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1. Introduction and Overview

These lectures focus on three topics. The first is an overakthe current paradigm of
early universe cosmology, theflationary universe scenarioThe second topic is a pedagogical
presentation of the theory of cosmological perturbatitims main tool of modern cosmology which
allows us to connect theories of the very early universe wlithervational data. The third topic is
string gas cosmologyan attempt to construct a new scenario of the very earlyeusivbased on
established principles of string theory.

Over the past two and a half decades, cosmology has beconenaesdominated by data of
rapidly increasing accuracy. Today, we have three-dinoeasimaps of the distribution of galaxies
in space which contain more than one hundred thousand galfii2]. They clearly indicate that
luminous matter in the universe is neither uniformly nordamly distributed. There are clear
patterns to be seen: clusters of galaxies, superclustarseiits and voids (regions of space empty
of galaxies). The distribution can be quantified in termshef luminosity power spectrum. A key
challenge for cosmology is to understand the origin of theeterns in the distribution of matter.

Another observational window in cosmology is the cosmicrov@ve background (CMB)
radiation. Overall, this radiation is characterized by gogging isotropy. At a fractional level of a
bit less than 10%, however, there are anisotropies. These can be quantifiechirs of their angular
power spectrum. First, the sky map (two-dimensional) oatnopies is expanded in spherical
harmonicsYjn:

o |
T0.0)=3 3 anvin(6.9) (L.1)

[=1m=—I
where 8 and ¢ are the usual angles on the surface of the sphere. If the dlimhs are due to a
Gaussian random process with no distinguished directitimeirsky, then the complete information
about the fluctuations is given by the ensemble average gy pointed parentheses) of the
coefficientsam:
6 =<|aml?>. (1.2)

Thesec, coefficients define the angular power spectrum of CMB aropigs. Figure 1 is the
full sky map of CMB anisotropies from the WMAP experiment.[Bjigure 2 shows the resulting
angular power spectrum )(what is plotted on the vertica &fi(l + 1)C, /(2m)). The key features
are the flat region at small values loflarge angular scales) and the characteristic oscillatain
the spectrum at intermediate angular scales. Anotheraircicallenge for cosmology is to explain
both the overall isotropy of the CMB, and the specific pagarhanisotropies.

According to our present understanding, we must look to #rg early universe to find an
explanation for the observed structures. The reason igtlsandard Big Bang cosmology (SBB),
which well describes the cosmological evolution at latessrftimes later and including the period
of nucleosynthesis) the physical wavelength of fixed comgwcales is increasing less fast than
the Hubble radius (an important length scale which is defaredl whose role is described at the
end of this section). Hence, the scales which are currettberwed were outside of the Hubble
radius at early times, and no causal structure formationasa®is possiblé.

Topological defect models [4, 5, 6] provide a way to circumviinis reasoning. They, however, also involve new
physics of the very early universe.
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Figure 1: All sky map of the temperature anisotropies in the CMB from YWMAP satellite experiment.
Credit: NASA/WMAP Science Team.
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Figure 2: The power spectrum of CMB anisotropies as computed from tivAW satellite experiment.

The horizontal axis is the angular quantum numbéhe vertical axis gives the power of the CMB on the
respective scales. The dots represent the data pointstfweitherrors bars indicated), the solid curve is the
prediction of the best-fit inflationary model. Credit: NASMMAP Science Team.
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It is a remarkable success of inflationary cosmology, ourerurparadigm of early universe
cosmology, that it, in addition to explaining why the unseis large, spatially flat, and containing
a large amount of entropy, provides a causal mechanism éootiilgin of inhomogeneities in the
universe. The solid curve in Figure 2 represents the piedistof inflationary cosmology The

2Several cosmological parameters, e.g. the current valtleeofosmological constant and the fractional baryon
density, have to be fixed in order to obtain this excelleneagrent. The number of free parameters, however, is much,
much smaller than the number of data points.
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predictions were made more than 15 years before the datanshdvigure 1 were collected.

In these lectures, however, | would like to focus less on tienpmenological successes of
the inflationary paradigm, but more on the conceptual problerhich current realizations of in-
flationary cosmology are confronted with. These problentisoca for the development of a new
paradigm, a paradigm which must include new fundamentasipby a theory which better de-
scribes space, time and matter and the highest densities.bd@s$t current candidate for such a
theory is superstring theory. Hence, in the third main pathese lectures (Section 4) | will ex-
plore the possibility that string theory may lead to a newadagm of early universe cosmology.
My approach to string cosmology in this section is completasrnto the one taken in the lectures
of Cliff Burgess at this school (see [7]), in which avenue®bfaining inflation in the context of
models coming from string theory are explored (see also][®r9ther reviews of such avenues).

The theory of cosmological perturbations plays a key roleadern cosmology, since it pro-
vides the techniques with which to calculate, in the conbé@ny given scenario of the very early
universe, the generation and evolution of the predictedrimdgeneities in the matter distribution
and anisotropies in the CMB, and thus allows for a comparistween fundamental theory and
observational data. The second part of these lecturesigBe)tprovides a pedagogical overview
of this theory.

| begin, however, with a discussion of inflationary cosmeg|dfpe current paradigm of cos-
mology.

To establish our notation and framework, we will be taking lackground space-time to be
homogeneous and isotropic, with a metric given by

ds? = dt? —a(t)2dx?, (1.3)

wheret is physical timedx? is the Euclidean metric of the spatial hypersurfaces (hatert for
simplicity to be spatially flat), and(t) is the scale factor. The scale factor determineg-hbble
expansion rateia _

H(t) = g(t). (1.4)
The coordinatex used above areomovingcoordinates, coordinates painted onto the expanding
spatial hypersurfaces.

We are interested in tracking the time evolution of the ptaisivavelength of the currently
observed patterns in the distribution of matter and of theBCGiMisotropies. Since the patterns are
assumed to be frozen in in comoving coordinates, the physaeelength scales ast).

A key length scale in cosmology is tlitubble radius

lu(t) = H(1), (1.5)

defined to be the inverse Hubble expansion rate. As will béagxed later, the Hubble radius is the
maximal distance that microphysics can act coherently avubble expansion time - in particular
it is the maximal distance on which any causal process coelate fluctuations.

2. Inflationary Cosmology: The Current Paradigm

Standard Big Bang (SBB) cosmology, the precursor to infatip cosmology as the paradigm
for the evolution of the early universe, is based on a clabpitysics description of both space-time
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Figure 3: Space-time diagram (sketch) showing the evolution of scaldnflationary cosmology. The
vertical axis is time, and the period of inflation lasts bedwg andtg, and is followed by the radiation-
dominated phase of standard big bang cosmology. Duringreil inflation, the Hubble radiud 1 is
constant in physical spatial coordinates (the horizonte)awhereas it increases linearly in time aftgr
The physical length corresponding to a fixed comoving lesgdie labelled by its wavenumbemcreases
exponentially during inflation but increases less fast tharHubble radius (namely &52), after inflation.

(via Einstein’s theory of General Relativity) and mattets(goerposition of two perfect fluids, the
first describing pressureless matter - cold matter - thergbdescribing radiation - the CMB). The
key phenomenological success of the SBB model is the prexliof the existence and black body
nature of the CMB, the black body nature of which was confirmwéfl spectacular accuracy by
the COBE satellite [10] and UBC rocket experiments [11].

On the other hand, the SBB scenario leaves many crucialiqoestin-answered [12]. Why is
the universe so close to spatially flat? Why is it so large amdains such a large entropy? Why is
the CMB isotropic to an accuracy of better tham4Qafter subtracting the dipole contributions due
to our motion relative to the rest frame of the CMB and theafelue to the emission of our own
galaxy)? Most importantly, what is the origin of the obseh#ehomogeneities in the distribution
of matter and of the small CMB anisotropies? These are then&s", “entropy”, “horizon" and
“structure formation" problems of SBB cosmology. SBB alsffers from conceptual problems:
the initial cosmological singularity tells us both that theory must be incomplete, and that it is
based on using the wrong fundamental physics input clogeetsingularity?.

Inflationary cosmology [12] (see also [13, 14, 15]) providessolution of the horizon, flathess
and entropy problems. In addition, it provides a mechaniemttie origin of structure in the
universe based on causal physics [16] (see also [17, 13]).

The idea of inflationary cosmology is to assume that there avpsriod in the very early
Universe during which the scale factor was acceleratimg,déi> 0. This implies that the Hubble
radius was shrinking in comoving coordinates, or, equiviye that fixed comoving scales were
“exiting” the Hubble radius. In the simplest models of infiat the scale factor increases nearly
exponentially.

3As we will see later on, these conceptual problems persisflationary cosmology.
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As illustrated in Figure 3, the basic geometry of inflatighaosmology provides a solution
of the fluctuation problem. As long as the phase of inflatiosuifficiently long, all length scales
within our present Hubble radius today originate at the m@igig of inflation with a wavelength
smaller than the Hubble radius at that time. Thus, it is fixbs$0 create perturbations locally using
physics obeying the laws of special relativity (in partamutausality). As will be discussed later, it
is quantum vacuum fluctuations of matter fields and their@ased curvature perturbations which
are predicted to be responsible for the structure we obseday.

Postulating a phase of inflation in the very early univerdegesothehorizon problenof the
SBB, namely it explains how the causal horizon at the tiggewhen photons last scatter can be
larger than the radius of the past light cond,&t the part of the last scattering surface which is
visible today in CMB experiments. Inflation explains the migatness of the universe: in a deceler-
ating universe spatial flatness is an unstable fixed poirteoflynamics, whereas in an accelerating
universe it becomes an attractor. Another important feadfiinflation is that the volume of space
increases exponentially at constant energy density. dfehergy density is successfully converted
to ordinary matter at the end of the period of inflation, thiea éntropy of the universe is expo-
nentially larger after compared to before inflation. In diddi, with the exponential expansion of
space it is easy to produce a universe of our size today frotarelscale universe at the initial
Planck time, something which is not possible in the SBB modibls inflation explains the large
current size and entropy of the universe.

Let us now consider how it is possible to obtain a phase of otigical inflation. We will
assume that space-time is described using the equation®rur@ Relativity*. In this case,
the dynamics of the scale factaft) is determined by the Friedmann-Robertson-Walker (FRW)
equations

Gy = snep 2.1)

and )
g = —4nG(p + 3p) (2.2)

where for simplicity we have omitted the contributions ol curvature (since spatial curvature
is diluted during inflation) and of the cosmological consi@ince any small cosmological constant
which might be present today has no effect in the early Us&/since the associated energy density
does not increase when going into the past). In the ahmesd p denote the energy density and
pressure, respectively. From (2.2) it is clear that in otdesbtain an accelerating universe, matter
with sufficiently negative pressure

1
p<-3p (2.3)

is required. Exponential inflation is obtained foe= —p.

Conventional perfect fluids have positive semi-definitespuee and thus cannot yield inflation.
However, we know that a description of matter in terms ofsitzd perfect fluids must break down
at early times. An improved description of matter will beagivn terms of quantum fields. Scalar
matter fields are special in that they allow at the level of mormalizable action the presence

“Note, however, that the first model of exponential expansispace [15] made use of a higher derivative gravita-
tional action.
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of a potential energy term. The energy density and presduaesocalar field$ with canonically
normalized actior?

S= [ d%y=0[30,:00"8 ~V(4)] (2.4)

(where Greek indices label space-time coordinaidg,) is the potential energy density, agds
the determinant of the metric) are given by

p = S(9)2+5a (08)° +V(9)
p= (9~ g X(08)°~V(#). 25)

Thus, it is possible to obtain an almost exponentially erlp@g universe provided the scalar field
configuration® satisfies

S < V(4). (26)
S0P < V@), (2.7)

In the above[l, = a0 is the gradient with respect to physical as opposed to camgasdordi-
nates. Since spatial gradients redshift as the universaneisp the first condition will (for single
scalar field models) always be satisfied if it is satisfied ainftial time . It is the second condition
which is harder to satisfy. In particular, this conditioringgeneral not preserved in time even it is
initially satisfied [20].

It is sufficient to obtain a period of cosmological inflatidrat theslow-roll conditionsfor ¢
are satisfied. Recall that the equation of motion for a homegeas scalar field in a cosmological
space-time is (as follows from (2.4)) is

d+3Hp = -V'(¢9), (2.8)

where a prime indicates the derivative with respeap tdn order that the scalar field roll slowly, it
is necessary that
¢ < 3HQ (2.9)

such that the first term in the scalar field equation of mot@8)(is negligible. In this case, the
condition (2.7) becomes

V/

(V)2 < 481G (2.10)
and (2.9) becomes

V//

i < 2411G. (2.11)

In the initial model of inflation using scalar fields (“old iaflon” [12]), it was assumed that
¢ was initially in a false vacuum with large potential energience, the conditions for inflation

5See [18] for a discussion of fields with non-canonical kinétrms.

6The scalar field yielding inflation is called tirflaton

7In fact, careful studies [19] show that since the gradiertsehse even in a non-inflationary backgrounds, they can
become subdominant even if they initially dominate.
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are trivially satisfied. To end inflation, a quantum tunnglevent from the false vacuum to the
true vacuum [21] was invoked (see e.g. [22] for a pedagog@aéw). This model, however, has
a graceful exit problem since the tunneling leads to anaihtimicroscopical bubble of the true
vacuum which cannot grow to encompass our presently oldemigerse - the flatness problem
of SBB cosmology in a new form. Hence, attention shifted talet® in which the scalar field is
slowly rolling during inflation.

There are many models of scalar field-driven inflation. Mafthem can be divided into three
groups [23]: small-field inflation, large-field inflation ahglbrid inflation. Small-field inflationary
modelsare based on ideas from spontaneous symmetry breakingtiol@ghysics. We take the
scalar field to have a potential of the form

V() = %A(d)z— a*)?, (2.12)

whereo can be interpreted as a symmetry breaking scale Aaisch dimensionless coupling con-
stant. The hope of initial small-field models (“new inflatid@4]) was that the scalar field would
begin rolling close to its symmetric poiit= 0, where thermal equilibrium initial conditions would
localize it in the early universe. At sufficiently high tenmatures,¢ = 0 is a stable ground state of
the one-loop finite temperature effective poter¥tale ) (see e.g. [22] for a review). Once the tem-
perature drops to a value smaller than the critical tempegdt, ¢ = O turns into an unstable local
maximum of\r (@), and¢ is free to roll towards a ground state of the zero tempergiatential
(2.12). The direction of the initial rolling is triggered lopiantum fluctuations. The reader can eas-
ily check that for the potential (2.12) the slow-roll conalits cannot be satisfieddf < my, where
mp is the Planck mass which is related@o If the potential is modified to a Coleman-Weinberg
[25] form

A a6l 1,1

Z4)4[InF — Z] + 16 o* (2.13)

(whereo denotes the value of the minimum of the potential) then thev-sbll conditions can be
satisfied. However, this corresponds to a severe fine-twfitige shape of the potential. A further
problem for most small-field models of inflation (see e.g.][®0 a review) is that the slow-roll
trajectory is not an attractor in phase space. In order tougndose to the slow-roll trajectory,
the initial field velocity must be constrained to be very dmalhis initial condition problemof
small-field models of inflation effects a number of recentiggmsed brane inflation scenarios, see
e.g. [26] for a discussion.

There is another reason for abandoning small-field inflatimalels: in order to obtain a suffi-
ciently small amplitude of density fluctuations, the intgia@n coefficients ofy must be very small
(this problem is discussed in detail at the beginning ofiBeet). In particular, this makes it incon-
sistent to assume thatstarted out in thermal equilibrium. In the absence of théemailibrium,
the phase space of initial conditions is much larger fordarglues ofp.

This brings us to the discussion of large-field inflation msdimitially proposed in [27] under
the name “chaotic inflation”. The simplest example is predidby a massive scalar field with
potential

V() =

V(g) = %mzfﬁz, (2.14)
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wherem s the mass. It is assumed that the scalar field rolls towdl®tigin from large values
of |¢|. It is a simple exercise for the reader to verify that the stolconditions (2.10) and (2.11)

are satisfied provided

1
9| > T (2.15)

Values of|¢| comparable or greater thamy, are also required in other realizations of large-field
inflation. Hence, one may worry whether such a toy model casistently be embedded in a re-
alistic particle physics model, e.g. supergravity. In mangh model¥ (¢ ) receives supergravity-
induced correction terms which destroy the flatness of therpal for [¢| > m,. However, as
discussed e.g. in [28], if the flatness of the potential iggquied by some symmetry, then it can
survive inclusion of the correction terms. As will be dissed later, a value ah ~ 103GeV is
required in order to obtain the observed amplitude of deffisictuations. Hence, the configuration
space of field values witjp | > my butV (¢) < m‘F‘,, is huge. It can also be verified that the slow-roll
trajectory is a local attractor in field initial conditionasge [19], even including metric fluctuations
at the perturbative level [29].

With two scalar fields it is possible to construct a class oflete which combine some of the
nice features of large-field inflation (large phase spacaitii conditions yielding inflation) and
of small-field inflation (inflation taking place at sub-Plaian field values). These are models of
hybrid inflation [30]. To give a prototypical example, caesi two scalar fieldg and x with a
potential

V(9.X) = h(X2— 02+ P97~ S (2.16)
In the absence of thermal equilibrium, it is natural to asstinat|¢ | begins at large values, values
for which the effective mass gf is positive and hencg begins aty = 0. The parameters in the
potential (2.16) are now chosen such thais slowly rolling for values ofi¢| somewhat smaller
thanmy,, but that the potential energy for these field values is dateith by the first term on the
right-hand side of (2.16). The reader can easily verify fbathis model it is no longer required
to have values ofp| greater thamy, in order to obtain slow-rolling The field¢ is slowly rolling
whereas the potential energy is determined by the conimib@itom x. Once|¢| drops to the value

A
|pc| = VA (2.17)

Y0
g

the configuratiory = 0 becomes unstable and decays to its ground tate o, yielding a graceful

exit from inflation. Since in this example the ground statg @f not unique, there is the possibility

of the formation of topological defects at the end of inflat{see [4, 5, 6] for reviews of topological

defects in cosmology, and the lectures by Polchinski [3ddfdiscussion of how this scenario arises

in brane inflation models).

After the slow-roll conditions break down, the period of &tibn ends, and the inflaton begins
to oscillate around its ground state. Due to couplingg ¢ other matter fields, the energy of the
universe, which at the end of the period of inflation is statethpletely in¢g, gets transferred to
the matter fields of the particle physics Standard Modetidlly, the energy transfer was described

8Note that the slow-roll conditions (2.10) and (2.11) werewéel assuming thatl is given by the contribution of
¢ toV which is not the case here.
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perturbatively [32, 33]. Later, it was realized [34, 35, 38] that through a parametric resonance
instability, particles are very rapidly produced, leadio@ fast energy transfer (“preheating”). The
guanta later thermalize, and thereafter the universe esasg described by SBB cosmology.

3. Theory of Cosmological Perturbations: A Short Review

After this review of inflationary cosmology (see e.g. [38] fomore complete recent review),
we turn to the discussion of the main success of inflationasprology, namely the fact that it pro-
vides a causal mechanism for generating small amplitudeniigeneities. The reader is referred
to [39] for a comprehensive analysis of this theory of cosgimal perturbations, and [40] for a
pedagogical overview, from which most of this section isndra

First, we describe the Newtonian theory of cosmologicatysbations, mainly to develop in-
tuition for the main physical effects. The range of validiythe Newtonian analysis is restricted
to sub-Hubble scales at late times. In the second subsegt®ithen summarize the general rel-
ativistic theory of fluctuations. Linear fluctuations cantbeially quantized. The quantization of
cosmological perturbations is presented in Subsection 3.

3.1 Newtonian Theory of Cosmological Perturbations

The growth of density fluctuations is a consequence of thelpattractive nature of the grav-
itational force. Given an density excedp localized about some poimtin space. This inhomo-
geneity produces a force which attracts the surroundingemtiwardsx. The magnitude of this
force is proportional t@p. Hence, in a non-expanding background, by Newton’s secand |

dp ~ Gdp, (3.1)

where G is Newton’s gravitational constant. Thus, an exponentialmgh of the fluctuations is
induced.

If, as required by consistency in General Relativity, wesidar density fluctuations in an
expanding background, then the expansion of space leadsi¢ti@ term in (3.1). Hence, instead
of an exponential instability to the development of flucioiag, the growth of fluctuations will be
as a power of time. The main goal of the theory of cosmologieaturbations is to determine
how the power-law instability depends on the backgroundnodsgy and on the length scale of the
fluctuations.

3.2 Perturbations about Minkowski Space-Time

To develop some physical intuition, we first consider thewian of hydrodynamical matter
fluctuations in a fixed non-expanding background.

In this context, matter is described by a perfect fluid, arality by the Newtonian gravita-
tional potentialg. The fluid variables are the energy dengitythe pressurg, the fluid velocityv,
and the entropy densit§. The basic hydrodynamical equations are

b+ Dp-(pv) = 0
. 1

10



Topics in Cosmology Robert Brandenberger

| 03¢ = 4nGp 3.2)
S+ (v-0p)S=0
p=pp,S),

where the subscrigtindicates that physical as opposed to comoving coordirzategsed. The first
equation is the continuity equation, the second is the Efdece) equation, the third is the Poisson
equation of Newtonian gravity, the fourth expresses egtiagmservation, and the last describes
the equation of state of matter. The derivative with respetime is denoted by an over-dot.

The background is given by the background energy demsgitghe background pressum,
vanishing velocity, constant gravitational potentgland constant entropy densi§. Note that
the background Poisson equation is not satisfied.

The equations for cosmological perturbations are obtaimegerturbing the fluid variables
about the background,

p = potop

vV = 0V

p=pot+dp (3.3)
¢ = ¢o+0¢

S=S+90S,

where the fluctuating fielddp, dv,dp,d¢ and dS are functions of space and time, by inserting
these expressions into the basic hydrodynamical equat® 8} and by linearizing. After com-
bining the resulting first order equations, we get the foltmydifferential equations for the energy
density fluctuatiordp and the entropy perturbatiads

dp — C2028p — AnGpodp = 0U23S (3.4)
35S =0,

where the variables? and o describe the equation of state

dp = c2dp +0dS (3.5)
with 5
p
<= (5 (3.6)

denoting the square of the speed of sound.
Since the equations are linear, we can work in Fourier sgaaeh Fourier componeidp (t)
of the fluctuation fieldp(x,t)

sp(xt) = [€*apt) (37)

evolves independently.

The fluctuations can be classified as followsd 8 vanishes, we havadiabatic fluctuations.
If the dSis non-vanishing buﬁp = 0, we speak of aentropy fluctuation.

The first conclusions we can draw from the basic perturbatmmations (3.4) are that
1) entropy fluctuations do not grow,

11



Topics in Cosmology Robert Brandenberger

2) adiabatic fluctuations are time-dependent, and
3) entropy fluctuations seed an adiabatic mode.

Taking a closer look at the equation of motion fyp, we see that the third term on the left
hand side represents the force due to gravity, a purelycttteaforce yielding an instability of flat
space-time to the development of density fluctuations (esudsed earlier, see (3.1)). The second
term on the left hand side of (3.4) represents a force dueetdlidiid pressure which tends to set
up pressure waves. In the absence of entropy fluctuatioegutiution ofdp is governed by the
combined action of both pressure and gravitational forces.

Restricting our attention to adiabatic fluctuations, we Bem (3.4) that there is a critical
wavelength, the Jeans length, whose wavenurkpiar (in physical coordinates) given by

4ATG
k = ( Czpo)l/z. (3.8)
S
Fluctuations with wavelength longer than the Jeans lerigtt k;) grow exponentially
Spk(t) ~ et with wy ~ 4(nGpg)*/? (3.9)

whereas short wavelength mod&ss k;) oscillate with frequencyy ~ csk. Note that the value of
the Jeans length depends on the equation of state of therbacky For a background dominated
by relativistic radiation, the Jeans length is large (ofdataer of the Hubble radiud ~1(t)), whereas
for pressure-less matter it goes to zero.

Next, we study Newtonian cosmological fluctuations aboutxgranding background. In this
case, the background equations are consistent (the nashirag average energy density leads to
cosmological expansion). However, we are neglecting gémelativistic effects (the fluctuations
of the metric) which dominante on length scales larger tharHubble radiugi —(t).

The background cosmological model is given by the energgitlepo(t), the pressurgyp(t),
and the recessional velocityy = H(t)xp wherex, is the physical coordinate vector. The space-
and time-dependent fluctuating fields are defined in analogyet previous section:

p(t,x) = po(t) (1+ O(t,x))
v(t,x) = vo(t,x) + dv(t,X) (3.10)

p(t,X) = pO(t) + 5p(t,X),

whered; is the fractional energy density perturbation (we are @gtad in the fractional rather than
in the absolute energy density fluctuation!), and the presgerturbatiord p is defined as in (3.5).
In addition, there is the possibility of a non-vanishingrepy perturbation defined as in (3.3).

We now insert this ansatz into the basic hydrodynamical timps(3.2), linearize in the per-
turbation variables, and combine the first order diffee@ngiguations fod; and dp into a single
second order differential equation f8s. The result simplifies if we work in comoving coordinates
x. After some algebra, we obtain the following equation whilgscribes the time evolution of

density fluctuations:

. .2, o

12
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wherel is the partial derivative vector with respect to comovingrciinates. In addition, we have
the equation of entropy conservation

3S=0. (3.12)

Comparing with the equations (3.4) obtained in the absefi@n @xpanding background,
we see that the only difference is the presence of a Hubblgidanerm in the equation fod;.
This term will moderate the exponential instability of theckground to long wavelength density
fluctuations. In addition, it will lead to a damping of the tisting solutions on short wavelengths.
More specifically, for physical wavenumbeks < kj (wherek; is again given by (3.8)), and in
a matter-dominated background cosmology, the generati@olof (3.11) in the absence of any
entropy fluctuations is given by

O(t) = cit?P 4t L, (3.13)

wherec; andc, are two constants determined by the initial conditions, wechave dropped the
subscripte in expressions involving.. There are two fundamental solutions, the first a growing
mode withdg(t) ~ a(t), the second a decaying mode wai(t) ~ t~1. On short wavelength, one
obtains damped oscillatory motion:

&(t) ~ a Y2 (t)exp(icek / dta i(t)). (3.14)

Before going on to the relativitic theory of cosmologicattpebations, we will pause to intro-
duce terminology used in cosmology to describe the fluainati

Let us consider perturbations on a fixed comoving lengtresgimen by a comoving wavenum-
berk. The corresponding physical length increasea(fs This is to be compared to the Hubble
radiusH~1(t) which scales as provideda(t) grows as a power df. In the late time Universe,
a(t) ~ t¥2 in the radiation-dominated phase (i.e. oK teg), anda(t) ~ t¥2 in the matter-
dominated periodt{q <t < tg). Thus, at sufficiently early times, all comoving scales agdysical
length larger than the Hubble radius. If we consider largenaogical scales (e.g. those corre-
sponding to the observed CMB anisotropies or to galaxy etajtthe timey (k) of “Hubble radius
crossing” (when the physical length was equal to the Huldudéus) was in fact later thagg. The
time of Hubble radius crossing plays an important role ingbelution of cosmological perturba-
tions.

Cosmological fluctuations can be described either in mosi$ipace or in momentum space.
In position space, we compute the root mean square massdiiactdM /M (k,t) in a sphere of
radiusl = 2rr/k at timet. A scale-invariant spectrum of fluctuations is defined byrtiation

oM

V(k,tH(k)) = const. (3.15)
Such a spectrum was first suggested by Harrison [41] and ield{42] as a reasonable choice
for the spectrum of cosmological fluctuations. The “spédtr@ex” n of cosmological fluctuations

is defiined by the relation

(%\A)Z(k,tH(k)) ~ kL (3.16)

Thus, a scale-invariant spectrum corresponds=tol.
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To go to momentum space representation, the fractionabsplansity contrast is expanded in
a Fourier series: .
Se(x,t) = / a3k, (K, 1) ek (3.17)

The power spectrum Py of density fluctuations is defined by
1 S 2
Ps(k) = 5 5K*[0 ()|, (3.18)

wherek is the magnitude df. For simplicity, the distribution of fluctuations is takenlie Gaussian
so that the fluctuation amplitude only dependskon
The power spectrum of the gravitational potentiak defined by

Po(K) = 55K IBD (W (319)

The two power spectra (3.18) and (3.19) are related by thesBoiequation (3.2)
Py (K) ~ k™ *P5(K). (3.20)

The condition of scale-invariance can be expressed in tefrtfee power spectrum evaluated
at a fixed time. To obtain this condition, we first use the tirrpehdence of the fractional density
fluctuation from (3.13) to determine the mass fluctuatiore fated time. We need to use the fact
that the time of Hubble radius crossing is given by

atu (K)k* = Btu(k), (3.21)

wheref3 =2 or 8 = 3/2 in the radiation and matter dominated phases, respgctMalking use of

(3.16) we find
oM. 2
(1) (k1) ~ k™3, (3.22)
Since, for reasonable values of the index of the power gpacdM /M (k,t) is dominated by the
Fourier modes with wavenumbkyrwe find that (3.22) implies

Ps(K) ~ k™3, (3.23)

or, equivalently,
Py(K) ~ K", (3.24)

3.3 Relativistic Theory of Cosmological Fluctuations

The Newtonian theory of cosmological fluctuations discdgsethe previous section breaks
down on scales larger than the Hubble radius because itateglerturbations of the metric, and
because on large scales the metric fluctuations dominattytiamics.

To show why metric fluctuations are important on scales latigen the Hubble radius, we
can use a “separate universe" argument. On such scaleshaue e able to approximately de-
scribe the evolution of the space-time by applying the fiRWWFequation (2.1) of homogeneous
and isotropic cosmology to the local Universe (this appr@tion is made more rigorous in [43]).
Based on this equation, a large-scale fluctuation of theggndensity will lead to a fluctuation

14
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(“oa”) of the scale factoa which grows in time, a manifestation of the self gravitaibamplifi-
cation of fluctuations on length scaldéggreater than the Hubble radius.

Let us now turn to the rigorous analysis of cosmological flatibns in the context of general
relativity, where both metric and matter inhomogeneitiestaken into account. We will consider
fluctuations about a homogeneous and isotropic backgroosmmi@ogy, given by the metric (1.3),
which can be written in conformal time (defined bydt = a(t)dn) as

ds = a(n)?(dn?—dx?). (3.25)

The theory of cosmological perturbations is based on expgrtte Einstein equations to lin-
ear order about the background metric. The theory was llitikeveloped in pioneering works
by Lifshitz [44]. Significant progress in the understandofghe physics of cosmological fluctu-
ations was achieved by Bardeen [45] who realized the impoetaf subtracting gauge artifacts
(see below) from the analysis (see also [46]). The followndiggussion is based on Part | of the
comprehensive review article [39]. Other reviews - emptiagidifferent aspects or approaches -
are [47, 48, 49, 50].

The first step in the analysis of metric fluctuations is tosifgghem according to their trans-
formation properties under spatial rotations. There aa¢ascvector and second rank tensor fluc-
tuations. In linear theory, there is no coupling betweendifferent fluctuation modes, and hence
they evolve independently (for some subtleties in thissifestion, see [51)]).

We begin by expanding the metric about the FRW backgroundmgéfv) given by (3.25):

Ouv = QLO\E + 900,y - (3.26)
The background metric depends only on time, whereas theafktctuationsdg,, depend on
both space and time. Since the metric is a symmetric terfsene fare at first sight 10 fluctuating
degrees of freedom idgy, .

There are four degrees of freedom which correspond to soanic fluctuations (the only
four ways of constructing a metric from scalar functions):

2 29 —B;
ogyy = a (—B,i 2(ys, —E,ij)> , (3.27)

where the four fluctuating degrees of freedom are denotéldWfiog the notation of [39])p, B, E,
and g, a comma denotes the ordinary partial derivative (if we heduded spatial curvature of
the background metric, it would have been the covarianvdtve with respect to the background
spatial metric), and; is the Kronecker symbol.

There are four vector degrees of freedom of metric fluctnaticonsisting of the four ways of
constructing metric fluctuations from three vectors:

_2( 0 S
OQguy = & (—S |:|7j+Fj7i> , (3.28)

whereS andF; are two divergence-less vectors (for a vector with nonskang divergence, the
divergence contributes to the scalar gravitational flugtnamodes).
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Finally, there are two tensor modes which correspond toleepblarization states of gravita-
tional waves:

00
2
= — '2
5guv a (0 hij ) ) (3.29)
whereh;j is trace-free and divergence-less

h =hj = 0. (3.30)

Gravitational waves do not couple at linear order to the endltictuations. Vector fluctuations
decay in an expanding background cosmology and hence ansualty cosmologically important.
Thus, the most important fluctuations, at least in inflatigneosmology, are the scalar metric
fluctuations, the fluctuations which couple to matter inhgareeities and which are the relativistic
generalization of the Newtonian perturbations considé@rede previous section.

The theory of cosmological perturbations is at first sighthpticated by the issue of gauge in-
variance. The coordinatésx of space-time carry no independent physical meaning. Bippeing
a small-amplitude transformation of the space-time comtgis (called “gauge transformation” in
the following), we can create “fictitious” fluctuations in arhogeneous and isotropic Universe.
These modes are “gauge artifacts”.

In the following we take an “active” view of gauge transfotina. Consider two space-time
manifolds, one of them a homogeneous and isotropic Univefgethe other a physical Universe
. with inhomogeneities. A choice of coordinates can be cameil as a mapping between the
manifolds.#, and.#. A second mappin@ will map the same point inZg into a different point
in .. Using the inverse of these magsand 2, we can assign two different sets of coordinates
to points in.Z .

Consider now a physical quantity (e.g. the Ricci scalar) on#, and the corresponding
physical quantityQ(© on .# Then, in the first coordinate system given by the mapgihghe
perturbationdQ of Q at the pointp € .# is defined by

8Q(p) = Q(p) ~ QY (Z*(p)). (3.31)
In the second coordinate system give@mhe perturbation is defined by
3Q(p) = QAP —Q(ZH(p)) - (3:32)
The difference N
AQ(p) = 6Q(p) —4Q(p) (3.33)

is a gauge artifact and carries no physical significance.

Some of the metric perturbation degrees of freedom intredua the first subsection are
thus gauge artifacts. To isolate these, we must study howdowde transformations act on the
metric. There are four independent gauge degrees of freedorasponding to the coordinate
transformations

xH — g =xH 4 EH. (3.34)

The time componenf® of £ leads to a scalar metric fluctuation. The spatial three vei'toan
be decomposed as

=& +yIg; (3.35)
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(wherey'l is the spatial background metric) into a transverse p{é,cwhich has two degrees of
freedom which yield vector perturbations, and the secomd {given by the gradient of a scal&y
which gives a scalar fluctuation. Thus, there are two scalagg modes given b§° and&, and
two vector modes given by the transverse three ve§foiThus, there remain two physical scalar
and two vector fluctuation modes. The gravitational wavegjauge-invariant.

Let us now focus on how the scalar gauge transformationstfieetransformations given by
&% and &) act on the scalar metric fluctuation variables, E, and. An immediate calculation
yields:

b= o- 8-
B=B+&0-¢& (3.36)
E=-E-¢

_ &0

where a prime indicates the derivative with respect to conébtimen.

There are two approaches to deal with the gauge ambiguithesfirst is to fix a gauge, i.e. to
pick conditions on the coordinates which completely eliaténthe gauge freedom, the second is to
work with a basis of gauge-invariant variables.

If one wants to adopt the gauge-fixed approach, there are difiesent gauge choices. Note
that the often used synchronous gauge determinedighyy = 0 does not totally fix the gauge. A
convenient system which completely fixes the coordinatéiseiso-calledongitudinal or confor-
mal Newtonian gaugedefined byB = E = 0.

If one prefers a gauge-invariant approach, there are masigehof gauge-invariant variables.
A convenient basis first introduced by [45] is the baBisV given by

1 n_'
¢ = (p+a[(B—E)a] (3.37)

/

W = Lp—%(B—E’). (3.38)

The gauge-invariant variablgs andW coincide with the corresponding diagonal metric perturba-
tions @ andy in longitudinal gauge.

Note that the variables defined in (3.37) are gauge-invaadaly under linear space-time co-
ordinate transformations. Beyond linear order, the simecof perturbation theory becomes much
more involved. In fact, one can show [52] that the only flutibravariables which are invariant
under all coordinate transformations are perturbationsadbles which are constant in the back-
ground space-time. Beyond linear order there is also migfragalar, vector and tensor modes.

To derive the equations of motion for the fluctuations, tlatistg point is the set of Einstein
equations

Guv = 8nGTyy, (3.39)

whereG, is the Einstein tensor associated with the space-time owgtyi andT,, is the energy-
momentum tensor of matter. We insert the ansatz for metidcraatter perturbed about a FRW
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background(gio) (1), ¢o(n)):

Guv(X,1) = (1) + 3w (X, n) (3.40)
¢(X7’7) = ¢0(r’)+6¢(xvr’)7 (341)

(where we have for simplicity replaced general matter byalasamatter fieldp) and expand to
linear order in the fluctuating fields, obtaining the follogiequations:

In the abovedg,, is the perturbation in the metric ardp is the fluctuation of the matter fieldl.
In a gauge-fixed approach, one can start with the metric igifodinal gauge

ds = a@?[(1+2¢)dn? — (1 2¢)y;dxXdx] (3.43)

and insert this ansatz into the general perturbation empugii3.42). This yields the following set
of equations of motion:

—3H (A 9+ ) + [Py = 4nGESTY
(Ho+y), = 4nGasT (3.44)
(2 + %) @+ 9 + @' + 296
1 Co1 :
+§D2D5j' — 5;/"D,k,- = —4nGasT],
whereD = ¢— ¢ and.# = d /a.

If no anisotropic stress is present in the matter at linedenin fluctuating fields, i.e. if
5Tji =0 fori # j, then the two metric fluctuation variables coincide, pe= ¢ . This will be the
case in most simple cosmological models, e.g. in theorids mvatter described by a set of scalar
fields with canonical form of the action, and in the case ofrégoe fluid with no anisotropic stress.

In the simple case in which matter described in terms of desiscplar fieldp, then in longi-
tudinal gauge (3.44) reduce to the following set of equatioihmotion

DPo—34¢ — (A +24%) @ = 4nG($d¢ +V a%5¢)
@+ AP = AnGyd¢ (3.45)
0 +374¢ + (A +247) @ = 4nG (909 —V'a25¢),
whereV' denotes the derivative &f with respect top. These equations can be combined to give
the following second order differential equation for thiatigistic potentiale:

n

@ +2 (%— @> 0 —Pp+2 (%—%%) o =0. (3.46)
0

This is the final result for the classical evolution of cosouptal fluctuations.

9Note that we have implicitly assumed that the backgroundeméield is slowly rolling, as it does in slow-roll
inflation. In the case that it is time-independent, then daeling metric fluctuations are quadratic in the matter irdvom
geneities, as discussed in [53].
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There are similarities between the above equation of mdtiothe relativistic perturbations
and the equation (3.11) obtained in the Newtonian theorye fiital term in (3.46) is the force
due to gravity leading to the instability, the second to lasin is the pressure force leading to
oscillations (relativistic since we are considering mattebe a relativistic field), and the second
term is the Hubble friction term. For each wavenumber thegetwo fundamental solutions. On
small scalesk > H), the solutions correspond to damped oscillations, orelamalesk < H) the
oscillations freeze out and the dynamics is governed by ttivatgtional force competing with the
Hubble friction term. Note, in particular, how the Hubblelitzs naturally emerges as the scale
where the nature of the fluctuating modes changes from atil to frozen.

Considering the equation in a bit more detail, observe thihtiequation of state of the back-
ground is independent of time (which will be the casesf = ¢(’)’ = 0), then in an expanding
background, the dominant mode of (3.46) is constant, andubedominant mode decays. If the
equation of state is not constant, then the dominant modetisanstant in time. Specifically, at
the end of inflation’#” < 0, and this leads to a growth gf(see below).

To study the gquantitative implications of the equation oftimm (3.46), it is convenient to in-
troduce [54, 55] the variabl@ (which, up to correction term of the ord&F¢ which is unimportant
for large-scale fluctuations, is equal to the curvatureypleation in comoving gauge [56]) by

 2(H'e+9)
{ = (p+§1+7w’ (3.47)
where
p
f (3.48)

characterizes the equation of state of matter. In ternds tie equation of motion (3.46) takes on
the form

SZH(l—i—W) = 0(0%9). (3.49)

On large scales, the right hand side of the equation is ribtigvhich leads to the conclusion that
large-scale cosmological fluctuations satisfy

J(1+w) = 0. (3.50)

This implies that is constant except possibly ifAw = 0 at some point in time during the
cosmological evolution (which occurs during reheatingrifiationary cosmology if the inflaton
field undergoes oscillations - see [57] and [58, 59] for disians of the consequences in single and
double field inflationary models, respectively). In singlattar field models it is indeed possible
to show thatZ = 0 on super-Hubble scales independent of assumptions orgtlaien of state
[60, 61]. This “conservation law” makes it easy to relatdiahifluctuations to final fluctuations in
inflationary cosmology, as will be illustrated in the folling.

Consider an application to inflationary cosmology. We mettg the space-time sketch of
the evolution of fluctuations - see Figure (1) - and use thesexmtion law (3.50) - in the form
{ = const on large scales - to relate the amplitude at initial Hubble radius crossing during the
inflationary phase (at= tj(k)) with the amplitude at final Hubble radius crossing at lateet (at
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t =t¢(k)). Since both at early times and at late tinges 0 on super-Hubble scales, as the equation
of state is not changing, (3.50) and (3.47) lead to

. (A+w)(te (k)

o(ts (k) ~ mfp(ti( ))- (3.51)

If the initial values of the perturbations are known, thea #bove equation allows us to evaluate
the fluctuation amplitude at the timgk) of re-entry into the Hubble radius.

The time-time perturbed Einstein equation (the first equatif (3.44)) relates the value gf
at the initial Hubble radius crossing to the amplitude offtlaetional energy density fluctuations at
that time. This, together with the fact that the amplitudéhefscalar matter field guantum vacuum
fluctuations is of the ordet, yields

!

\Y
0(ti(K) ~ H (6(K). (352)
In the late time radiation dominated phase= 1/3, whereas during slow-roll inflation
| 95 .
1+w(ti(k)) ~ V(t.(k)). (3.53)

Making, in addition, use of the slow roll conditions satidfituring the inflationary period

3Hpg ~ —V
H? ~ ?v, (3.54)
we arrive at the final result
Ve k 3.55
ti(k)) ~ ——(t; .
o1(40) ~ G (K0, (3.55)

which gives the position space amplitude of cosmologicaitflations on a scale labelled by the
comoving wavenumbek at the time when the scale re-enters the Hubble radius atifaés, a
result first obtained in the case of the Starobinsky moddl ¢f&nflation in [16], and later in the
context of scalar field-driven inflation in [62, 63, 64, 54].

In the case of slow roll inflation, the right hand side of (3.%5 to a first approximation,
independent ok, and hence the resulting spectrum of fluctuations is neadlesnvariant.

3.4 Quantum Theory of Cosmological Fluctuations

In many models of the very early Universe, in particular ifteitionary cosmology, primordial
inhomogeneities emerge from quantum vacuum fluctuationshigroscopic scales (wavelengths
smaller than the Hubble radius). The wavelength is thericktee relative to the Hubble radius,
becomes larger than the Hubble radius at some time and thelpsgtion then propagates on super-
Hubble scales until re-entering at late cosmological timieghe context of a Universe with a de
Sitter phase, the quantum origin of cosmological flucturegtiovas first discussed in [16]. In an in-
flationary universe, it is easy to justify focusing attentan the quantum fluctuations: any classical
fluctuations present at the beginning of inflation are rafteshduring the period of inflation, and
will thus be irrelevant to scales probed in observationgyo®n small scales, a quantum vacuum
remains.
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To understand the role of the Hubble radius, consider thatamuof a free scalar matter field
¢ on an unperturbed expanding background:

|:|2
¢+3H¢—¥¢ =0. (3.56)

The second term on the left hand side of this equation leadartgoing of¢ with a characteristic
decay rate given bid. As a consequence, in the absence of the spatial gradiemtgewrould be

of the order of magnitudél¢. Thus, comparing the second and the third terms on the leff ha
side, we immediately see that the microscopic (spatialigniidterm dominates on length scales
smaller than the Hubble radius, leading to oscillatory omtiwhereas this term is negligible on
scales larger than the Hubble radius, and the evolutiop & determined primarily by gravity.
Note that in general cosmological models the Hubble radiusuch smaller than the horizon (the
forward light cone calculated from the initial time). In amflationary universe, the horizon is
larger by a factor of ex{iN), whereN is the number of e-foldings of inflation. It is very important
to realize this difference, a difference which is obscurednost articles on cosmology in which
the term “horizon” is used when “Hubble radius” is meant. &Jaoh particular, that the homoge-
neous inflaton field contains causal information on supdvdtibut sub-horizon scales. Hence,
it is completely consistent with causality [57] to have amphysical process related to the back-
ground scalar matter field lead to exponential amplificatibthe amplitude of fluctuations during
reheating on such scales, as it does in models in which gnperurbations are present and not
suppressed during inflation [58, 59].

To understand the generation and evolution of fluctuatinreaiirent models of the very early
Universe, we need both Quantum Mechanics and General Riatie. quantum gravity. At first
sight, we are thus faced with an intractable problem, siheetheory of quantum gravity is not
yet established. We are saved by the fact that today on largmalogical scales the fractional
amplitude of the fluctuations is smaller than 1. Since gyasit purely attractive force, the fluctu-
ations had to have been - at least in the context of an etgregilanding background cosmology
- very small in the early Universe. Thus, a linearized analg§the fluctuations (about a classical
cosmological background) is self-consistent.

From the classical theory of cosmological perturbatiossulised in the previous subsection,
it follows that the analysis of scalar metric inhomogermsittan be reduced - after extracting gauge
artifacts - to the study of the evolution of a single fluctngtivariable. Thus, the quantum the-
ory of cosmological perturbations must be reducible to tik@ndqum theory of a single free scalar
field which we will denote bw. Since the background in which this scalar field evolvesnigti
dependent, the mass wiwill be time-dependent. The time-dependence of the maddeai to
guantum particle production over time if we start the evolutn the vacuum state far As we will
see, this quantum particle production corresponds to thelalement and growth of the cosmologi-
cal fluctuations. The quantum theory of cosmological fluitua provides a consistent framework
to study both the generation and the evolution of metricypbations.

In order to obtain the action for linearized cosmologicattydations, we expand the action
to quadratic order in the fluctuating degrees of freedom. [ifear terms cancel because the
background is taken to satisfy the background equationsotibm
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We begin with the Einstein-Hilbert action for gravity ane thction of a scalar matter field

S— /d“x\/_ 16nGR+ Laupare —V(p)], (3.57)

whereR is the Ricci curvature scalar.

The simplest way to proceed is to work in longitudinal gauddwe next step is to reduce
the number of degrees of freedom. Since for scalar field midtee are no anisotropic stresses to
linear order, the off-diagonal spatial Einstein equatifmmse = ¢. The two remaining fluctuating
variables@ and ¢ are linked by the Einstein constraint equations since toareot be matter
fluctuations without induced metric fluctuations.

The two nontrivial tasks of the lengthy [39] computation loé tquadratic piece of the action
is to find out what combination g and ¢ yields the variables in terms of which the action has
canonical kinetic term, and what the form of the time-depehanass is. In the context of scalar
field matter, the quantum theory of cosmological fluctuatiomas developed by Mukhanov [65, 66]
and Sasaki [67]. The result is the following form of the agtoquadratic in the perturbations:

1 (a2 o 2
= E/d X[VZ —v,vj+ sz}, (3.58)

where the canonical variablg(the “Sasaki-Mukhanov variable” introduced in [66] - sesod]l68])
is given by

¢0]

=a[op+—20 (3.59)
and )
z= %’. (3.60)

As long as the equation of state does not change over #fhand ¢(', are proportional and
hence

Z(n) ~ a(n). (3.61)
Note that the variable is related to the curvature perturbatighin comoving coordinates intro-
duced in [56] and closely related to the variaBlesed in [54, 55]:

V=2%. (3.62)

The equation of motion which follows from the action (3.58)in momentum space)

I

" Z
Vi + Ko — ~V=0, (3.63)

wherev is the k'th Fourier mode of. As a consequence of (3.61), the tachyonic mass term in the
above equation is given by the Hubble scale

ke
Thus, it immediately follows from (3.63) that on small lengitcales, i.e. fok > ky, the solutions

for v are constant amplitude oscillations . These oscillatioesZe out at Hubble radius crossing,
i.e. whenk = ky. On longer scalek(< ky), the solutions fok increase ag:

Z; ~ H2. (3.64)

Vk ~Z, K< ky. (3.65)
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The state of the fluctuations becomes a squeezed quantwan stat

Given the action (3.58), the quantization of the cosmolaigierturbations can be performed
by canonical quantization (in the same way that a scalaremiid on a fixed cosmological back-
ground is quantized [69]).

The final step in the quantum theory of cosmological pertioha is to specify an initial
state. Since in inflationary cosmology all pre-existingsslaal fluctuations are red-shifted by the
accelerated expansion of space, one usually assumes (Ivetwih to a criticism of this point
when discussing the trans-Planckian problem of inflatipmasmology) that the field starts out
at the initial timet; mode by mode in its vacuum state. Two questions immediatayrge: what
is the initial timet;, and which of the many possible vacuum states should be ichéise usually
assumed that since the fluctuations only oscillate on suiiblduscales, the choice of the initial
time is not important, as long as it is earlier than the timeewkscales of cosmological interest
today cross the Hubble radius during the inflationary phdde state is usually taken to be the
Bunch-Davies vacuum (see e.g. [69]), since this state igyeofpparticles at; in the coordinate
frame determined by the FRW coordinates (see e.g. [70] faisaussion of this point), and since
the Bunch-Davies state is a local attractor in the spaceitidlistates in an expanding background
(see e.qg. [71]). Thus, we choose the initial conditions

(3.66)

where heray = k, andn; is the conformal time corresponding to the physical ttme

Let us briefly summarize the quantum theory of cosmologieaiysbations. In the linearized
theory, fluctuations are set up at some initial tifmaode by mode in their vacuum state. While the
wavelength is smaller than the Hubble radius, the statergnde quantum vacuum fluctuations.
The accelerated expansion of the background redshiftetiggH scale beyond the Hubble radius.
The fluctuations freeze out when the length scale is equdletditibble radius. On larger scales,
the amplitude of increases as the scale factor. This corresponds to thezngex the quantum
state present at Hubble radius crossing (in terms of clasgieneral relativity, it is self-gravity
which leads to this growth of fluctuations). As discussed ie.§72], the squeezing of the quantum
vacuum state sets up the classical correlations in the weaibn of the fluctuations which are an
essential ingredient in the classicalization of the pbdtions. Squeezing also leads to the phase
coherence of fluctuations on all scales, which in turn iseasjble for producing the oscillations
in the CMB angular power spectrum, as realized long befaattvent of inflationary cosmology
in [73, 74].

We end this subsection with a calculation of the spectrumuofature fluctuations in infla-
tionary cosmology.

We need to compute the power spectrury, (k) of the curvature fluctuatior? defined in
(3.62). The idea in calculating the power spectrum at a late t is to first relate the power
spectrum via the growth rate (3.65)wbn super-Hubble scales to the power spectrum at the time
tn (k) of Hubble radius crossing, and to then use the constancedfrtiplitude of on sub-Hubble
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scales to relate it to the initial conditions (3.66). Thus

22 P (k) = KB\ Z2(t) = K3z 2(t) ()] (3.67)
— 162 20) (5 ) Mt ()
= K2 2t (K)) Vit (K)) |2
) 2

~ K32 (ty (K) v () ]2,

where in the final step we have used (3.61) and the constartbg amplitude o on sub-Hubble
scales. Making use of the conditian?(ty (k) )k = H for Hubble radius crossing, and of the initial
conditions (3.66), we immediately see that

Pakt) ~ Kk 2k 1H?, (3.68)

and that thus a scale invariant power spectrum with amgipréportional tdH? results.

The quantization of gravitational waves parallels the gj@ation of scalar metric fluctuations,
but is more simple because there are no gauge ambiguitiesstating point is the action (3.57),
into which we insert the metric which corresponds to a ctadsiosmological background plus
tensor metric fluctuations:

ds? = a2(n) [dn?— (& + hij)dXdx] (3.69)

where the second rank tenswy(n,x) represents the gravitational waves, and in turn can be de-
composed as

hij (n,x) = hy.(n,x)&] +hx(1,X)€ (3.70)

into the two polarization states. Helﬁ, ande,?‘j are two fixed polarization tensors, ahd andhy
are the two coefficient functions.

To quadratic order in the fluctuating fields, the action cstssdf separate terms involvirg:
andhy. Each term is of the form

s? = / d4xa—22 (W2 — (Oh)?] (3.71)
leading to the equation of motion
he + 2%/h](+ k’h = 0. (3.72)
The variable in terms of which the action (3.71) has candticetic term is

W = ah, (3.73)

and its equation of motion is
” a’
e + (K — — b =0. (3.74)

This equation is very similar to the corresponding equaf®63) for scalar gravitational inhomo-
geneities, except that in the mass term the scale fa¢tpy replacesz(n), which leads to a very
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different evolution of scalar and tensor modes during theaging phase in inflationary cosmology
during which the equation of state of the background mattanges dramatically.

Based on the above discussion we have the following thearthéogeneration and evolution
of gravitational waves in an accelerating Universe (firsiedtgped by Grishchuk [75]): waves exist
as quantum vacuum fluctuations at the initial time on allesalThey oscillate until the length
scale crosses the Hubble radius. At that point, the odotfiatfreeze out and the quantum state of
gravitational waves begins to be squeezed in the sense that

t(n) ~a(n), (3.75)

which, from (3.73) corresponds to constant amplitudénof The squeezing of the vacuum state
leads to the emergence of classical properties of this, fatan the case of scalar metric fluctua-
tions.

4. Towards a New Paradigm: String Gas Cosmology

In spite of the phenomenological successes of inflationasynology in addressing some key
problems of standard cosmology and in providing a predidtieory of structure formation, current
models of inflation are faced with some key conceptual problevhich motivate the search for a
new early universe paradigm based on new fundamental physiing theory being the most
promising candidate. Below, we first list some of the key pois for inflation, and then discuss a
toy model designed to explore possible cosmological caressmes of some of the key new features
of string theory.

4.1 Conceptual Problems of Scalar Field-Driven Inflation

Nature of the Inflaton

In the context of General Relativity as the theory of spamet matter with an equation of
statep ~ —p is required in order to obtain almost exponential expansicspace. If we describe
matter in terms of fields with canonical kinetic terms, a acéield is required since in the context
of usual renormalizable field theories it is only for scalatds that a potential energy function in
the Lagrangian is allowed, and of all energy terms only themttal energy can yield the required
equation of state.

In order for scalar fields to generate a period of cosmoldgidtation, the potential energy
needs to dominate over the kinetic and spatial gradieng@erlt is generally assumed that spatial
gradient terms can be neglected. This is, however, not trggemneral. Next, assuming a homo-
geneous field configuration, we must ensure that the potemtéxgy dominates over the kinetic
energy. This leads to the first “slow-roll" condition. Regug the period of inflation to last suf-
ficiently long leads to a second slow-roll condition, namigt thed term in the Klein-Gordon
equation for the inflatoy be negligible. Scalar fields charged with respect to theddt@hModel
symmetry groups do not satisfy the slow-roll conditions.

Assuming that both slow-roll conditions hold, one obtairislaw-roll trajectory” in the phase
space of homogeneoygsconfigurations. In large-field inflation models such as “c¢lwaioflation”
[27] and “hybrid inflation™ [30], the slow-roll trajectoryia local attractor in initial condition space
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[19] (even when linearized metric perturbations are takea account [29]), whereas this is not
the case [20] in small-field models such as “new inflation"][24s shown in [26], this leads to

problems for some models of inflation which have recentlynb@@posed in the context of string
theory. To address this problem, it has been proposed tiatiam may be future-eternal [76] and
that it is hence sufficient that there be some configuratioistial condition space which give rise
to inflation within one Hubble patch, inflation being thenfswrlstaining into the future. However,
one must still ensure that slow-roll inflation can locallydaisfied.

Many models of particle physics beyond the Standard Modeiado a plethora of new scalar
fields. One of the most conservative extensions of the Stdridadel is the MSSM, the “Minimal
Supersymmetric Standard Model". According to a recentystachong the many scalar fields in
this model, only a hand-full can be candidates for a slow#nfllaton, and even then very special
initial conditions are required [77]. The situation in stgravity and superstring-inspired field
theories may be more optimistic, but the issues are noeddtke e.g. [7, 8, 9] for recent reviews).

Hierarchy Problem

Assuming for the sake of argument that a successful moddbef®Il inflation has been
found, one must still build in a hierarchy into the field theanodel in order to obtain an accept-
able amplitude of the density fluctuations (this is somesimlgo called the “amplitude problem"™).
Unless this hierarchy is observed, the density fluctuatiwiide too large and the model is obser-
vationally ruled out.

In a wide class of inflationary models, obtaining the coregaplitude requires the introduction
of a hierarchy in scales, namely [78]

V(o) 12
A’ <10 ™, 4.1)

whereA¢ is the change in the inflaton field during one Hubble expansioge (during inflation),
andV (¢) is the potential energy during inflation.

This problem should be contrasted with the success of tgmab defect models (see e.g.
[4, 5, 6] for reviews) in predicting the right oder of magmituof density fluctuations without
introducing a new scale of physics. The GUT scale as the sédle symmetry breaking phase
transition (which produces the defects) yields the cormeagnitude of the spectrum of density
fluctuations [79]. Topological defects, however, cannotiegeprime mechanism for the origin of
fluctuations since they do not give rise to coherent adialfhtctuations and hence fail to yield
acoustic oscillations in the angular power spectrum of thiB@nisotropies [80].

Trans-Planckian Problem

A more serious problem is the “trans-Planckian problem".[8eturning to the space-time
diagram of Figure 1, we can immediately deduce that, pravitiat the period of inflation lasted
sufficiently long (for GUT scale inflation the number is ab@Qte-foldings), then all scales inside
of the Hubble radius today started out with a physical wangtle smaller than the Planck scale at
the beginning of inflation. Now, the theory of cosmologicattprbations is based on Einstein’s
theory of General Relativity coupled to a simple semi-Gtadsdescription of matter. It is clear
that these building blocks of the theory are inapplicablscales comparable and smaller than the
Planck scale. Thus, the key successful prediction of ioflafthe theory of the origin of fluctu-
ations) is based on suspect calculations since new phygissenter into a correct computation
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of the spectrum of cosmological perturbations. The key tipress as to whether the predictions
obtained using the current theory are sensitive to the peadf the unknown theory which takes
over on small scales.

One approach to study the sensitivity of the usual predistiof inflationary cosmology to
the unknown physics on trans-Planckian scales is to stydsntmlels of ultraviolet physics which
allow explicit calculations. The first approach which wasdif82, 83] is to replace the usual linear
dispersion relation for the Fourier modes of the fluctuatiby a modified dispersion relation, a
dispersion relation which is linear for physical wavenunsiemaller than the scale of new physics,
but deviates on larger scales. Such dispersion relatiorswged previously to test the sensitivity of
black hole radiation on the unknown physics of the ultrdetif84, 85]. It was found [82] that if the
evolution of modes on the trans-Planckian scales is naabatic, then substantial deviations of the
spectrum of fluctuations from the usual results are possitibm-adiabatic evolution turns an initial
state minimizing the energy density into a state which istegconce the wavelength becomes
larger than the cutoff scale. Back-reaction effects ofdhesitations may limit the magnitude of
the trans-Planckian effects, but - based on our recent $86dy not to the extent initially expected
[87, 88].

From the point of view of fundamental physics, thens-Planckian problens not a problem.
Rather, it yields a window of opportunity to probe new fun@smal physics in current and future
observations, even if the scale of the new fundamental pysiclose to the Planck scale. The
point is that if the universe in fact underwent a period ofatifin, then trans-Planckian physics
leaves an imprint on the spectrum of fluctuations. The expiisleexpansion of space amplifies
the wavelength of the perturbations to observable scalésheApresent time, it is our ignorance
about quantum gravity which prevents us from making anyifipgaredictions. For example, we
do not understand string theory in time-dependent backgi®sufficiently well to be able to at
this time make any predictions for observations.

Singularity Problem

The next problem is the “singularity problem". This probleome of the key problems of
Standard Cosmology, has not been resolved in models ofrdwdthdriven inflation.

As follows from the Penrose-Hawking singularity theorenisGeneral Relativity (see e.g.
[89] for a textbook discussion), an initial cosmologicaigilarity is unavoidable if space-time is
described in terms of General Relativity, and if the matterrses obey the weak energy conditions.
Recently, the singularity theorems have been generalizeghply to Einstein gravity coupled to
scalar field matter, i.e. to scalar field-driven inflationapsmology [90]. It is shown that in this
context, a past singularity at some point in space is unadid

In the same way that the appearance of an initial singulari8tandard Cosmology told us that
Standard Cosmology cannot be the correct description ofgheearly universe, the appearance
of an initial singularity in current models of inflation telk that inflationary cosmology cannot
yield the correct description of the very, very early undeer At sufficiently high densities, a
new description will take over. In the same way that inflatighcosmology contains late-time
standard cosmology, it is possible that the new cosmologdjycamtain, at later times, inflationary
cosmology. However, one should keep an open mind to thehplitysihat the new cosmology will
connect to present observations via a route which does mtdicanflation, a possibility explored
later in this section.
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Breakdown of Validity of Einstein Gravity

The Achilles heel of scalar field-driven inflationary cosomy is, however, the use of intuition
from Einstein gravity at energy scales not far removed from Rlanck and string scales, scales
where correction terms to the Einstein-Hilbert term in th@vgational action dominate and where
intuition based on applying the Einstein equations breakdsee also [91] for arguments along
these lines).

All approaches to quantum gravity predict correction teimghe action which dominate at
energies close to the Planck scale - in some cases in factnewelm lower. Semiclassical gravity
leads to higher curvature terms, and may (see e.qg. [92,&8])tb bouncing cosmologies without a
singularity). Loop quantum cosmology leads to similar nfiodtions of early universe cosmology
(see e.g. [94] for a recent review). String theory, the thege will focus on in the following
sections, has a maximal temperature for a string gas in @dexquilibrium [95], which may lead
to an almost static phase in the early universe - the Hagquwse [96].

Common to all of these approaches to quantum gravity céorecto early universe cosmology
is the fact that a transition from a contracting (or quaatis} early universe phase to the rapidly
expanding radiation phase of standard cosmology can agithout violating the usual energy
conditions for matter. In particular, it is possible (as iegicted by the string gas cosmology
model discussed below) that the universe in an early higlpéeature phase is almost static. This
may be a common feature to a large class of models which e#odvcosmological singularity.

Closely related to the above is the “cosmological constaoiblpm” for inflationary cosmol-
ogy. We know from observations that the large quantum vacaoergy of field theories does
not gravitate today. However, to obtain a period of inflatame is using precisely the part of the
energy-momentum tensor of the inflaton field which looks tike vacuum energy. In the absence
of a convincing solution of the cosmological constant peablit is unclear whether scalar field-
driven inflation is robust, i.e. whether the mechanism whetders the quantum vacuum energy
gravitationally inert today will not also prevent the vaouwenergy from gravitating during the
period of slow-rolling of the inflaton field®.

4.2 String Gas Cosmology

An immediate problem which arises when trying to connedhgttheory with cosmology is
the dimensionality problemSuperstring theory is perturbatively consistent onlyeim $pace-time
dimensions, but we only see three large spatial dimensidmsoriginal approach to addressing this
problem was to assume that the six extra dimensions are atifigéon a very small space which
cannot be probed with our available energies. However, ttampoint of view of cosmology, it is
guite unsatisfactory not to be able to understand why iteégigely three dimensions which are not
compactified and why the compact dimensions are stable.eBsanld cosmology [98] provides
another approach to this problem: it assumes that we livetbrea-dimensional brane embedded
in a large nine-dimensional space. Once again, a cosmalbggatisfactory theory should explain
why it is likely that we will end up exactly on a three-dimemsal brane (for some interesting work
addressing this issue see [99, 100, 101]).

10Note that the approach to addressing the cosmological ainptoblem making use of the gravitational back-
reaction of long range fluctuations (see [97] for a summarhisfapproach) does not prevent a long period of inflation
in the early universe.
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Finding a natural solution to the dimensionality problenthas one of the key challenges
for superstring cosmology. This challenge has variousaspéirst, there must be a mechanism
which singles out three dimensions as the number of spatisrnbions we live in. Second, the
moduli fields which describe the volume and the shape of tlebserved dimensions must be
stabilized (any strong time-dependence of these fieldsdvimad to serious phenomenological
constraints). This is thenoduli problemfor superstring cosmology. As mentioned above, solving
the singularity problemis another of the main challenges. These are the three pnshiéhich
string gas cosmologp6, 102, 103] explicitly addresses at the present levekgbtbpment.

In the absence of a non-perturbative formulation of strimgpty, the approach to string cos-
mology which we have suggestestying gas cosmologj96, 102, 103] (see also [104] for early
work, and [105, 106, 107, 108] for reviews), is to focus on swtries and degrees of freedom
which are new to string theory (compared to point partickeoties) and which will be part of a
non-perturbative string theory, and to use them to developvacosmology. The symmetry we
make use of isT-duality, and the new degrees of freedom a&teng winding modesnd string
oscillatory modes

We take all spatial directions to be toroidal, wiRdenoting the radius of the torus. Strings
have three types of statemaomentum modeshich represent the center of mass motion of the
string, oscillatory modesvhich represent the fluctuations of the strings, amtling modegount-
ing the number of times a string wraps the torus. Both ogoiffeand winding states are special to
strings. Point particle theories do not contain these modes

The energy of an oscillatory mode is independenRomomentum mode energies are quan-

tized in units of ¥R, i.e.

1

whereas the winding mode energies are quantized in uniRsicd.
Em = mR, (4.3)

where bottn andm are integers. The energy of oscillatory modes does not depeR.
The T-duality symmetry is the invariance of the spectrumtiong states under the change

R— 1/R (4.4)

in the radius of the torus (in units of the string lenggh Under such a change, the energy spectrum
of string states is not modified if winding and momentum quanhumbers are interchanged

(n,m) — (m,n). (4.5)

The string vertex operators are consistent with this symynand thus T-duality is a symmetry of
perturbative string theory. Postulating that T-dualityeexis to non-perturbative string theory leads
[109] to the need of adding D-branes to the list of fundamesttgects in string theory. With this
addition, T-duality is expected to be a symmetry of nonyoéxrtive string theory. Specifically,
T-duality will take a spectrum of stable Type IIA branes angit into a corresponding spectrum
of stable Type IIB branes with identical masses [110].

Since the number of string oscillatory modes increasesreially as the string mode energy
increases, there is a maximal temperature of a gas of sirirtgermal equilibrium, thédagedorn
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T-dual Phase TH

InR

Figure 4: Sketch (based on the analysis of [96] of the evolution of terafurel as a function of the radius
R of space of a gas of strings in thermal equilibrium. The topveus characterized by an entropy higher
than the bottom curve, and leads to a longer region of Hageuemaviour.

temperature § [95]. If we imagine taking a box of strings and compressinghe temperature
will never exceedly. In fact, as the radiuR decreases below the string radius, the temperature
will start to decrease, obeying the duality relation [96]

T(R) =T(1/R). (4.6)

This argument shows that string theory has the potentiaroirtg singularities in physical observ-
ables. Figure 4 provides a sketch of how the temperdtwbanges as a function 8

If we imagine that there is a dynamical principle that teéshow R evolves in time, then
Figure 2 can be interpreted as depicting how the temperaharages as a function of time. K
is a monotonic function of time, then two interesting poisigs for cosmology emerge. If R
decreases to zero at some fixed time (which without loss oérgdity we can calt = 0), and
continues to decrease, we obtain a temperature profile wishmmetric with respect tbo= 0
and which (since smaR s physically equivalent to large) represents a bouncing cosmology (see
[111] for a concrete recent realization of this scenarif)oh the other hand, it takes an inifinite
amount of time to reacR = 0, anemergent universgcenario [112] is realized.

It is important to realize that in both of the cosmologicahearios which, as argued above,
seem to follow from string theory symmetry consideratiolue, a large energy density dosst
lead to rapid expansion in the Hagedorn phase, in spite dittig¢hat the matter sources we are
considering (namely a gas of strings) obey all of the usualg@nconditions discussed e.g. in
[89]). These considerations are telling us that intuitioavwech from Einstein gravity will give us a
completely incorrect picture of the early universe.

Any physical theory requires both a specification of the #qua of motion and of the initial
conditions. We assume that the universe starts out smalhandFor simplicity, we take space
to be toroidal, with radii in all spatial directions given kye string scale. We assume that the
initial energy density is very high, with an effective termgteire which is close to the Hagedorn
temperature, the maximal temperature of perturbativagsthieory.
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In this context, it was argued [96] that in order for spati&ttons to become large, the wind-
ing modes need to decay. This decay, at least on a backgroitinétable one cycles such as a
torus, is only possible if two winding modes meet and anathil Since string world sheets have
measure zero probability for intersecting in more than &pace-time dimensions, winding modes
can annihilate only in three spatial dimensions (see, hewére recent caveats to this conclusion
based on the work of [113, 114]). Thus, only three spatialetisions can become large, hence
explaining the observed dimensionality of space-time. As shown later [103], adding branes to
the system does not change these conclusions since atiiagsrthe strings dominate the cosmo-
logical dynamics. Note that in the three dimensions whightscoming large there is a natural
mechanism of isotropization as long as some winding modesspgl15].

Some of the above heuristic arguments can be put on a more fittrematical basis, albeit in
the context of a toy model, a model consisting of a classiaekground coupled to a gas of strings.
From the point of view of rigorous string theory, this separabetween classical background and
stringy matter is not satisfactory when dealing with vergheimes when the typical length scale
might be the string scale.. However, in the absence of a eoHative formulation of string
theory, at the present time we are forced to make this séparddote that this separation between
classical background geometry and string matter is comraaall tcurrent approaches to string
cosmology.

The background is described by dilaton gravity. The dilataurst be included since it arises
in string theory at the same level as the graviton, and atsthé context of string gas cosmology)
because it and not Einstein gravity is consistent with tliridhlty symmetry. Note, however, that
the background dynamics inevitably drives the system irgarameter region where the dilaton is
strongly coupled and hence beyond the region of validithefapproximations made.

The action for dilaton gravity coupled to a matter actinis

1
~ 22
whereg is the determinant of the metriR,is the Ricci scalarg is the dilaton, and is the reduced
gravitational constant in ten dimensions. The metric appgan the above action is the metric in
the string frame.

For a homogeneous and isotropic metric

S / A%,/ ~ge 2° [R-+ 49" 93, 0] + S, @.7)

ds? = dt? —a(t)2dx?, (4.8)

the resulting equations of motion in the string frame are@]{8ee also [116])

—dA24 92 = &'E (4.9)
A—dA = :—2Le¢P (4.10)
$—dA2 = % °E, (4.11)

whereE andP denote the total energy and pressure, respectigésythe number of spatial dimen-
sions, and we have introduced the logarithm of the scaleifact

A(t) = log(a(t)) (4.12)
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and the rescaled dilaton
¢ =2¢9p—dA. (4.13)

The second of these equations indicates that a gas of storgaining both stable winding
and momentum modes will lead to the stabilization of theusdif the torus: windings prevent
expansion, momenta prevent the contraction. The right batedof the equation can be interpreted
as resulting from a confining potential for the scale factOne of the key issues when dealing
with theories with extra dimensions is the question of hogvstze and shape moduli of the extra-
dimensional spaces are stabilized. String gas cosmologyidas a simple and string-specific
mechanism to stabilize most of these moduli. This topic mill be reviewed here (see [107, 108]
for recent reviews). The outstanding issue is how to stabile dilaton.

Note that the dilaton is evolving at the time when the radiuthe torus is at the minimum
of its potential. For the branch of solutions we are congidgrthe dilaton is increasing as we
go into the past. At some point, therefore, it becomes greata zero. At this point, we enter
the region of strong coupling. As already discussed in [La7dlifferent dynamical framework
is required to analyze this phase. In particular, the furefgal strings are no longer the lightest
degrees of freedom. We will call this phase the “stronglypted Hagedorn phase” [118] for which
we lack an analytical description. Since the energy demsitiiis phase is of the string scale, the
background equations should also be very different frordilaon gravity equations used above.
In the following, we assume that the dilaton is frozen in thergyly coupled Hagedorn phase. This
could be a consequence of S-duality (see e.g. [119]).

4.3 String Gas Cosmology and Structure Formation

The following are key aspects of the string gas cosmologkdracind which emerge from the
previous discussion. First, in thermal equilibrium at ttving scale R ~ |5), the self-dual radius,
the number of winding and momentum modes are equal. Sincgingrand momentum modes
give an opposite contribution to the pressure, the pressiiee string gas in thermal equilibrium
at the self-dual radius will vanish. From the dilaton gradtuations of motion (4.9 - 4.11) it then
follows that a static phask® = 0 will be a fixed point of the dynamical system. This phase és th
Hagedorn phase.

On the other hand, for large values®fn thermal equilibrium the energy will be exclusively
in momentum modes. These act as usual radiation. Insehingatiative equation of state into the
above equations (4.9 - 4.11) it follows that the source indifeton equation of motion vanishes
and the dilaton approaches a constant as a consequencerafithie damping term in its equation
of motion. Consequently, the scale factor expands as in shaluadiation-dominated universe.
The transition between the Hagedorn phase and the radidiminated phase with fixed dilaton
is achieved via the annihilation of winding modes, as sulidnedetail in [120]. The main point
is that, starting in a Hagedorn phase, there will be a smaatisition to the radiation-dominated
phase of standard cosmology with fixed dilaton.

Our new cosmological background is obtained by following currently observed universe
into the past according to the string gas cosmology equatidrhe radiation phase of standard
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cosmology is unchanged. In particular, the dilaton is fixethis phasé. However, as the tem-
perature of the radiation bath approaches the Hagedorretaope, the equation of state of string
gas matter changes. The equation of state parameteP/E decreases towards a pressureless
state and the string frame metric becomes static. Note ithatder for the present size of the
universe to be larger than our current Hubble radius, thedcdfithe spatial sections in the Hagedorn
phase must be at least 1 We have entered the Hagedorn phase.

As we go back in time in the Hagedorn phase, the dilaton ise®a At the timd; when
the dilaton equals zero, a second transition occurs, theitian to a “strongly coupled Hagedorn
phase” (using the terminology introduced in [118]). We tiiedilaton to be fixed in this phase. In
this case, the strongly coupled Hagedorn phase may haveatatuwhich is very long compared
to the Einstein frame Hubble time immediately followityg It is in this cosmological background
that we will study the generation of fluctuations. We will denthe time when the Einstein frame
Hubble radius reaches a minimum tay to evoque the analogy with the time of reheating in infla-
tionary cosmology. The end of the Hagedorn phase (the timanwle radiation phase of standard
cosmology begins) is slightly later.

It is instructive to compare the background evolution ofhstigas cosmology with the back-
ground of inflationary cosmology. Figure 5 is a sketch of thace-time evolution in string gas
cosmology. For times< tgr, we are in the static Hagedorn phase and the Hubble radinfrige.
Fort > tg, the Einstein frame Hubble radius is expanding as in stahciasmology. To understand
why string gas cosmology can lead to a causal mechanismuaftste formation, we must com-
pare the evolution of the physical wavelength correspanttira fixed comoving scale with that of
the Einstein frame Hubble radik$~1(t). Recall that the Einstein frame Hubble radius separates
scales on which fluctuations oscillate (wavelengths sméfien the Hubble radius) from wave-
lengths on which the fluctuations are frozen in and cannotfieeted by microphysics. Causal
microphysical processes can generate fluctuations onlyloidsibble scale$®. The key point is
that fort < tj(k), the fluctuation modé& is inside the Hubble radius, and thus a causal generation
mechanism for fluctuations is possible.

In contrast, in inflationary cosmology (Figure 1) the Hubtaldius is constant during inflation
(t < tr, where hereg is the time of inflationary reheating), whereas the physiaalelength corre-
sponding to a fixed comoving scale expands exponentiallys;T&s long as the period of inflation
is sufficiently long, all scales of interest for current cagogical observations are sub-Hubble at
the beginning of inflation.

There are both important similarities and key differencesveen the structure formation
mechanisms in inflationary cosmology and string gas cosgyolén both cases, scales are sub-
Hubble during the early stages, thus allowing for a causabgdion mechanism. Also, in both
cases the fluctuations evolve on super-Hubble scales fawgtime in the radiation phase of stan-
dard cosmology, thus leading to their squeezing, whichrin keads to the phase coherence of the

11The dilaton comes to rest, but it is not pinned to a particutdne by a potential. Thus, in order to obtain consis-
tency with late time cosmology, an additional mechanisnrape at late times which fixes the dilaton is required.

12How to obtain this initial size starting from string-scaigtial conditions constitutes thentropy problenof our
scenario. A possible solution making use of an initial prafdaulk dynamics is given in [121].

Bmatter which couples minimally to gravity in the string frarns prevented from oscillating on scales larger than
the Einstein frame Hubble radius by the dilaton frictiomten its equation of motion.

33



Topics in Cosmology Robert Brandenberger

t(ky)

t(ky)

k; k; |

Figure 5: Space-time diagram (sketch) showing the evolution of fixeea@ving scales in string gas cos-
mology. The vertical axis is time, the horizontal axis is piegl distance. The solid curve represents the
Einstein frame Hubble radiu$~* which shrinks abruptly to a microphysical scalg@raand then increases
linearly in time fort > tr. Fixed comoving scales (the dotted lines labeledpgndk,) which are currently
probed in cosmological observations have wavelengthshwénie smaller than the Hubble radius befgre
They exit the Hubble radius at timggk) just prior totr, and propagate with a wavelength larger than the
Hubble radius until they reenter the Hubble radius at titpés.

fluctuations which generate the acoustic oscillations éahgular power spectrum of the CMB.
However, the actual generation mechanism for fluctuatiermompletely different. In inflation-
ary cosmology, any thermal fluctuations present before tisetoof inflation are red-shifted away,
leaving us with a quantum vacuum state, whereas in the gtatsi- Hagedorn phase of string gas
cosmology matter is in a thermal state. Hence, whereas iatimflary cosmology the fluctua-
tions originate as quantum vacuum perturbations, in stgagycosmology the inhomogeneities are
created by the thermal fluctuations of the string gas.

As we have shown in [122, 123, 124], string thermodynamieaitfiations in the Hagedorn
phase of string gas cosmology yield an almost scale-invagpectrum of both scalar and tensor
modes. This result stems from the holographic scaling oksfgrexific heaCy (R) (evaluated for
fixed volume) as a function of the radiisof the box

Cv(R) ~ R2. (4.14)

As derived in [125], this result holds true for a gas of clos#thgs in a space-time in which the
three large spatial dimensions are compact (see [128, b29%Eent papers emphasizing the role
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of holography). The scaling (4.14) is an intrinsically stjy result: thermal fluctuations of a gas of
particles would lead to a very different scaling.

Since the primordial perturbations in our scenario are eifrttal origin (and there are no non-
vanishing chemical potentials), they will be adiabatic.e®pectrum of scalar metric fluctuations
has a slight red tilt. As a distinctive feature [126], ourrsmgo predicts a slight blue tilt for the
spectrum of gravitational waves. The red tilt for the scatades is due to the fact that the temper-
ature when short wavelength modes exit the Hubble radiuggistly lower than the temperature
when longer wavelength modes exit. The gravitational wampléude, in contrast, is determined
by the pressure. Since the pressure is closer to zero thedigefhe Hagedorn phase we are, a
slight blue tilt for the tensor fluctuations results. Thessults are explained in more detail in a
recent review [108] and in the original references. Herewiteonly focus on some of the key
steps.

Our approximation scheme for computing the cosmologicalupeations and gravitational
wave spectra from string gas cosmology is as follows (théyaisas similar to how the calculations
were performed in [54, 55] in the case of inflationary cosrggjo For a fixed comoving scale
we follow the matter fluctuations until the tinti¢k) shortly before the end of the Hagedorn phase
when the scale exits the Hubble radifsAt that time, we use the Einstein constraint equations
(discussed below) to compute the valueshgk) andh(k) (h is the amplitude of the gravitational
wave tensor), and then we propagate the metric fluctuaticcarding to the standard gravitational
perturbation equations until scales re-enter the Hubldrisaat late times.

The first key point is to show how the scalar and tensor metnittdtions can be extracted
from knowledge of the energy-momentum tensor of the striaxgy §Vorking in conformal time
and in the longitudinal gauge for the scalar metric fluchuadj the metric of a homogeneous and
isotropic background space-time perturbed by linear céagical perturbations and gravitational
waves can be written in the form

ds = a2(n) {(1+2P)dn? — [(1—20)§; + hj]dXdx } . (4.15)

Here, ® (which is a function of space and time) describes the scatdrierfluctuations™®. The
tensorhy; is transverse and traceless and contains the two polanzatates of the gravitational
waves. We have assumed that there is no anisotropic stress.

Inserting the metric (4.15) into the Einstein equationgtiacting the background terms and
truncating the perturbative expansion at linear orderdeéadhe following system of equations

~3 (# 0+ @)+ 0% — 4nGLST %

|
s

(%q>+q>’> _ AnGa25TY,

[(w +%ﬂ2) 437D + qn"} — _AnG&ST;,

14Recall that on sub-Hubble scales, the dynamics of mattdéreisiominant factor in the evolution of the system,
whereas on super-Hubble scales, matter fluctuations fiaézand gravity dominates. Thus, it is precisely at the time
of Hubble radius crossing that we must extract the metriddteons from the matter perturbations. Since the concept
of an energy density fluctuation is gauge-dependent on ddipleble scales, one cannot extrapolate the matter spectra
to larger scales as was done in Section 3 of [127].

1570 avoid confusion with the dilatop, we in this section denote the relativistic gravitationalemtial by®.
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1 1 1
-5 [%’+ 5%2} hyj + 2

92 -
+ {0—’72 - DZ} hj = —4nGasT'j,

forij. (4.16)

In the Hagedorn phase, these equations simplify subsigrdiad allow us to extract the scalar
and tensor metric fluctuations individually. Replacing awing by physical coordinates, we obtain
from the 00 equation

02® = 4nGoT (4.17)

and from thd # j equation
[Phij = —4nGoT';. (4.18)

The above equations (4.17) and (4.18) allow us to comput@aker spectra of scalar and
tensor metric fluctuations in terms of correlation functiari the string energy-momentum tensor.
Since the metric perturbations are small in amplitude weamarsistently work in Fourier space.
Specifically,

(|D(k)[?) = 16mG?k*(5T%(k)6T%(K)), (4.19)

where the pointed brackets indicate expectation values, an
(Ih(k)|?) = 162Gk 4(3T';(K)AT'j(K)), (4.20)

where on the right hand side of (4.20) we mean the averagetbgetorrelation functions with
i # .

The second key step is to compute the matter fluctuationseitdtigedorn phase. Since this
phase is dominated by the gas of strings, fluctuations inaemegio are the thermal fluctuations of
a string gas. We will consider a gas of closed strings in a @mtngpace, i.e. our three-dimensional
space is considered to be large but compact. Specificaidyirtportant to have winding modes in
the spectrum of string states.

General thermodynamical relations allow us to compute théen correlation functions in
terms of the the specific he@ and the pressurp. The result for the energy density fluctuation is

2
(6p?) = —%% <F+Bg—;> = %Cv, (4.21)

whereF is the free energy of the string gas afids the inverse temperature. The off-diagonal
pressure fluctuations, in turn, are given by

(8T'%) = (T1}%) —(T'))? (4.22)
1 9 1 0F\ 1 0p
= B—Rsm(—@m) ~ BREGR’

Now, we apply these relations to the thermodynamics ofggritn [125], the thermodynami-
cal properties of a gas of closed strings in a toroidal spacediusR were computed. To compute
the fluctuations in a region of radid&which forms part of our three-dimensional compact space,
we will apply the results of [125] to a box of strings in a volem = R3.
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The starting point of the computation is the formula for tlmsity of state€)(E,R) which
then determines the cpecific heat and the pressure. The fasthle specific heat is

R2/¢3

N AT

(4.23)
The ‘holographic’ scalin@y (R) ~ R? is responsible for the overall scale-invariance of the spat
of cosmological perturbations. The factdr— T /Ty) in the denominator is responsible for giving
the spectrum a slight red tilt.

For the pressure. we obtain

~ 2(1-T/Tw) 3T
p(E,R) ~hyTy — é E:S)’R In |:R2(1—T/TH) , (4.24)
which immediately yields
20 TA=T/Tw) »[R .
(8T ~ R In 7 (1-T/Tv)|. (4.25)

Note that the factofl1— T /Ty ) (which appears in the numerator of the key term in the exjmess
for the microcanonical partition function) is in the nunterawhereas it was in the denominator
in the expression for the specific heat. The reason is thaeiividg the specific heat from the
microcanonical partition function, a temperature demeaivas taken, but not so in deriving the
pressure. This leads to the slight blue tilt of the spectrdimravitational waves, characteristic of
our proposed structure formation scenario. As mentionédeeahe physical reason for this blue
tilt is that larger wavelength modes exit the Hubble radiesper in the Hagedorn phase where the
pressure is smaller and thus the strength of the tensor nietess.

The third key step in the analysis is to compute the powertspdor the scalar and tensor
modes based on the earlier results. The power spectrumlef seatric fluctuations is given by
LD (4.26)
2112
= 8G*k 1< |6p(k)>> .

— 8G%K% < (6M)? >R
— 8G%’k 4 < (6p)% >R,

Po(K)

where in the first step we have used (4.19) to replace the tatmecvalue of ®(k)|? in terms of
the correlation function of the energy density, and in theoed step we have made the transition
to position space (note thiat= R™1).

According to (4.21), the density correlation function igegi by the specific heat ViEPR6Cy .
Inserting the expression from (4.23) for the specific heat sfring gas on a scaRyields to the
final result

Po(k) = 8G%— ———— (4.27)

for the power spectrum of cosmological fluctuations. In thevae equation, the temperatureis
to be evaluated at the tintgk) when the modé exits the Hubble radius. Since modes with larger
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values ofk exit the Hubble radius slightly later when the temperatarglightly lower, a small red
tilt of the spectrum is induced. The amplitudg of the power spectrum is given by

| 1
s~ (£)*

D T (4.28)

Taking the last factor to be of order unity, we find that a gti@ngth three orders of magnitude
larger than the Planck length, a string length which wasrasslin early studies of string theory,
gives the correct amplitude of the spectrum. Thus, it afgkat the string gas cosmology structure
formation mechanism does not have a serious amplitudegarobl

Similarly, we can compute the power spectrum of the graeital waves and obtain

1

€2k2(1 T/Ty) 1. (4.29)

Ph(K) ~ 8622_—3(1—T/TH) In?
S
This shows that the spectrum of tensor modes is - to a firsbappation, namely neglecting the
logarithmic factor and neglecting the k-dependenc€ &fk)) - scale-invariant. The k-dependence
of the temperature at Hubble radius crossing induces a dltilt for the spectrum of gravita-
tional waves.
Comparing (4.27) and (4.29) we see that the tensor to saiaris suppressed by the factor
(1—-T/Ty)?. Given a good understanding of the exit from the Hagedorsghe would be able
to compute this ratio as well as the magnitude of the spdiltsafor both scalar and tensor modes.

4.4 Discussion

In order to put our structure formation scenario on a firm$jase need a consistent descrip-
tion of the Hagedorn phase. The dilaton gravity backgrodlmva us to understand the onset of
the Hagedorn phase (going backwards in time), but sinceildt®id blows up, we rapidly leave the
domain of applicability of the model.

A background in which our string gas structure formatiomse® can be implemented [111]
is the ghost-free and asymptotically free higher derieatjvavity model proposed in [93] given by
the gravitational action

S= / d*x/—gF(R) (4.30)
with .
=R+ Z)MZ” M 0?)"R, (4.31)

whereMgs is the string mass scale (more generally, it is the scale evhen-perturbative effects
start to dominate), and the are coefficients of order unity.

As shown in [93] and [111], this action has bouncing cosmickagsolutions. If the tem-
perature during the bounce phase is sufficiently high, thgasaof strings will be excited in this
phase. In the absence of initial cosmological perturbatiarthe contracting phase, our string gas
structure formation scenario is realized. The string netwaill contain winding modes in the
same way that a string network formed during a cosmologibake transition will contain infi-
nite strings. The dilaton is fixed in this scenario, thusipgtthe calculation of the cosmological
perturbations on a firm basis. There are no additional dycandiegrees of freedom compared to
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those in Einstein gravity. The higher derivative correa$ido the equations of motion (in partic-
ular to the Poisson equation) are suppressed by factdiis/bfs)2. Thus, all of the conditions on
a cosmological backgroound to successfully realize thegsttas cosmology structure formation
scenario are realized.

5. Conclusions

These lectures have focused on three topics in theoretisahalogy. The first is the infla-
tionary universe scenario, the current paradigm of earlyauge cosmology. Inflation has been
an extremely successful scenario. It explains why the usévis spatially flat and isotropic to the
extent it is observed to be, and why it is so large and congich a large amount of entropy, thus
resolving several mysteries which the previous paradigmosfnology, the SBB model, was not
able to explain. Possibly more importantly, inflation pd®s a causal mechanism for the origin
of the fluctuations which are now mapped out to great accupgagcent cosmological observa-
tions. Inflation correctly (and fifteen years before the @iea observations) predicted the power
spectrum of CMB anisotropies.

The theory of cosmological perturbations is the key toolckihallows us to take theories of
the very early universe and calculate predictions for late tosmology. This theory is applicable
whatever the paradigm of early universe cosmology mighaihd,it is the second topic discussed
in these lectures.

In spite of the successes of the inflationary universe signay conceptual questions remain,
making it clear that new input from fundamental physics uieed in order to develop a better
theory of the very early universe. The third topic discussetiese lectures, string gas cosmology,
is an attempt to explore possible consequences for cossphaibguperstring theory, the likely
candidate for the new physics required for early universmmogy. In particular, an alternative
structure formation scenario not requiring inflationaryasics emerges.
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