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We present results for the pion multiplet spectrum calculated using both unimproved staggered
fermions and improved HYP-smeared staggered fermions. In the case of unimproved staggered
fermions, we observe (consistent with previous work) that

���
a2 � taste symmetry breaking effects

are large and comparable to the � ���
p2 � contributions to their masses. Higher order

���
a2 p2 �

effects are also substantial enough to be seen. For HYP-smeared staggered fermions, we find that
taste breaking is much reduced. The

���
a2 � effects are observable, but are noticeably smaller than

those obtained with AsqTad-improved staggered fermions, and much smaller than those obtained
using unimproved staggered fermions, while

���
a2 p2 � effects are suppressed to such a level that

we cannot observe them given our statistical errors. From this numerical study, we conclude that
HYP staggered fermions are significantly better that AsqTad fermions from the perspective of
taste symmetry breaking.
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1. Pion spectrum with staggered fermions

Staggered fermions have four tastes, leading to 16 tastes of flavor non-singlet pions. These
have the spin-taste structure 	 γ5 
 ξF � with ξF ��
 I � ξ5 � ξµ � ξµ5 � ξµν � 1

2 � ξµ � ξν ��� . These states
fall into 8 irreducible representations of the lattice timeslice group [1]: 
 I � , 
 ξ5 � , 
 ξi � , 
 ξ4 � ,
 ξi5 � , 
 ξ45 � , 
 ξi j � , and 
 ξi4 � . The pion with taste ξ5 is the Goldstone pion corresponding to
the axial symmetry which is exact when m � 0 and is broken spontaneously. The properties of
the pion spectrum can be studied using staggered chiral perturbation theory [2, 3]. It is shown
in Ref. [2] that, at leading order in a joint expansion in p2 and a2, the pion spectrum respects an
SO(4) subgroup of the full SU(4) taste symmetry. In other words, the taste symmetry breaking
happens in two steps: at ��	 p2 ��� ��	 a2 � the SU(4) taste symmetry is broken down to the SO(4)
taste symmetry, while at ��	 a2 p2 � the SO(4) taste symmetry is broken down to the discrete spin-
taste symmetry SW4 [2]. As a consequence of this analysis, we expect that, to good approximation
the pions will lie in 5 irreducible representations of SO(4) taste symmetry: 
 I � , 
 ξ5 � , 
 ξµ � , 
 ξµ5 � ,
 ξµν � .

The splittings between the pion multiplets are a non-perturbative measure of taste-symmetry
breaking, and can be used to measure the efficacy of different improvement schemes. The more
effective the improvement, the smaller the expected splitting. In this paper, we present results for
the pion spectrum calculated using different choices of staggered fermions—unimproved, HYP and
AsqTad—and compare their splitting patterns in order to determine which improvement scheme is
better or more efficient in reducing the taste symmetry breaking.

In a recent study of BK using staggered chiral perturbation theory [4], it was found that loop
contributions from non-Goldstone pions (with ξF �� ξ5) was much larger than that from the Gold-
stone pion. One motivation for the present study is to determine all the pion masses so that they
can be used as inputs into the chiral perturbation theory fit for BK .

2. Cubic symmetry of the source

In order to select a specific pion taste and to exclude all others, it is necessary to choose sources
and/or sinks to lie in specific representations of the timeslice group. Here we discuss how this is
done for the sources. We consider only sources with vanishing physical three-momentum. We
adopt two different methods, one the “cubic U(1) source” and the other the “cubic wall-source”.
We first fix gauge configurations to Coulomb gauge. Then propagators are obtained, as usual, by
solving the following Dirac equation with h set to a specific source type.

	 D � m � χ 	 x ��� h 	 y � (2.1)

χ 	 x � a ��� ∑
y � b G 	 x � a;y � b � h 	 y � b � (2.2)

where a � b are color indices and G 	 x;y � is a quark propagator. For the cubic U(1) source at time
slice t we choose h 	 y � as follows:

h 	 y � b ��� δy4 � t δ 3�
y � 2 �n  �Aξ 	"!n � b � � and ξ 	"!n � b �#� U 	 1 � (2.3)

lim
N $ ∞

1
N ∑

ξ
ξ 	"!n � c � ξ � 	"!n %&� c % �'� δ �n � �n ( δc � c ( (2.4)
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parameter value
β 6.0 (quenched QCD, Wilson plaquette action)

1 ) a 1.95 GeV
geometry 163 * 64
# of confs 218

gauge fixing Coulomb
bare quark mass 0.005, 0.01, 0.015, 0.02, 0.025, 0.03

Zm � 2 + 5
Table 1: Simulation parameters for unimproved staggered fermions

where !A is a cubic vector �,
 	 0 � 0 � 0 � �-	 1 � 0 � 0 � �/.-./.0�-	 1 � 1 � 1 �-� , N is the number of random vectors
and !n � Z3. Similarly, in order to set up the cubic wall source at time slice t, we define h 	 y � b � as
follows:

h 	 y � b �1� δy4 � t δ 3�
y � 2 �n  �Aξ 	 b � � and ξ 	 b ��� U 	 1 � (2.5)

lim
N $ ∞

1
N ∑

ξ
ξ 	 c � ξ � 	 c % �'� δc � c ( (2.6)

In other words, the random vectors are the same on all spatial hypercubes. Note that there are
eight sources of each type, depending on the choice of !A. By combining these we can project onto
particular representations of the timeslice group. We do not know, however, which type of source
is more efficient; this can only be determined through a numerical study.

3. Operator Transcription

We use two different methods to construct bilinear operators: the “Kluberg-Stern method” [5]
and the “Golterman method” [1]. In the Kluberg-Stern method, a bilinear operator is expressed as

OS � F � ∑
A � B χ̄ 	 A � 	 γS 
 ξF � A � Bχ 	 B � (3.1)

	 γS 
 ξF � A � B � 1
4

Tr 	 γ†
AγSγBγ†

F � (3.2)

where A � B is a hypercubic vector �2
 	 0 � 0 � 0 � 0 � �-	 1 � 0 � 0 � 0 � �/././.3�-	 1 � 1 � 1 � 1 �-� , γS (ξF ) represents the
spin (taste). The operator is made gauge invariant by fixing each timeslice to Coulomb gauge, so
that spatial links are not required, and inserting appropriate time-directed links if S4 �� F4. In the
Golterman method, the bilinears are

OS � F � ηS � F 	 x � χ̄ 	 x � MS � F χ 	 x � (3.3)

MS � F χ 	 x �'� ∏
µ 4 1 � 2 � 3

5 	 1 687 Sµ 6 Fµ 7 � �97 Sµ 6 Fµ 7Dµ : χ 	 x � (3.4)

Dµ χ 	 x �'� 1
2

5
χ 	 x � µ̂ � � χ 	 x 6 µ̂ �": (3.5)
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Figure 1:
�
amπ

� 2 vs. amq for unimproved staggered fermions: (left) using the Kluberg-Stern method; (right)
using the Golterman method; In both calculations, the sources are set to cubic U(1) source.

where ηS � F 	 x � is a phase factor given in Ref. [1], and gauge invariance is maintained as for the
Kluberg-Stern operators.

The Kluberg-Stern method gives bilinears that are only approximate representations of the
timeslice group whereas the Golterman method sorts out the bilinears according to true irreducible
representations [1]. We apply both methods to our numerical study and the results will be compared
in the next section.

4. Numerical Study with unimproved staggered fermions

The parameters for the numerical study using unimproved staggered fermions are summarized
in Table 1. In Fig. 1 we show 	 amπ � 2 as a function of quark masses using bilinear operators with
spin-taste γ5 
 ξ4, γ5 
 ξi4, γ5 
 ξi5, and γ5 
 ξ5. We find essentially no difference between the
Kluberg-Stern method (left panel) and the Golterman method (right panel). The Kluberg-Stern
operator includes the Golterman operator as the leading term, as well as operators with derivatives
having different spin-tastes. The latter couple to different states which should be projected against
by the sources. Nevertheless, one might expect the Kluberg-Stern operators to have a more noisy
signal. In fact, we see that the signals with the two methods are essentially identical.

In Fig. 1, we also observe that the splitting between the pion multiplets are comparable to
the light pion masses, implying that ��	 a2 �#� ��	 p2 � . In addition, we observe that the slopes are
different for various tastes, implying that ��	 a2 p2 � terms are significant.

5. Numerical Study with HYP staggered fermions

Using the same set of gauge configurations as in Sec. 4, we study the pion spectrum with
HYP-smeared staggered fermions [6]. The parameters for the HYP fat links are set to the HYP
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Figure 2:
�
amπ

� 2 vs. amq for HYP staggered fermions: (left) using the cubic U(1) source; (right) using the
cubic wall source; In both calculations, the operators are constructed using the Golterman method.

(II) condition in Ref. [7]. In the numerical study, we use quark masses of 0.01, 0.02, 0.03, 0.04,
0.05. Note that Zm � 1 for HYP staggered fermions whereas Zm � 2 + 5 for unimproved staggered
fermions. Hence, the physical quark masses in this study are comparable to those for the unim-
proved staggered fermions considered above.

In Fig. 2, we show 	 amπ � 2 as a function of quark mass and compare the results of the cubic
U(1) source (left) with those of the cubic wall source (right). This comparison indicates there
is essentially no difference between the two sources in practice. In Fig. 2, we observe that the
splittings between the pions are significantly suppressed, down to the 2σ level in our data set,
implying that ��	 a2 �<; ��	 p2 � . In addition, the slopes for different tastes are equal within statistical
uncertainty, showing that improvement reduces the ��	 a2 p2 � effects as well.

We can divide the pion bilinear operators into two categories: one is local in time (γ5 
 ξ5,
γ5 
 ξ4, γ5 
 ξi5, and γ5 
 ξi4) and the other is non-local in time (γ5 
 1, γ5 
 ξi, γ5 
 ξ45, and
γ5 
 ξi j). In the case of sink operators local in time, we can construct the source operators with the
same spin and taste structure. However, in the case of sink operators non-local in time, we cannot
impose the same spin and taste on the source operators, because the source is local in time by
construction. Since we want to select a pion with a specific taste, we do not have any other choice
for the taste but we do have the freedom to choose the spin: we may choose either pseudoscalar
(γ5) or axial vector (γ45). Hence, in the case of sink operators non-local in time, we choose axial
current as a source operator, which is local in time. For example, if the sink operator is γ5 
 ξi

(non-local in time), we choose γ45 
 ξi (local in time) as the source operator. In Fig. 3, we show	 amπ � 2 as a function of quark mass for operators local in time (left) and for operators non-local in
time (right). We see that the signals for the operators non-local in time are noisier than those for
the local operators.

We also observe that the pattern of pion multiplet spectrum is in the following order, which is
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Figure 3:
�
amπ

� 2 vs. amq: (left) for the operators local in time; (right) for the operators non-local in time;
In both cases, we use the Kluberg-Stern method to construct the operators and we also choose cubic U(1)
sources.

the same for unimproved staggered fermions and AsqTad staggered fermions:

mπ 	 ξ5 �#= mπ 	 ξµ5 ��= mπ 	 ξµν ��= mπ 	 ξµ �#= mπ 	 I � (5.1)

6. Comparison of AsqTad and HYP staggered fermions

In Fig. 4, we compare the results of AsqTad staggered fermions (left) with those of HYP
staggered fermions (right). The AsqTad staggered fermion data comes originally from Ref. [8]. It
has a � 0 + 125 fm (MILC coarse lattice) whereas the results for HYP-smeared staggered fermions
are on a finer lattice with a � 0 + 1 fm. Nevertheless, since the gauge part of the AsqTad action is
Symanzik improved, while our calculation uses the unimproved Wilson gauge action, we expect
that the scaling violations from the background gauge configurations to be similar. The physical
quark masses are also similar.

In the case of AsqTad staggered fermions, we observe that the taste-symmetry breaking is of
the same order as the light pion masses. In other words, ��	 a2 �'� ��	 p2 � for the AsqTad action. In
addition, we notice that the slopes for different tastes are very close, implying that this manifesta-
tion of ��	 a2 p2 � terms is very small. By contrast, with HYP-smeared staggered fermions we see
that both ��	 a2 � and ��	 a2 p2 � effects are very small. We conclude that HYP staggered fermions are
significantly better than AsqTad staggered fermions from the standpoint of taste symmetry break-
ing.
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Figure 4:
�
amπ

� 2 vs. amq: (left) for AsqTad staggered fermions; (right) for HYP staggered fermions (the
Kluberg-Stern method, cubic wall source)
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