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Saggered fermions and the fourth root trick

1. Introduction and overview

Staggered fermions [1] are commonly used for numerical agatns in lattice QCD, in
which it is now becoming standard to include the fermion eteants for all three light quark
flavors, up, down, and strange. They have an exact ddifd) symmetry at zero quark mass [2],
implying that the critical value of the bare quark mass farrequark flavor is known to be zero.
Furthermore, staggered fermions are numerically inexpenand the combination of these two
facts has made it possible to reach the chiral regime of figetido-scalar Goldstone boson (GB)
masses essential for phenomenology.

In practice, a separate staggered fermion field is intradldce each physical flavor, with a
single-site mass term to describe their massgsmny andms. However, each staggered fermion
describes four degenerate quarks in the continuum limibraonly referred to as “tastes,” and one
ends up with a theory with four up, four down, and four straggarks, with (for non-degenerate
quark masses) @ (4), x U (4)q x U (4)s vector-like symmetry. In order to remedy this problem,
one starts from the observation that if indeed each staddermion field describes four degenerate
tastes in the limit of vanishing lattice spaciiag one would expect that the determinant of the
staggered Dirac operat@rgg factorizes as

Det(Dgag(m)) ~ Det'(Deontinuum(M)) ,  a— 0, (1.1)

wherem is the quark mass. The idea is then to take the fourth roo&/‘téagag) for each flavor

in the generation of the gauge-field ensemble on which obbtrs are computed. At the diagram-
matic level, this multiplies each sea-quark loop by 1thus correcting for the too-many tastes per
quark flavor present in the theory without the fourth rooticgithe staggered determinant is posi-
tive for anym # 0, and the continuum determinant is (formally) positivedoym > 0, one picks
the positive fourth root. Since the continuum determinant is only positiverfor 0, the trick only
works for positive physical quark mass (see, however, R&f4]).

Obviously, the argument for this trick is heuristic. Fa&ation as in Eq. (1.1) can never be
exact: first, the right-hand side is not well-defined, anaedg¢the ultraviolet (UV) eigenvalues of
D«ag Will never form taste quartets. But we expect that quarteésgenvalues will form at physical
scales for small enough lattice spacing, while UV effecis lsa absorbed into a renormalization
of the gauge coupling and masses, and thus that factorizaitib effectively take place in the
continuum limit, validating the use of the fourth-root kicWe note that this expectation is based
on the generally-assumed properties of the continuum lifiinrooted staggered fermions (to
which Eq. (1.1) refers), about which there is little doubthisTobservation plays a key role in
establishing the validity of regulating QCD with rootedggiared fermions [5].

We thus face the following set of questions, all of which naetle answered to establish the
validity of working with rooted staggered fermions:

1. The prescription for regulating QCD with staggered femsi and the fourth-root trick is
unambiguous and easy to implement. The question is whétisgoriescription is a regulator
like any other or not. We will argue in Sec. 2 that it is not, lre tsense that the theory is
non-local ata # 0 [6].

1A negative staggered quark mass can be made positive thedugh) ¢ rotation.
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2. Given this result, the next question is whether the cootim limit can be taken, and whether
that limit is in the correct universality class. In Sec. 3 wecdss a renormalization-group
(RG) framework through which to address this question [ niotivate the use of the RG,
we note that it deals with two issues already mentionedpiisses UV scales from physical
scales, and it makes it possible to defing @) taste-invariant theory at some fixed coarse
lattice spacinga. < /\5(13D, obtained by blocking the original staggered theory on a fine
lattice with spacing = a; an infinite number of times (so that /a. — 0). In other words,
it helps in defining the right-hand side of Eq. (1.1). Our anguts give strong evidence that
indeed the non-locality vanishes in the continuum limit &mel correct universality class is
obtained using the fourth-root tricke., that it is a valid regulator. All the key elements of
the argument can be confirmed by perturbative calculatiodfoaconcrete numerical tests.

3. In view of the answers to questions 1 and 2, a third issigesriLattice computations are
performed at non-zera, and they are thus affected by the non-local nature of thelatay.
Even though the answer to the second question implies ths¢ thnphysical effects go away
in the continuum limit, one needs to understand them in olemalyze and fit the data
generated at # 0. Here, this issue is addressed for the physics of GBs. InSee argue
that the correct effective theory describing GBs is givenstaggered chiral perturbation
theory (XPT) plus the replica trick [7]. At a pedestrian level, theliaptrick refers to the
fact that sea-quark loops are corrected by a factor of foyrHénd,” after identifying the
guark-flow diagrams underlying aX®T calculation. The replica trick thus implements the
fourth root at the level of the effective theory.

Before embarking on the topics outlined above, let us firgiswer the continuum limit in
more detail. If the continuum limit exists and is in the catreniversality class, it can be (formally)
described by the path integral (including sources for mgson

Zeortinum(J) = / U e S Detl/“((D(%) +M)® 1+J) , (1.2)

where§;(%) is the gauge action. The Dirac opera®{7 ) carries no taste index, aridis the

4 x 4 identity matrix acting on the taste index. The mass magiM i= diag(my, My, Ms), with

all masses positive. The sourdds a matrix in spin, flavor and taste space. If we project the
complete set of correlation functions generated by thiitiwar function onto the taste-singlet set
by settingd = J® 1, the fourth root reduces to DED(% ) + M) +J~), and it becomes obvious
that the taste-singlet sector is the physical sector, atntaprecisely the correlation functions
for unquenched three-flavor QCD. This simple observatiopligs that no paradoxes based on
symmetry argumentscan arise [3].

Of course, many unphysical correlation functions exishimtheory defined by Eq. (1.2), and
they can be generated by using a soufdéat is not proportional to the identity in taste space.
However, because of the exa®l (4)iage VEctor symmetry of the theory, flavor non-singlet but
taste—singlet operators can be related to taste non-sims, for example,

Upd — Uy=d, (1.3)

Y (dtaste

2as presented for instance in Ref. [8]
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whereZ= is anU (4)iage rotation acting (for example) on the down quark. If we chogse &,
the operator on the right-hand side corresponds to the &&celated tdJ (1) symmetry. This is
the pion field usually used in simulations. Equation (1.83% tes that this is equivalent to using the
physical operatonysd. However, if one is interested in flavor-singlet physicaytiich mixing with
gluonic states can occur, one must use taste-singlet opgrét accord with the fact that gluons
do not have taste. Indeed, the trick of Eq. (1.3) will not wibikoth the quark and the anti-quark
have the same flavor. In cases with exact flavor symmetry,ytmesertheless be possible to rotate
a flavor-neutral interpolating field first into a flavor-chedgone, and then make taste rotations as
in Eq. (1.3). For example, if, = myq, we can rotate a taste-singlef field into a taste-singletrt
field and then use Eq. (1.3) to relate it to a taste-nonsingieield. However, this will not work if
my # Mg, when ar® can mix with gluonic states.

2. Non-locality at a# 0

It is straightforward to establish the non-locality of tleeted theory at non-zero lattice spac-
ing. We proceed by assuming the theory to be local, and daroantradiction [6]. Assume that a
local Dirac operatob exists such that (a # 0)

Det'/4(Dgag) = Det(D) exp(—58Sst1/4) , (2.1)

with 0S¢+ a local functional of the gauge field which does not contebiat any long-distance
effects (apart from a possible renormalization of the gaxmygling). Take the fourth power:

Det(Dgag) = Det(Da ) exp(—0Sff), Da=D®1. (2.2)

The operatoDy4 describes a theory with an exa¢{4) taste symmetry. We may now compare the
spectra of hadron multiplets in the two theories at non-tagtwe spacing, considering for instance
the pions. The theory defined 1By has fifteen degenerate pidnis the adjoint representation
of J(4). But the theory described g,y is well known to have a spectrum of fifteen non-
degenerate pions (with only one “exact” pion corresponding (1), symmetry), due to the fact
that the staggered symmetry group is much smaller $hb@) [9]. It follows that, contrary to our
assumptiondS:ss has to know about long distance effects! Thus the staggéemhyt with the
fourth root is non-local.

While this concludes our basic argument, it is instructiveliscuss this result in more detalil.
In order to do this, we first go to the so-called taste basisidiying [10]

Diase = 0 "+ QDgzQ", (2.3)
wherea is a constant of order/h, andQ is a (gauge-covariant) unitary matrix connecting the
one-component and taste bases [11]. The contactderhis new, but it has no effect on the long-
distance physics. Choosirggfinite (instead of infinite, which would turn Eq. (2.3) intcetlisual

basis transformation of Ref. [11]) is advantageous forirgetip the RG framework in the next
section, as will become clear below. With<Oa < o, we have that

Det(Dgag) = Det((aG) ') Det(Dyage) (2.4)

_ 1 1
(@G)™ = —Dyag+Q'Q=~Datag+1.

3Here we will use the word “pion” for any meson that becomesxateGB in the continuum and chiral limits.
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Fora ~ 1/a, the effective action defined by logéG)~1)) is local, becauséaG) 1 is a lattice
Dirac operator with a bare mass of ord¢alThis effective action vanishes as— .
We now may spliDiage into taste-invariant and non-invariant parts:

Dtase = D1® 1+;DA®EA, (2.5)

where thez, are fifteen traceless hermitian matrices spanning the spsiee. We thus have that

log Det(Dage) = 4log De(Dy) + log Det(l +D;? ; DA® EA) : (2.6)

Both D; and theDa are local, but the effective action defined by the last ternthenright-hand
side is not. On the other hand, the theories defined by lod®at) or logDet{D;) separately
are obviously locat. This makes it clear where the non-locality of the rooted themmes from:

it originates directly from the taste breaking present ia timrooted theory. But it also makes it
clear how it may go away in the continuum limit: tbg are of ordera, and thus constitute a set
of irrelevant operators. If no quantum effects change thiseovation, taste symmetry should be
restored in the continuum limit, andyutatis mutandis (as we will argue in the next section), the
rooted theory should become local. Equation (2.6) is an el@mf Eqg. (2.2) withD = D4, but
with dS:¢+ non-local.

Working outDyage in the free theory in momentum space, we find that

Yuilu @ Up, +m+ 2 (FP+m?)+ 35,6 ® &8s P2
1+ 204 LR +m?)

Dtage = ; (2.7)

in which p, = sinpy, py = 2sin(py/2), and = Su f)fl. The last term in the numerator of
Eq. (2.7) is what removes the fermion doublers in the ussétthasis action [11].€., for o = ),

at the price of breaking the taste symmetry explicitly. Taste-invariant Dirac operat@; in

Eq. (2.5) is constructed by dropping that term. An importalpgéervation is thaD; also has no
doublers, because of the Wilson-like term proportional to - a in the numerator. This is a
prerequisite for having a taste-invariant theory in thesamiversality class as the staggered theory,
making feasible the comparison of pairs of such theorieem S.

At this point, it is useful to reflect on the nature of the nondlity in the case at hartdIn
general, the tendency is to “stay away” from non-local fidlddries, whereas here we argue that
in this case there is no need to: the continuum limit is in thsirdd universality classf{ next
section), and the non-local behavioraag 0 can be understood in detaiff( Sec. 4). In the theory
with the fourth root, there are “too many” pions. While we glibend up with eight pions (in the
theory with three flavors), before taking the fourth root theory has many more, because of the
unphysical, extra taste degree of freedom. Of course, dakia fourth root is precisely intended
to remove the surplus of pions, by inserting the appropmataber of factors 24 into various
terms making up the correlation functions describing thepagation of the pions. If all pions
are members of exact taste multiplets, this should workt a®uld in the theory described by

4Note that when we say an effective action is non-local, wemtleat it cannot be written as a fermion path integral
with any local action.
5See also Ref. [12].
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Eq. (1.2). The problem is that at non-zero lattice spacistetaymmetry is broken, so that within
one taste multiplet, the pion masses are (to leading ord&XRT) given by

(My)? = (M3P)? + PPN (2.8)

in which GB denotes the one exact Goldstone boson, and*thee numerical coefficients which
do not vanish except when the taste indexefers to the exact GB. This “mismatch” between
masses shows up as violations of unitarity, a manifestatiaghe non-locality of rooted staggered
fermions at non-zero lattice spacing. For explicit exarspdee Refs. [13, 14, 7]. We note that these
arguments extend to other hadron multiplets as well; wefpeitsed on the pion sector because it
contains the lightest excitations in the theory.

One way to rephrase this observation is by noting that theréna independent infrared (IR)
scales in the theory, one being the physical pion nmad&% governed by the quark mass, and the
othera/\zQCD, which is generated by the taste splitting of low-lying engaues of the staggered
Dirac operator. In other words, there are two differentesabhich control the IR behavior of the
theory, a physical one and an unphysical one. As is oftenake,the order in which IR scales are
taken to zero matters, and in this case it is clear that the dgder is to first take the unphysical
scalea/\éCD to zero if one wishes to study the chiral limit [15, 3]. Of cselrtakinga/\zQCD to zero
is done by taking the continuum limit. In addition, it is aldhat, in view of the unitarity violations
ata## 0, one should also take the continuum limit before contigire theory to Minkowski space.

3. Renormalization-group analysis of (rooted) staggered fermions

The (thus far formal) argument based on Eq. (1.2) says t#dcstaggered fermions provide
a valid regularization of QCD if exact taste symmetry is rared in the continuum limit. We will
now build an adequate non-perturbative framework wheré-gefined statements can be made
about the continuum limit. Using this framework we will aggthat under plausible, and testable,
assumptions, rooted staggered fermions indeed providkdarggularization of QCD.

3.1 Strategy

In Sec. 2 we discussed how taste-splittings manifest thieesen physical observables. We
now take a step back and examine taste-symmetry violatiothe anost fundamental level: in the
spectrum of the staggered Dirac operator. On gauge-fieligemations drawn from a (rooted or
unrooted) dynamical ensemble, what one expects to find igtiedow-lying eigenvalues arrange
themselves nicely into almost-degenerate taste quadétsl|r]. But for larger eigenvalues the
taste symmetry deteriorates until, finally, at the cut@afété degeneracy is completely lost.

If taste symmetry must be lost at the cutoff scale, let’s gkof all cutoff-scale physics. The
way to eliminate cutoff-scale effects is to apply renormation-group (RG) block transformations.
With each blocking step the lattice spacing is doubled,| amntieffective theory on a coarse lattice
with spacinga. is reached. As we approach the continuum limit we fix the QCalesbqcp
and the renormalized quark masses by adjusting the barenptes. We fix the coarse-lattice
spacinga; too: each time we make an additional blocking step, we samelbusly decrease the
fine-lattice spacin@; by a factor of two. The limit of infinitely many blocking stepaplies the
usual continuum limita; — 0. The coarse-lattice spacing provides a new, intermediatance
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scaleas < ac < AééD. RG-blocking eliminates from the theory all the fermion resdvith eigen-
values (well) above the coarse-lattice cutogfbd The remaining eigenmodes, those of the blocked
Dirac operator, all have eigenvalues that become vanishgmall in units of the underlying cutoff
1/as. Because is kept fixed, we expect that all these eigenvalues umiformly show the quartet
structure required by taste symmetry. In other words, tbeldald staggered Dirac operator will ac-
quire the taste-diagonal form of Eq. (1.2) in the continuimit| and its fourth root will correspond

to a local one-taste theory.

There are several reasons for choosiggg A(SéD- First, we take as criterion for the theory
in the continuum limit to be local the requirement that tharse-lattice action be local on the
scalea;. This only makes sense & <« AééD. We also want the complete set of coarse-lattice
observables to be rich enough to extract all of the QCD pByg\gain this requires that/a; will
be a high-energy scale relative to the QCD scale. A thirdareasl!l be encountered below.

The blocking framework constructed below is designed toerthke most out of our under-
standing of uncontroversial lattice regularizations of [@@&nd, in particular, of unrooted stag-
gered fermions. A fairly standard blocking framework is getfor ordinary (unrooted) staggered
fermions in a form where the adaptations required for rostaggered fermions are minimal.

The novel element is the introduction of comparison bloeledtice theories with exact taste
invariance. At each blocking level, a new theory with exaste symmetry is constructed by simply
dropping the taste-breaking part of the blocked Dirac dperd his is equivalent to dropping the
rightmost, non-local term of Eq. (2.6), except that it is eatfiter a blocking process. In the rooted
theory, the result will be that each of the so-obtainetkighted theories is a local one-taste theory.
Of course, while all by itself RG-blocking leaves the phgsiovariant, the reweighted theories
constructed at different blocking levels are differentirone another, as well as from the original
(rooted or not) staggered theory.

Taste-breaking effects that survive blocking become smnalhd smaller with each additional
blocking step. As a result, at each blocking level, the diffice between a (blocked) staggered
theory and the corresponding reweighted theory gets smhdlthe (continuum-)limit of infinitely
many blocking steps, the difference vanishes for every robbe® Because each reweighted
theory is local and belongs to the correct universality Gldse same applies to rooted staggered
fermions in the continuum limit.

Clearly, this amounts to a set of highly non-trivial claimkieh require a detailed justification.
Several key steps of the argument basically work in the saayefor the unrooted and the rooted
staggered theories. Note that for the ordinary (unrooteedry, they lead to the uncontroversial
conclusion that the continuum-limit theory consists offfdagenerate quark species per staggered
field. The last crucial step of the argument is, however, ncoraplicated in the rooted theory.

3.2 The RG blocking framework

We first introduce our notation. We will perform+ 1 blocking steps labeled = 0, ..., n.
Thek™ lattice spacing isy = 2¢"1as where as already mentionegl is the fine-lattice spacing and
a; = ay is the coarse-lattice spacing. Tke= 0 step, already discussed in Sec. 2, is special. It
transforms the staggered field from its usual one-compoasis to a taste basis, which is then

61t is necessary to assume tmat£ O for all flavors.
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retained in all subsequent blocking steps. Thinning ouheffermion and gauge-field degrees of
freedom occurs at each step, except forkhe O step where the fermions are not thinned out but
roughly speaking only undergo a change of basis. In ordevaaaverly cluttered notation we
will consider a singe-flavor theory in this section. The galigation is trivial.

We first set up the blocking framework for the ordinary (uneab) staggered theofyBlocking
in the rooted theory will be introduced later. The unrootadigon function is

7= /@%@X@X exp(—S; — XDsagX) . (3.1)

where x (x), X(x) is a one-flavor staggered field, abg x denotes the link variable. The gauge
field as a whole will be denote@ = {U, x}. Again§; = (% ) is the gauge action arldlyag =
D«ag(% ) is the staggered Dirac operator.

The coordinates of the" step blocked lattice will be denoted’” The fermion and anti-
fermion fields on that lattice ang ¥ (*¥)) and @ (%¥)) respectively. The indices andi, both
ranging from one to four, are the Dirac and the taste indegxeas/ely. The blocked link variables
will be denoted/‘i )k), and the blocked gauge field as a whel&) = {Vu ok 1+

RG-blocking is performed by multiplying the integrand oétpath integral by one, written in
a sophisticated form, and then interchanging the orderte§mations. Fermion blocking is always
done with a gaussian kernel that, fop 1, takes the explicit form

1= g 10 / 24 gk exp[ak (Tﬁ(") _ gk Q(m> (w<k> —q® w<k—”)] , (3.2)

Hereay is a blocking parameter of mass dimension one, that is rigtuaken to beO(a, ), and
Ny is the number of sites of tHé" lattice. The blocking kerneD® = QM (¥ (-1} is ultra-local
and gauge covariant. It defines a linear mapping from the site. 2 hypercube on thék — 1)1
lattice to the corresponding single site of #felattice. Apart from thek = 0 step (Sec. 2Q® acts
trivially on the Dirac and taste indices. For the gauge fiewlassume a conventional ultra-local
blocking kernel whose details are not needed.

We begin by introducing the kernels for the- 1 blocking steps. However, we do not integrate
over any gauge field yet, for a reason that will become cleartlsh We do integrate over all the
fermion fields except those living on the coarse lattice.sTd@n be done in closed form because
the fermion integrals are gaussian. The result is

Z:/Q%@”i/(o)%//() gy exp( S - Z% zsﬁ )
x/dw(”>dw<”) exp(—w >Dn1,u(”>). (3.3)

Here Ji/B(O) = %(0)(7/(0),%) and Ji/B(k) = Jig(k)(“//(k>,7/(k‘1>), 1< k < n, are the gauge-field
blocking kernels. The UV fermion modes that have been iategrout at th&™" step give rise to
the effective action

¥ = logdetGy). (3.4)

"We assume a fixed, finite physical volume. By assumption atkgiare massive, and we expect no subtlety when
taking the thermodynamical limit.
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The operator®yg andG;1 may be constructed iteratively (for the= 0 step see Sec. 2)

Dy = ax— aZQWG QW™ (3.5)
Gy = Dio1+aQMTQW. (3.6)

Let us briefly summarize the important properties of theseratprs in the free theory [10].
The operatoDy is gap-less fom = 0, with its low-lying eigenmodes coming frop~ 0. In
Eqg. (3.6) the addition of the blocking-kernel term lifts graall eigenvalues and creates@(oy) =
O(1/ax) gap in the spectrum cﬁ;lzl. One can then prove iteratively thag, G;l, andGy are all
local operators [18]. By this we mean that their matrix elataeconnecting sites® and ytk
vanish exponentially with the separation, with@fey) decay length.

Expanding the free, coarse-lattice Dirac oper&igto second order ip andm gives

Dn(p) = m+i[p@ 1] +ar ¥ [y6 @ &s&u] pf — Ro(m+i[po 1))+ (3.7)
[T

whereR, = $2_,(16)"*/ay is O(ac). The shown taste-breaking term originates from the last ter
in the numerator of Eq. (2.7). Becauge < agl, this irrelevant term i©(as /a2), which is just
the scaling required by its engineering dimension. In thetlh — oo the blocked Dirac operator
becomes taste-diagonal. For= 0, the operatoD,, satisfies a Ginsparg-Wilson (GW) relation.
Thus, through RG blocking, the taste-violating mechanisnrémoving the doublers is gradually
taken over by the taste-conserviagd chiral symmetry conserving GW mechanism.

In both the free and the interacting theories the inversekiaio Dirac operator satisffes

D l=a.t+Q¥WD L QW (3.8)

Using Eq. (3.8) recursively we may express the coarsed¢atéirmion propagator as the fine-lattice
propagator between smeared sources defined by the prodtia bfocking kernel8. Equation
(3.8) is in fact a special case of a completely general patt€pnsidering any operatar® con-
structed from the coarse-lattice fields, we may “undo” thexking by performing the integration
over all the blocked (gauge-field and fermion) fields we hateoduced, resulting in an opera-
tor &) that depends only on the fine-lattice fields. This operatiefinds apull-back mapping
719 6 — (1) The pull-back mapping is ultra-local (because the blagkiernels are) and
it preserves expectation values7 (1909 = (¢0©) .

The existence of the pull-back mapping means that everysedattice observable is at the
same time also a fine-lattice observable. This “kinematifedture has an important dynamical
consequence: The coarse-lattice observable must pretsereanstraints that follow from all the
fine-lattice symmetries, even if (as it actually happens)esof these symmetries are not manifestly
preserved by the blocking (for more details, see Ref. [5]).

We next introduce a family of comparison theories as followsst, as in Eq. (2.5) we split
the blocked Dirac operator into its taste-invariant antetéiseaking parts

Dn=Dn®1+A,, (3.9)

8For thek = O step, Eq. (3.8) reduces to Eq. (2.3).
9This is true up to the contact term in the propagator, whiatisrees forx®) -« (k).
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whereDj, carries no taste index, ady is traceless on the taste index. The replacemgnt> tA,,
where 0<t < 1, then allows us to gradually “turn off” all the taste breaki Fort = 0, exact
taste symmetry is restored by hand. Performing this at tred & the (blocked) partition function
generates a family ohterpolating theories

n
ther /@% 990 gy ) ... gy exp< z ‘%/B Z sfe?f)
k=0

x / dy™dg™ exp [ g (Dn ® 1+tAn) 1,u<n>] . (3.10)

In the next subsection we will argue that these interpaathreories are all local. They clearly
belong to the same universality class as the original staggéeory.
We now come to the rooted staggered theory defined by

7ot — / 9U exp(—S;) Det*(Daag). (3.11)

The gaussian fermion-blocking transformations readifdleo identities for the fermion determi-
nant that hold for any given set of values of the (original blwtked) gauge fields. This allows us
to write down the analogue of Eq. (3.3) for the rooted theory

n n
7't — / 9 99O gy ... gy exp< - Z)%(k) - % Z)sg?f) Det/4(Dn). (3.12)
K= k=

Of course, as already noted in Eq. (2.6), aftestep blocking we still cannot express the rooted
determinant as a local path integral. This is made possitile after dropping the taste-breaking
partA, completely. We then arrive atraweighted theory

Z;\ameigh:/9%9%0)97/(”---9“// eXp( %%B _4%§e )
X / dg™dg™ exp(—q( Dnq >), (3.13)

where we used D& (D, ® 1) = Det(D,,). The coarse-lattice quark field&”, g™ carry no taste
index. In the next subsection, we will argue that the rewtelghheorleszra’ve'gh are local too, and
that they fall into the right universality class. (This pats a solid basis the observations made
below Eq. (1.2).) For rooted (unrooted) staggered fermiamswill show that each observable of
the n reweighted (interpolated) theory has the same  limit as the corresponding observable
of the blocked staggered theory.

3.3 Validity of rooted staggered fermionsin the continuum limit

Ordinary staggered fermions define a renormalizable éattieory. The renormalizability of
the ordinary staggered theory has not yet been establishedtidrders. Yet there is no real reason
to doubt that all-orders renormalizability holds in the amted theory. As shown in Ref. [9], any
relevant or marginal term not already present in the orlgiteéggered action is forbidden by its
symmetries, and thus will not be induced by loop corrections

Renormalizability readily generalizes to the rooted tlge®his was first observed in Ref. [19].
For a recent detailed discussion, see Ref. [12]. Considgdrditheory withng copies, or replicas,
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of identical staggered fields. The counterterms at any adeipolynomials in (the integenk.
Now, in perturbation theory, rooting amounts to multiplyieach staggered-fermion loop by4l
Therefore the same counterterms will suffice to renormdlizerooted theory when we substitute
nr — 1/4. While locality is lost with rooting, renormalizabilitysisaved. The theory remains
tightly constrained by power counting and symmetries.

Our third motivation for choosing the coarse-lattice spgdb satisfya. < A1, is that QCD is
weakly coupled at short distances. The existence of a weaghog regime depends on renormal-
izability, but it doesnot necessarily require localif. Any four-dimensional lattice gauge theory
whose Boltzmann weight contains a fermion determinanecdats a real positive powetg will
have a weak-coupling regime, so long as the one-loop betdifum(that depends linearly amg)
remains asymptotically free. All we need for the next stepds the blocking process in its entirety
is taking place in a weak-coupling regime, in both the uredand rooted theories.

Next, we argue that the blocked Dirac operafyy and the effective actior$§?f (obtained
by removing short-distance fermion modes) are local, aatltihis is true on both the unrooted
and rooted ensembles. Functional derivative§(e$f depend orH, 1 and on (derivatives ofy,
where the operatdty = )5 ® Es]G;l is hermitian [6]. In view of the discussion below Eqg. (3.6),
the necessary and sufficient condition Sé‘i)f to be local is that botli, and its inverse be local
operators on thi!" lattice scale, in the interacting theory too. Unlike in theef theory, however,
we cannot rule out the possibility theli hasno gap in the interacting theory,e., that He may
have arbitrarily small eigenvalues. But for the locality-f ! small eigenvalues are harmless if the
eigenmodes are exponentially localized on the correspgniditice scale. Therefore, a sufficient
condition for the locality oH, %, and iteratively for the locality by andHy, 1, is that themobility
edge of Hx be O(ax) = O(1/a). Eigenmodes with eigenvalues above the mobility edge are, b
definition, extended. But as long as the extended-modesrspedoes not reach down to zero, the
inverse ofHy will stay local.

A recent study of the mobility edge of the Wilson operatoihia super-critical region reveals a
mobility edge remarkably close to the free-theory gap foderate values of the bare coupling [20].
By interpolation, the mobility edge must be even closer ®ftke-theory gap in a (really) weak-
coupling regime. Intuitively this can be understood asole. Eigenvalues far below the free-
theory gap arise in the presence of “dislocations” in theggdield. But the pure Yang-Mills action
on thek™ lattice strongly suppresses dislocations provided theatuhning couplingy (ay) is very
small, in which case the effect of any fermion determinasuisdominant (the large, UV divergent
part of the fermion determinant is absorbed into the renbzatéon of g, (ax)). This works in any
renormalizable and asymptotically free (but not necelsskadal) theory, in particular for both the
ordinary and the rooted staggered ensembles. Having satidsthce none of the operatdtig has
been studied numerically to date, it is clearly importantdafirm this part of the argument.

If Dy, is local then, trivially,l5n and A, are separately locatf. Eq. (3.9). Integrating over
all the gauge-fields except(™ in Egs. (3.10) and (3.13), we obtain coarse-lattice theasikich
arelocal. In particular, the reweighted theories (3.13) are ontetéseories that belong to the
appropriate universality class.

What remains to be established is that the sequence of reigdiginterpolating) theories has

10see Ref. [12] for a discussion of non-local but renormalizévo-dimensional field theories.
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the samen — o limit as the blocked rooted (unrooted) theory. We now dettiie result assuming
that, in both the interpolating theories (3.10) and the rgitted theories (3.13), the following
scaling relations are valid in amsemble average sense:

B 1
DY < FYPRE (3.14)
1Al < 2 & (3.15)

wheremy (a¢) > 0 is the renormalized quark mass. The scaling law (3.15)eofakte-breaking part
A, of the Dirac operator neglects logarithmic correctionss the anticipated scaling based on the
smallest engineering dimension of an irrelevant operaamely fivel!

In the rest of the argument we focus on the rooted theory. Vkgpaoe the rooted and the
reweighted theories at th#' blocking level starting from one-taste operators conséaiérom the
coarse-lattice fields of the reweighted theds, operators of the forn#™ = (M (¢ g(M, » ),

For such operators, we reconstruct rooted observablesy thst un-normalized expectation values
satisfyt?

reweigh

n

<ﬁ(”>>r00t - <ﬁ(”) expEtrlog <1+An [6n®1]—1)} >

n

_ <@»<n>>re‘”dgh (1+0(e2) . (3.16)

n

where we have used the taste-tracelessnes, @nd where, using Egs. (3.14) and (3.15),

( A
The (anticipated) scaling df,, thus implies thag, — 0 for n — . The observation here is that,
first, after sufficiently many blocking steps the expansibthe logarithm is convergent, and sec-
ond, that in the limitn — o the expectation value af" is the same for the rooted and for the
reweighted theorie¥® This is precisely what is needed for the validity of the raotieeory in the

continuum limit! A corollary is that the continuum-limit ¢ory enjoys every exact symmetry that
exists in the (rooted) staggered and/or in the reweightedrih

~am(a)  acm(ac)

o (3.17)

& = HD(H&n

3.4 Scaling

Let us now take a closer look at the scaling laws. A standartlifiative treatment in either
the unrooted or the rooted theory would predict all the scaliiws we have used: for the running

11see Ref. [21] for a first direct study of the scaling/ef

12Eq. (3.16) only relates a subset of the observables in thedabeory — those in the physical subspace — to those
of the reweighted theory. If we want to relate all rooted otaslles, we can (a) leave the reweighted theory as a theory
of four rooted, but equivalent, tastes, as was done for tiéiraeum theory in Eq. (1.2), or (b) write the reweighted
theory as a theory of four unrooted tastes and three ghdsstas in Appendix B of Ref. [12].

L3strictly speaking, one should take into account the fadt tie valence propagators coming fraft™ are also
slightly different on the two sides of Eq. (3.16): The roothdory keeps taste-violating terms in these propagatdrs bu
the reweighted theory does not. The difference is S{f) and thus not important to the argument.
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of g- andm, and for the scaling of taste-breaking irrelevant termst tBig falls short of what we
need.

Scaling laws for irrelevant operators are usually derivea 8ymanzik effective-action context
[22], where one imagines integrating out the short-distaftectuations of all the lattice fields.
Here, in contrast, the scaling laws must hold in Eq. (3.18)n(&g. (3.10)), where a whole “tower”
of gauge fields is still present. How do we know that any sgaliaw still applies? We have only
assumed that the scaling laws (3.14) and (3.15) hold in aenelole average sense. Furthermore, we
have only assumed these scaling laws within the reweighteaties, and these have a local path-
integral representation. We dot rely on the validity of any scaling laws for irrelevant opers
directly in the rooted theory.

Operationally, this means that the scaling laws must haldHe expectation values of oper-
ators constructed from the coarse-lattice fields of the igivwed theory. Before we can compute
any scaling law, we must first set up perturbation theory.dllglattice perturbation theory begins
with the expansion of the link variables dg x = exp(igaA; x). In a reweighted theory a similar
expansion will have to be applied to the tower of gauge figilds/ (@, v .. %™ simultane-
ously. With this, the perturbative expansion can in prilecipe derived directly from Eqg. (3.13),
because the closed-form expressionsDgy Dn, andSﬁ?f as functionals of all the gauge fields are
known. One would then proceed to calculate correlationtfans with coarse-lattice fields only
on the external legs. Because only coarse-lattice gaughs figlcur on any external leg, we may
imagine that the integrations ovér, ¥ (@ v @ (-1 gre always done before the integrating
over 7. Since, in addition, all the external momenta are of ordéx 1this brings us closer
to a standard RG setup where coarse-lattice observableameuted using a conventional (but
complicated) coarse-lattice action (that includes fomegle multi-fermion interactions). As we
explain below, some differences still remain. But first wentto a conceptual question.

There is a crucial difference between the running.aindm;, and the anticipated scaling of an
irrelevant operator. The running of relevant and margirsmhmeters originates directly from the
short-distance divergences of the theory. Because powatting and renormalizability survive
rooting, we have no reason to doubt the validity of rootedysbation theory for these specific
scaling laws. This is especially true given that only gehfatures of the running coupling and
mass parameters are needed, but not any details.

In contrast, the anticipated scaling of any irrelevant afmr(which does not mix with relevant
or marginal operators) implies the vanishing of that operat the continuum limit. That some-
thing should vanish in a certain limit is a more delicaterolaln local theories we have no reason
to doubt the perturbative prediction, which amounts to teeumption that no non-perturbative
effects interfere with the vanishing of all amplitudes wéh insertion of the irrelevant operator.
But, the question is, how can we be sure that the non-localitiie rooted theory does not modify
the scaling of irrelevant operators in undesirable wayscaptured by perturbation theory? Once
again, our solution is to rely only on the predictions of pdsation theory in théocal reweighted
theories. Because the non-locality has been eliminatede@®o reason to trust reweighted pertur-
bation theory any less than perturbation theory for, saspated staggered fermions. This applies
in particular to the scaling of (taste breaking) irrelevaperators within the reweighted rooted
theory, which, we expect, would give rise to Eqg. (3.15).

In the unrooted theory, an analogous analysis starts off thi¢ reweighted unrooted theory,
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i.e, thet = 0 interpolating theorydf. Eqg. (3.10)), and ends with the uncontroversial conclusion
that exact taste symmetry is recovered in the staggeredytirethe continuum limit. But, in the
unrooted staggered theory we could instead rely directlyrmooted perturbation theory for the
scaling ofA,,, because the unrooted theory itself is local.

Within reweighted unrooted perturbation theory, the sita{B.15) should hold as we go down
from 1/as to 1/a..1* This, in turn, should result from the similar symmetry patteof the stag-
gered and the reweighted theories, idarge enough. On the staggered side, both taste symmetry
and (softly broken) chiral symmetry in the continuum limieaecured by the lattice symmetries.
On the reweighted side, we have exact taste symmetry byractien. But if the continuum limit
is to come out right, then the reweighted theory should initemfdhave an approximate chiral
symmetry (namely, the additive renormalization of thedashglet mass term goes to zero with in-
creasingn). Indeed, since the= 0 andt = 1 theories in Eq. (3.10) are connected by a convergent
expansion, this must be the case.

We can summarize our line of reasoning as follows. First, laiecthat the reweighted version
of the unrooted staggered theory is local, and atcales as expected in that theory. If one accepts
the validity of the unrooted staggered theory this claimlawconsidered “safe.” Then, proceeding
from the unrooted reweighted theory, which has four tastesexactU (4) taste symmetry, we
can consider the theory in which we take the fourth root offérenion determinant, and obtain
a local one-taste theory in whiak, still scales as an irrelevant operator. Of course, the gauge
ensemble is different for the reweighted versions of theewand unrooted theories. B,
should remain irrelevant as we move from the unrooted rewedyto the rooted reweighted case
since perturbation theory should be equally trustworthybfath local theories. Note that this is a
claim about reweighted theories only, with no referencénéounderlying staggered theory. In the
final step, the rooted staggered theory is reconstructdudthét help of Eq. (3.16), and the scaling
of An in the rooted reweighted theory ensures that the rootedystad theory has the desired
continuum limit.

Finally, we address a more practical issue. We have arguwdt8D is correctly described
by the observables of the coarse-lattice (rooted, stagydineory in the limit of infinitely many
blocking steps. Thanks to the pull-back mapping every eskattice observable is at the same
time a fine-lattice observable and, as such, it can in priedp computed directly on the (rooted)
staggered ensemble. This amounts to using smeared stdggemdon sources constructed in a
particular way from all the blocking kernels. The questisnare we allowed to use any other
(local) fine-lattice interpolating fields, as is done in gige? Normally, one proves that once
renormalization factors have been correctly taken int@act; different interpolating fields must
give rise to the same physical predictions. But once agaifaasethe difficulty that, because of the
non-locality, it may be dangerous to rely on rooted staghypexturbation theory. We believe that,
here too, the resolution is to rely on reweighted pertudoatheory. By its very construction, the
reweighted theory “knows” about fine- and coarse-lattickel$ialike, and, therefore, it is capable
of comparing coarse-lattice and fine-lattice interpotafields. We expect that the usual statements
about independence of the physical predictions of anyqaati choice of the interpolating fields
will remain true once this comparison is carried out. This iceprinciple be tested in perturbation
theory.

14Note that this doesot amount to a standard blocking process within the reweigtitedry.
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4. Staggered chiral perturbation theory

Here we discuss point 3 of the Introduction, namely the Iowrgy effective theory for stag-
gered quarks. By definition, such a theory must include dtsmation effects, in particular taste-
violations, although we expect the theory will go over intmtnuum chiral perturbation theory
(XPT) in thea — 0 limit. When the underlying staggered action is unrooteatlifig the effec-
tive theory is straightforward [23, 24]. We call the resuinfooted staggered chiral perturbation
theory,” or uXPT. On the other hand, the effective theory must be noratrivi the presence of
rooting, since we know from Sec. 2 that non-localities aesent, and that their effects show up in
the pion sector.

In Ref. [24], it was proposed that the rooting could be take@n account at the chiral level
by locating the presence of sea-quark loops in the mesonmadiegof uXPT and multiplying
each by ¥4. These loops can be found by quark-flow arguments [25], diupffesent purposes
it is more useful to use the replica trick [26], which was atlg employed in Sec. 3.3 for weak-
coupling perturbation theory. This version of staggereidatiperturbation theory will be referred
to as rXPT. We emphasize that the “r’ in X¥T stands, in the first instance, for “replica.” The
rules of rXPT, described in more detail below, give a well defined pracedor computing chiral
amplitudes. The question is, however, whethe¥®$ is in fact the proper low-energy theory for
rooted staggered quarks. We will argue that it is correabttirer other words, we argue that the “r”
in rSXPT also stands for “rooted.”

Finding the correct chiral theory is important for seversgsons. The discussion in Sec. 2
indicates that the potential problems from rooting shownughe IR, because of the interplay of
the physical i5°) and unphysicalg/\%.p) IR scales™® Since the chiral theory describes the most
IR part of the theory, it provides a laboratory for studyimg effects of non-locality and seeing
(one hopes) how they go away as— 0. Indeed, as mentioned in Sec. 2XF5I already shows
unitarity violations at# 0 [13, 14, 7]. Moreover, even if the validity of the rootingopedure were
rigorously established at the quark level, the chiral thewould still be crucial for controlling the
chiral and continuum extrapolation of simulation resutg][ Since the effects of taste violations
are significant at lattice spacings available currently mnthe foreseeable future, we cannot do
without a chiral theory that takes such effects into accotiinally, the chiral theory provides a
non-perturbative handle for relating the unrooted stagy@alence sector to the rooted staggered
sea sector. In particular, if XPT is indeed correct, it can be used to show that even thowgh th
valence sector is unrooted, the theory does not behave asadhiheory in which valence and
sea quarks have different lattice actions.

The uXPT theory for a single unrooted staggered field.,(one flavor) is derived through
0(a?) by Lee and Sharpe [23]. They start by using the staggered symes to find the Symanzik
action throughZ(a?). Spurions can then be introduced for all terms that viokaetaste and chiral
symmetries, and the chiral theory follows. The generadabpadf this procedure to multiple flavors
appears in Ref [24]. In the unrooted case, the generalizaistraightforward. The proposal to
take into account the fourth root, is, in the replica apphodce following:

15In the RG analysis of Sec. 3, it is plausible tlsa{Eq. (3.17)) over-estimates the relative size of succedsiims
in the expansion of the logarithm in Eq. (3.16), and that dative size is actuallp\3ep /My ~ aAdep/(MGE)2. This
ratio indeed contains the two IR scate§® andaAfep.
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¢ Replicate the sea-quark degrees of freedom at the chiml Implacing each bgg identical
copies, whereg is a positive integer. Alhg copies get the same mass, and, if relevant, the
same source terms.

e Calculate order by order in the resulting ST, keeping ther dependence explicit.

e Replaceng by 1/4 at the end.

Note that the dependence oris completely determined at any finite order in{F5T, so replacing
nr by 1/4 is a well-defined proceduf&. As always in a chiral theory, we treat the low-energy
constants (LECs) as free parameters for eaghwe are just trying to find the dependence of
physical quantities on the LECs in the rooted staggeredyheo

The argument [7] that P&PT is the correct chiral theory for rooted staggered quarkgss
completely within the context of chiral theories. As empbhed by Sharpe [12], this is possible
because the unfamiliar unphysical features of the rootedrthcan be connected to the much
more familiar, but still unphysical, features of a partiatjuenched (and unrooted) theory. While
PQXPT, the chiral theory in the partially quenched case [19jpison as firm a theoretical footing
as is ordinanX PT for full (unquenched) theories [28], we have a large bddyumerical evidence
that PQXPT (and the completely quenched versio¥RJ [29, 25]) are in fact the correct chiral
descriptions of the corresponding lattice theories. Thdesice comes from Wilson, domain wall,
and (for the quenched case) overlap quarks, as well as stabgjienulations. Furthermore, R@T
will be subject to even more stringent numerical tests inftiigre. So connecting the rooted case
to the partially quenched case is a useful step forward.

Reference [7] starts by noting that we know (trivially) hdwetfourth root works when there
are four degenerate flavorag(=4). Since the fourth power of the fourth root reproduces the
determinant, the rootetk =4 theory is identical to the unrooteg = 1 theory. We therefore know
the starting chiral theory, namely the XilBT of Lee and Sharpe. To get to a non-degenerate 4-
flavor theory, we can expand around the degenerate, massive this is where partial quenching
is needed. Finally, to get to a theory with < 4 flavors, one quark at a time can be decoupled.
Each step in the procedure requires some assumptions, at@giausible but unproven. However,
most of the assumptions can be tested numerically, and sloeaelp have been tested.

To explain the argument in more detail we need some notatiet(ng,nr,NR)Lqcp be the
generating functional for a lattice QCD theory with flavors, ny tastes, andhg replicas of each
flavor; let(ng,nr,NR)y be the generating functional of the corresponding chirabitih Whenever
ng is shown explicitly it is taken to be a positive integer; thedeesult of the replica trick is
indicated by replacingg with 1/4. Whenng is trivially equal to 1 (because the replica trick is not
relevant), it is omitted. An unrooted theory is indicatedrgy= 4; while for the rooted theory we
putnr = 1.

Thus(1,4).qcp is the theory of a single unrooted staggered field, @nd) is the uXPT of
Ref. [23]. Similarly,(nr,4,nRr)y is the uXPT of Ref. [24] withnr-nr sea-quark species. Further,
(ne,1)Lqcp is the lattice theory ofir rooted staggered fields, afwk, 1) is by definition the low-
energy theory generated by integrating out all the highedeaan(ng, 1) ocp. As far as we know

18|n Ref. [7], it was claimed that the dependencengris strictly polynomial. That is in fact an oversimplificatio
since we would like to sum the geometric series of hairpigidims to all orders, which introduces factorsigfinto the
masses of flavor-neutral mesons, and hence into the denmsired Feynman integrands. But the key point remains:
the functional form of theigr dependence is completely determined at any finite order ¥PUS
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so far,(ng, 1)y could be horribly non-local, non-unitary, or otherwiseksi¢he claim, however, is
that (ng,1)y is in fact(ng, 4, th)x to any finite order in chiral perturbation theory, where thiter
simply defines what we mean byXBT.

The first steps of the argument are taken inrihe-4 case. We want to show that

(47 1)X = (4747 %)X ) (41)

where =" is used to indicate that the two sides are the same functbtie LECs. As mentioned
above, we start with a degenerate=4 theory, with mass matrix# = ml, wherel is the identity
matrix in flavor and taste space. In such as theory, we have

(471)LQCD‘(/// _ = (174)LQCD‘rﬁ (4.2)

(4, 1))(‘(

_ = (174)X

P = @45 (4.3)

‘rﬁ M =n
The last equivalence here is manifest order by order ¥Pr§ since taking dr degenerate flavors
and then puttingnig = 1/4 gives the same chiral expansion as in a one-flavor theory.

To move away from degenerate limit, we add taste-singldassaurces' for the sea-quark

fields:

Llag) = - MY QW (X) + Wi (x) ST () W) (x) +...

¥i
Laang = -+ ()W () +W ()8! ()W (X)+... , (4.4)

with implicit sums over the flavor indicdsj and the replica indek. In the (4,1) ocp theory the
fourth root is takerafter the above sources have been included in the determinant.
Whens# 0, (4,4, %)X might not be the right chiral theory, so we define the mismaich

(4,1;9) = (4,4,7:9)x + Vs . (4.5)

The mismatchV[s| can be expanded arousd= 0, where it is known to vanish. In fact, it can be
shown [7] that all derivatives d#,1;s), and(4,4, %;s) x With respect to the sources are equal:

7 . 0
M a5ipe) 459, 0= T ey 4 59, (4.6)

which implies

~0. (4.7)

s=0

ple=e

Equation (4.6) is proved by first relating sea-quark coti@tefunctions in each theory to partially
guenched valence-quark correlation functions, where #gtenee quarks have the same lattice ac-
tion as the sea quarks. This then allows us to set the se&-gorarces = 0, where the equivalence
of the two chiral theories is known. The proof requires thistexce of standard P@T for un-
rooted theories, namely fdd,4), and(4,4,nr)y. We note that partially quenched theories are
crucially needed because the derivatives with respectat@aark sources in a rooted theory result
in different factors of 14 in different contractions, which can never happen in tleecgeark sector

of an unrooted theory.
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Thus all derivatives o¥/[g] vanish ats= 0. If V|[g] is analytic ins— up to possible isolated
singularities — it must vanish everywhere, af#1;s)y = (4,4, %1?3))(- Since an arbitrary four-
flavor mass matrix can be obtained by a suitable choicg Bf. (4.1) is verified. In other words,
rSXPT (.e, (4,4, th)x) is the right chiral theory in the four-flavor case.

The assumption of analyticity could fail in a two ways. Fig$tall, there could be a phase
transition when the masses are some finite distance away tfrendegenerate point. There is
some evidence from simulations [27] that this does not galtiough it is still possible that a
phase transition lurks beyond the range of parameters ésakatice spacings) that have been
investigated to date. Analyticity could also fail if thereme an essential singularity rightst 0.
This is hard to rule oua priori, though it seems unlikely, since we are expanding aroundssine
theory with no obvious IR divergences. At the end of this isectwe discuss work in progress
on deriving rXPT directly from the lattice theory, using the methods of.Sedf successful, this
work would (among other advantages) reduce these anajytichcerns.

To move fromng =4 to ng =3, we take one quark mass large. Call it the “charm” quark,
with massm.. We first choosen; as large as possible without leaving the region where chiral
perturbation theory applies. This point is taken, nominasme ~ 2mE™S, wherem™® is the
physical strange quark mass. For a clean separation ofsswatecan temporarily take the other
three masses much smaller thagfs.

We then integrate outy, from (4,4, th)x- Since this is a perturbative process (order by order in
rSXPT), there is little doubt that the resulting chiral the@y3, 4, %)X, just as continuun®J (2), x
D (2)r XPT results from integrating out the strange quark from3bé3), x J (3)r theory [30].
Nevertheless, an explicit check of this step is in progra&s. [

Since, by the previous steps in the arguménm,%l)x describes the long-distance physics
of the ng = 4 theory, (3,4, 1), describes that physics when, ~ 2m2™°. We nowassume that
this decoupling of the charm quark from the long-distancesyas remains true (up to the usual
renormalizations of relevant and marginal operatoranascreases still further, untin. > 1/a.

At that point, m; is much larger than all the eigenvalues of the Dirac operaiiod charm must
decouple from the lattice theory, leavi(8, 4, %)LQCD. Under our assumptions, we then have

(37 1)X = (37 47 %)X . (48)

So rXPT is the correct chiral theory for three rooted staggeresfta We can then repeat the
steps to argué2, 1), = (2,4, %)y, and(1,1)y = (1,4,7)y.

These results immediately suggest an apparent paradoxhvgiseen most clearly in the
ne =1 case. The theory with one flavor should have only a heavydesealar, which we call the
n’, and no light pseudo-Goldstone bosons. Yet the theory wiéhrooted staggered flavor contains
light pions, whose masses vanish in the continuum chirat,lias well as one heavy meson, the
taste-singlet)/. There are different weightings of the contributions oftsparticles in the chiral
theories of the rooted and unrooted cases, but otherw)déeTand ugPT are similar.

We first note that the contributions of the unwanted pasicteust disappear from physical
correlation functions in the continuum limit, either by depling, or by canceling against each
other, or both. This follows from the argument around Eg2)(1In the continuum limit taste
symmetry is exact, and the physical sector (defined herecasoiinelation functions generated by
taste-singlet sources) is exactly equivalent to a contmtheory of a single flavor. What X»T
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adds to the discussion is that it allows us to see exactly hewdécouplings and cancellations take
place as the continuum limit is approached.

An rSXPT calculation of theng = 1 taste-singlet scalar-scalar correlator has been peefbrm
to one loop [14, 7]. There are two kinds of unphysical contidns that appear @ # 0. Terms
coming from the taste-violating hairpins [24] involve &stector and taste-axial-vector pions, and
are proportional to explicit powers af — they simply vanish in the continuum limit. There are
also contributions from the physical, taste-singlet hasplue to the anomaly, as well as from
connected (non-hairpin) meson correlators. These genaréwo#), intermediate state with the
physical weight, but also two-pion states. When wenlet— 1/4, the latter states have relative
weights: 1, 4, 6, 4, -15, for the taste-pseudoscalar (Ga@st axial, tensor, vector, and singlet
pions, respectively! The existence of the term with negative weight here is a ¢iefication of
unitarity violations. Ata # 0, these pions have different masses due to taste-symnietafion
and have a non-zero contribution to the correlation functithe sum of the weights is 0, however,
so the contributions cancel in the continuum limit when ladl pions become degenerate.

If, as argued, r%PT is the correct chiral theory for rooted staggered qudtieny there are
some important consequences. Whaenr 0, (ng,4,nr)y becomes ordinaryPT for 4n - nr quark
species. Therefore, takingg — 1/4 order by order produces standard, continukiRiT for ng
flavors in the physical secté?. This then implies that the lowest-energy regimegefflavor lattice
QCD with rooted staggered quarks becomes indistinguishibstructure in the continuum limit
from ordinaryng-flavor QCD. In this limit, there will therefore be no unitlyror locality violations
in the physical sector of the chiral theory. Of course, assgrthe arguments of Sec. 3 go through,
this had to work, since the continuum limit of the rooted staggereticka theory is true QCD.

Another use of rEPT is more technical. It has been suggested.,(in Ref [32]) that the
theory of rooted staggered sea quarks and (necessarilptedjostaggered valence quarks is a
“mixed” theory, which behaves like it has different lattiaetions for the valence and sea sectors.
If that were the case, it would be rather unpleasant. Amohegrdieatures, mixed theories have
different renormalizations of sea and valence quark maaselseven if the quark masses are tuned
to make the sea-sea and valence-valence mesons degetierai@ence-sea mesons will be split
from the others by discretization errors [33].

In weak-coupling perturbation theory, it is easy to see il replica trick that the rooted
staggered theory does not behave like a mixed theory: tleemeizations in the sea and valence
sectors are the same [7, 5]. FurthermoregP3$ allows us to argue that the theory is not mixed at
the chiral level either. The point is th@ig, 4, th)x is obtained order by order frofmg,4,ng)y. The
latter theory in turn has lattice symmetries (broken onlyntgss terms) that interchange valence
and sea quarks. These symmetries imply that the theory tédmiaggered sea quarks and stag-
gered valence quarks behaves like a partially quenchedytheat a mixed theory. One can give
different masses to the sea and valence quarks, as usuahitialp quenched situation. However,
if one chooses to give valence and sea quarks the same mtmgethe symmetries forbid, for
example, the splitting of valence-sea from valence-vaarcsea-sea mesons.

Finally, we briefly describe our work in progress [34], in winiwe attempt to derive pPT

17see Sec. VI of Ref. [7] for a detailed discussion of how thesights arise in r§PT.
18we are considering here the case of positive quark massgs Bof a discussion of the issues involved with
negative masses, see Refs. [3, 4].
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directly from the rooted staggered lattice theory. The irdiage problem in such a derivation is that
a straightforward replica trick fails at the non-pertubatQCD level because we have no control
over the functional dependence of the theoryngan In weak-coupling QCD perturbation theory
the dependence ank arises only from the counting of sea quark loops, and thusaisifiest order
by order. But once we move beyond perturbation theorynghgependence is not knovenpriori,
and a unique analytic continuation from integerto ng = 1/4 is not possible.

This problem with the replica trick at the QCD level is to benttasted with the trick at the
chiral level: rSXPT makes sense because the dependenog isrknown when we calculate order
by order in chiral perturbation theory. The unknowg dependence of the QCD level is hidden
in the ng dependence of the LECs of the corresponding chiral theanceShe goal in the chiral
theory is simply to calculate physical quantities as fumtdi of the LECs, which are treated as
independent variables, we can (must!) ignore the hidgetiependence of the LECs inX8T.

Our tentative solution to this problem is to use the rewadhheory of Sec. 3 as an interme-
diate step. Since this is a local theory, finding the corradpw chiral theory is straightforward.
We then need the replica trick only to move from the reweidltesory to the rooted staggered
case. The latter can be obtained by a convergent Taylor eipa(in the parametdrintroduced
after Eq. (3.9)) around the former. This makes it possibleotatrol theng dependence at the QCD
level, which should allow us to establish an unambiguouseotion between the QCD and chiral
levels, and thereby to derive X8T directly. It should be noted, however, that such a dacmat
would still rely on the existence of EXPT for standard (local) partially quenched theories.
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