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1. Introduction

Staggered fermions are formulated in which species doublers of a Dirac field are interpreted as
physical degrees of freedonastes on lattice [, 2]. However, it remains for a 4-fold degeneracy
problem of tastes in four dimensions to be unsolved. To unfold the degeneracy, there is an approach
called afourth-root trickfor the determinant in a staggered Dirac operator. Although studies on its
theoretical basis are develop@&]4, 5, 6], we have no local expression of one taste Dirac fermion
after the fourth-root trick.

Avoiding the trick, there are pioneering works for solving the degeneracy tried by improved
staggered fermion approach@s8]. The improved actions generally include more operators than
the original staggered one and are difficult to treat th®m For the control of their operators,
we make use of staggered fermions db-dimensional lattice space based onS#(2D) Clifford
algebra, and a discrete rotational symmetry can be represented by the al@kbra [

In this article, to split degenerate tastes, we add new four operators to the original staggered
action in two dimensions. Only these four operators keep the discrete rotational symmetry in any
dimension/LC]. The total mass matrix analysis is insufficient because the matrix does not commute
with the kinetic term. Therefore, we also analyze the propagator and the pole of the improved
free staggered Dirac operator. It is found that only one combination in these operators is a good
candidate after these analyses. More details can be found in1REf. [

2. Formulation of staggered fermions and rotational symmetry

Staggered fermions on thig-dimensional lattice space has been formulated bySIB&D)
Clifford algebrallL(]. The basic idea is that the dimension of the total representation space includ-
ing spinor and taste space®, is the same as that of &0(2D) spinor representatior® is also
the same as the number of sites iDalimensional hypercube. To avoid the double counting of
sites, the lattice coordinatg, is noted by

whereN,, is the global coordinate of the hypercube. In this case, a fundamental Gajvidherea
is a lattice constant, and is set to unity. = 1/2 for any u means the coordinate of a center in the
D-dimensional hypercube amg does the relative coordinate of a site to the center. The relative
coordinate is the same as a weight of the spinor representat®@(2D).

Although our formulation can be generalized, we consider a free theory in a two-dimensional
lattice, for simplicity. Relative coordinates of four sites around a plaquette are written by

(ri,r2) =(-1/2,-1/2), (-1/2,1/2), (1/2,-1/2), (1/2,1/2). (2.2)

Actually, our staggered fermion is defined on si22) as

Wi 1/2-1/2) W,
W W
Y(n) =W (N) = qf Y2172 (N) = qf (N). (2.3)
(1/2,-1/2) 3
W(1/21/2) W,
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It is noted thatV; andW, are put on even sites adéh, andWs are put on odd sites.
An SQ4) Clifford algebra plays a crucial role in two-dimensional cubic lattice formula-
tions [1C]. The original staggered fermion actioti P] can be written as

Si= ) LPF(N)(DE)(N,N')(ru,f)(r,r’)wr’(N/), (2.4)
NN rr u, T

whereT is a two-dimensional vector with its componentstef/ 2 andDE for u=1,2, is a gener-
alized difference operator defined by

(=1 T(0%) ), (2.5)

with
Onn —On-—pn =0y, 0u=0,
(AR (2.6)
NN —OnNn =04, op=1.
0 is a two-dimensional vector dual fband D;; (0y) implies a forward (backward) difference
operator along the-direction, respectively. The matrlx, 7 in our action2.4) is composed of the
SQ4) Clifford algebral’, =y, andl'y cg, =iy,

((O-:;L/2+Tl ® o‘éL/ZJrTz) % (01®1))(r,r’) , =1,
(ru,f)(r,r’) = (2.7)

((Gs}/z—Hl ® 03}/2+T2> x(03®01)) (1), H=2,

whereg, is the unit vector along thg-direction. Here we denote the fundamental algebra, or the
SQ4) Clifford algebra as

{Vu,Vv}:{Vu»Vv}=25uv ) {Vu,Vv}:oo (2.8)

For a discrete rotation with angie/2 around the center, the transformations of global and relative
coordinates are denoted by— R(N), r — R(r), and that of fermion is

W(N) — Vi2W(R(N)). (2.9)
V2 is a rotation matrix about a spinor index in t8&(4) base, up to a phase factor given by a form

e’ .
Vi = 7F5(V1— o) (14 y1y2), (2.10)

wherel's = 1 = diag(1, —1,—1,1). Only the following four operator@OiqJ fori=1-4,
O1=1 Oy=ipp=rs Os=p+ph, Os=l3(it+h), (2.11)

are invariant under the rotatiaﬁzoivfz. Our analyses in the following sections concentrate on the
improved staggered fermion action by these four matrices.



Mass splitting of staggered fermion aB@(2D) Clifford algebra Morio Hatakeyama

3. Analysis of mass matrices

To split masses in desired degenerate tastes we introduce four rotationally invariant operators
which we denote a¥Q;W [10], for the original staggered fermion actidB.4). The total mass
matrix form which is invariant under the rotation Imy/2 in two dimensions is given as

Mg =M1+ mpl 3+ mg(¥a+ ) +mal3(Va+ ), (3.1)
wheremy, np, Mz andmy are parameters of each operator in 2111). Mg has four eigenvalues

M — My — V2mg +v2my, My —mp +v/2mg — v/2my,
M+ My — v2mg — vV2mu, My 4 mp +v2mg + v/2my. (3.2)

A 4-component spinor should be separated into two 2-component spinors since a two-dimensional
Dirac spinor is composed of a 2-component mode and we keep the rotational invariance even under
a finite lattice constaht Actually all possibilities of this separation are three cases and are listed in
Tablel.

parameter conditions rotationally invariant mass termmass eigenvalues
case 1| mp=mg=0 Mgt = My 1+ mul3(f + ) my + /2y
case 2/ mp=nmy=0 Mre = My 1+ mg(f + ) my + v/2mg
case 3 Mm=m=0 Mrz =M1+ nmpl3 m £ mp

Table 1: Three cases for the degenerate mass splitting into two spinors.

After the mass splitting, we can find the character of a Dirac spinor under the rotation,

P(x) — QY(R(x)), (3.3)
eirr/4
0 e—irr/4
Dirac spinor on lattice. By contrad¥(N) acts as a vector not as a spinor in case 3. The properties
of 2-component spinors under the rotation are summarized in Bable

whereQ = eli™/4)0s — ) Actually in cases 1 and 2 we can keep the property of a

4. Pole analysis and 2-point functions

Our adding terms do not commute with the staggered Dirac operator. As a result, our analysis
in the previous section is insufficient to split masses. We must proceed in the pole analysis of the
theory because a pole mass is physical. The staggered Dirac operator in the momentum space is
written as

Dst(p):Z{iyusinpu+i)7u(1—cosp“)}. 4.1)
[

11f one permits the rotational invariance only after taking the continuum limit, it is not necessary for degeneracy of
a heavy mode and there are six more cases derived fron8E}. (
2Mg andV; 5 can be diagonalized simultaneously becaiug Vyo] = 0.
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VldzIag phase factor o¥1,
case 1 (8@‘%) g% =2 =
case 2 <8eiT?QT) g9 =dT=-1
case 3 (%2 ein/zt()Q’r)2> &% —e A= (1-i)/V/2

Table 2: The properties of Dirac spinors under the rotation.

Our steps to find a pole mass are as follows: (i) get 0 and p2 = ik (pure imaginary
of the inverse propagatd—! in the momentum representation where our rotationally invariant
operators are included; (i) calculate four eigenvaldesf D—1; (iii) find values ofk in setting
A = 0. Four values ok equal to pole masses. As mentioned in sections 2 and 3, we keep the
rotational invariance in our action and generate two Dirac spinors with different masses. We define
my, m, = —imy, m; = —imz andmmy as real parameters to obtain real pole masses and then denote
by m andm, the light and heavy Dirac masses, respectively. For each three cases results in brief
of the pole analysis are as follows.

ecase 1l
The pole mass is still splitting undéry| < 1. It is also found that we can take a linity| — o
for arbitrarym by performinge — Oin an expressiomﬁ =1-¢(0<exl).

e case 2
The pole mass remains degenerate because the improvedrigfn- ) is absorbed into the
kinetic term.

e case 3
This case allows pole masses to split although the rotational property of the eigenmode is not a
spinor from the discussion of the previous section.

Note that it is possible to take the light mamsto zero by tuningm andmy only in case 1. In
the case we obtain the equation for the pole mass as

16(1—rrﬁ)sinh4%—8(rrﬁ+2nﬁ)sinhzg+(rrﬁ—2rrﬁ)2:0. 4.2)
Then, solutions of Eq4(2) under the massless conditio§ = 2m3 are determined as
L om oMy 2mg
sth?_O, sth?_l_mz. (4.3)

iy

In addition, to decouple the heavy mode, we can throw the mass up to infinity. Actually from
Eq. 4.3), we can realize massless and infinity modes as Taldenultaneously. Although the
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formalTl s chiral projection which means even-site and odd-site separation of fermion modes is not
consistent with the rotational invariance of a staggered Dirac action, it is found that infinity modes
can be separately put on even or odd sttes

massless modes infinity modes
1++/2 1-2 1 0
-0 —1-42 1-v2 0 0
ma 1| 1 ol |o
1 1 0 1
1-2 1+v2 0 0
-0 —1++/2 1+V2 0 1
ma 1| 1 11" |o
1 1 0 0

Table 3: Eigenvectors of the improved Dirac operator in case 1 w@h: 2m§.

5. Summary and discussion

We have studied the mass splitting of two-dimensional staggered fermions base®@4he
Clifford algebra. Introducing four rotationally invariant operators, we have analyzed three types
of improved staggered Dirac operators and found one possibility (case 1) for taking a single mode
in a two-dimensional free theory. The case keeps the splitting not only in the analysis of the mass
matrix itself but also in the pole analysis including the kinetic term. According to the improvement
with respect to the rotational invariance, the deridecbomponent modes can be regarded as the
ordinary spinor under the rotation by/2. Furthermore, one can find a massless mode in the
case unexpectedly. Our future tasks are analyses of interacting theories and the extension of our
approach to four dimensions. In particular, it is crucial whether the massless condition is stable
under quantum corrections by gauge interactions.
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