confirmed in Refs. [8].
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4. Expressions for the singlet g1 at small Q2

More recently, in Ref. [13], we have extended the results of Ref. [7] for the small-x behavior
of the singlet g1 in a more general framework. In particular, we have given a special attention to
the kinematic region where not only x but also Q2 are small. On one hand, this kinematics has been
investigated experimentally by the COMPASS collaboration, see Ref. [12]. On the other hand, the
region of small Q2 is clearly beyond the reach of the standard approach. We have suggested that in
this kinematics g1 can be practically independent of x even for x 	 1. Also we obtain that g1, being
positive at small values of the invariant energy 2

�
pq � , can turn negative when 2

�
pq � increases. The

position of the turning point is sensitive to the ratio between the initial quark and gluon densities.
Then we have also shown that, in spite of the presence of large factors providing g1 with the Regge
behavior at small x, the interplay between initial quark and gluon densities might keep g1 close to
zero even at small x, regardless of the values of Q2. Explicit expressions for the singlet g1 at small
Q2 can be found in Ref. [13].

5. Conclusions

We have explicitly shown, by direct comparison of Eqs. (2.2) and (3.3), that the singular factor
x
� α in the Eq. (3.1) for the initial quark density converts the exponential DGLAP-asymptotics

into the Regge one. On the other hand, comparison of Eqs. (2.9) and (3.3) also shows that this
singular factor in the DGLAP fits mimics the total resummation of logarithms of x. This type of
factors can be dropped when the total resummation of logarithms of x performed in Ref. [7] is
taken into account. The remaining terms, which are regular in x in the DGLAP fits (the terms in
squared brackets in Eq. (3.1)), can obviously be simplified or even dropped at small x and replaced
by constants. A more detailed analysis as well as a suggestion to combine the leading logarithms
resummation at small x with DGLAP can be found in Ref. [9]. The above results lead to an
interesting conclusion: the expressions for the initial parton densities δq used in DGLAP analysis
have been commonly believed to be related to non-perturbative QCD effects; indeed they actually
mimic the contributions of the perturbative QCD, so the whole impact of the non-perturbative QCD
effects on g1 at small x is not large and can be approximated by a normalization constant. We have
also shown that the study of g1 at small-Q2 could be as interesting as in the large-Q2 region. An
explicit expression is given in Ref. [13] which describes the singlet g1 at small x and arbitrary
values of Q2, generalizing both the standard approach and our previous results.
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